
Fuxi: a Fault-Tolerant Resource Management and Job
Scheduling System at Internet Scale

Zhuo Zhang∗, Chao Li∗, Yangyu Tao∗, Renyu Yang†∗, Hong Tang∗, Jie Xu†§
Alibaba Cloud Computing Inc.∗ Beihang University† University of Leeds§

{zhuo.zhang, li.chao, yangyu.taoyy, hongtang}@alibaba-inc.com
yangry@act.buaa.edu.cn j.xu@leeds.ac.uk

ABSTRACT
Scalability and fault-tolerance are two fundamental chal-
lenges for all distributed computing at Internet scale. De-
spite many recent advances from both academia and indus-
try, these two problems are still far from settled. In this
paper, we present Fuxi, a resource management and job
scheduling system that is capable of handling the kind of
workload at Alibaba where hundreds of terabytes of data
are generated and analyzed everyday to help optimize the
company’s business operations and user experiences. We
employ several novel techniques to enable Fuxi to perfor-
m efficient scheduling of hundreds of thousands of concur-
rent tasks over large clusters with thousands of nodes: 1)
an incremental resource management protocol that supports
multi-dimensional resource allocation and data locality; 2)
user-transparent failure recovery where failures of any Fuxi
components will not impact the execution of user jobs; and
3) an effective detection mechanism and a multi-level black-
listing scheme that prevents them from affecting job execu-
tion. Our evaluation results demonstrate that 95% and 91%
scheduled CPU/memory utilization can be fulfilled under
synthetic workloads, and Fuxi is capable of achieving 2.36T-
B/minute throughput in GraySort. Additionally, the same
Fuxi job only experiences approximately 16% slowdown un-
der a 5% fault-injection rate. The slowdown only grows to
20% when we double the fault-injection rate to 10%. Fux-
i has been deployed in our production environment since
2009, and it now manages hundreds of thousands of server
nodes.

1. INTRODUCTION
We are now officially living in the Big Data era. Accord-

ing to a study by Harvard Business Review in 2012, 2.5 ex-
abytes of data are generated everyday and the speed of data
generation doubles every 40 months [13]. To keep up with
the pace of data generation, data processing has also been
progressively migrating from traditional database-based ap-
proaches to distributed systems that scale out much easi-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

ly. In recent years, many systems have been proposed from
both academia and industry to support distributed data pro-
cessing with commodity server clusters, such as Mesos [11],
Yarn [18] and Omega [16]. However, two major challenges
remain unsettled in these systems when faced with the chal-
lenges of managing resources for systems at Internet scale:

1) Scalability : Resource scheduling can be simply consid-
ered as the process of matching demand (requests to allocate
resources to run processes) with supply (available resources
of cluster nodes). So the complexity of resource management
is directly affected by the number of concurrent tasks and
the number of server nodes in a cluster. Furthermore, oth-
er factors also impact the complexity, including supporting
resource allocation over multiple dimensions (such as CPU,
memory, and local storage), fairness and quota constraints
across competing applications; and scheduling tasks close to
data. A naive approach of delegating everything decision to
a single master node (as in Hadoop 1.0) would be severely
limited by the capability of the master. On the other hand,
a fully-decentralized solution would be hard to design to
satisfy scheduling constraints that depends on fast-changing
global states without high synchronization cost (such as quo-
ta management). Both Mesos and Yarn attempt to deal
with these issues in slightly different ways. Mesos adopts a
multiple-level resource offering framework. However, Mesos
master offers free resources in turn among frameworks, the
waiting time for each framework to acquire desired resources
highly depends upon the resource offering order and other
frameworks’ scheduling efficiency. Yarn’s architecture de-
couples resource management and programming paradigms.
However, the decoupling is only for the separation of code
logic between resource management and MapReduce job ex-
ecution, so that other programming paradigms can be ac-
commodated in Yarn. Nevertheless, it does not reduce the
complexity of resource management, and still inherits the
linear resource model as in Hadoop 1.0.

In both cases, states are exchanged with periodic mes-
sages and the interval configuration is another intricate chal-
lenge. A long period could reduce communication overhead
but would also hurt utilization when applications wait for
resource assignment. On the other hand, frequent adjust-
ments would improve response to demand/supply changes
(and thus improve resource utilization); however, it would
also aggravate the message flooding phenomenon. In fact,
Yahoo! reported that they did not run Hadoop clusters big-
ger than 4,000 nodes [18] and Yarn had yet to demonstrate
its scale limit.

2) Fault-tolerance: With increasing scale of a cluster,

the probability of hardware failures also arises. Additional-
ly, rare-case software bugs or hardware deficits that never
show up in a test environment could also suddenly surface
in production. Essentially, failures become the norm rather
than the exception at large scale [15]. The variety of failures
include halt failures due to OS crash, network disconnection,
and disk hang, etc [9]. Traditional mechanisms like health
monitoring tools or heartbeat can help but cannot complete-
ly shield the failures from applications. Another challenge
is how to cope with master failures. In Yarn, when the re-
source manager fails and then recovers, it has no recall of
the cluster states. Thus all running applications (including
application masters) will start over. Similarly, the failure of
a node manager could also result in the re-execution of all
running tasks on the node, even if it soon recovers.

At Alibaba, hundreds of millions of customers visit our
Web sites everyday, looking for things to buy from over one
billion items offered by our merchants. Hundreds of ter-
abytes of user behavior, transaction, and payment data are
logged and must go through elaborated processing every-
day to support the optimization of our core business oper-
ations, such as online marketing, product search and fraud
detection; and to improve user experiences such as person-
alization and product recommendation. In this paper, we
present Fuxi1, the resource management and job scheduling
system that supports our proprietary data platform (called
Open Data Processing Service or ODPS [6]) to handle the
Internet-scale workload at Alibaba.

Fuxi’s overall architecture bears some resemblance to Yarn.
In this paper, we mainly focus on the the following three as-
pects that are key to scaling Fuxi to thousands of nodes and
hundreds of thousands of concurrent processes, maintain-
ing high resource utilization, and shielding low-level failures
from impacting applications. We believe these techniques
are in the right direction to solving the scalability and fault-
tolerance problems being faced by similar systems handling
Internet-scale traffic.

Incremental resource management protocol. Fux-
i’s resource management protocol allows an application to
specify its resource demand at once, and then make incre-
mental updates only if necessary. The protocol saves an ap-
plication from repetitively asserting full resource demands,
and thus significantly reduces the communication and mes-
sage processing overhead. Resource grants are also offered
to applications in iterations. The central scheduler, called
FuxiMaster, maintains the state of unfulfilled demands of
each application and employs a locality-tree based method
to achieve micro-seconds level response.

User transparent failure recovery. Once a user job
is submitted, Fuxi ensures that its execution will be carried
out until completion and makes the failover process of in-
dividual component failures as transparent to the user as
possible, with the help of the following techniques: a) For
FuxiMaster, we adopt the typical hot-standby approach and
lightweight state preservation for its failover. In order to re-
duce the overhead of state bookkeeping and to accelerate
state restoration, we separate the states into soft states and
hard states. Soft states could be collected at runtime from
other Fuxi components while only hard states like job de-

1
Fuxi (pronounced (\"fuSi:\)) derives from the first of the Three

Sovereigns of ancient China and the inventor of square and com-
pass, trigram, Tai-Chi principles and calendar [4], thereby being
metaphorized into a powerful dominator in our system.

scription need to be recorded. b) For an application master,
the FuxiMaster leverages heartbeat to determine whether to
start a new master or not. The application master can also
conduct failover to recover the finished and running workers
by means of a light-weighted checkpoint scheme; c) For the
daemon process on each machine, existing running tasks will
be adopted rather than being killed.

Faulty node detection and multi-level blacklist. We
adopt a multi-level machine blacklist method to effectively
identify machines behaving abnormally yet not dead. In
Fuxi, both FuxiMaster and application masters employ ma-
chine blacklist mechanisms. FuxiMaster uses three schemas
to find out the bad machines while application master makes
use of a bottom-up approach to distinguish temporary ab-
normality from persistent bad machines. Additionally, Fux-
iMaster and application masters share the blacklist to make
collaborative judgments for faulty nodes.

Our evaluation results demonstrate the major advantages
of Fuxi. Under a stressful synthetic workload, the aver-
age scheduling time for each request is merely 0.88ms while
95% memory and 91% CPU can be planned out by FuxiMas-
ter. Additionally, we achieve a 2.36TB/minute sort through-
put from GraySort, a 66.5% improvement over the previous
record by Yahoo! [8]. With a 5% fault-injection rate, the
same Fuxi job only experiences a 15% slowdown. Even af-
ter we double the fault-injection rate to 10%, the slowdown
only grows to 20%. Fuxi has been deployed in our produc-
tion environment since 2009. It now manages hundreds of
thousands of server nodes at Alibaba.

The remaining sections are structured as follows: Sec-
tion 2 discusses the system overview and core design phi-
losophy. Section 3 focuses on resource management while
section 4 describes job scheduling, including job execution
and fault tolerance handling; Section 5 presents the exper-
imental results, followed by related work in Section 6. We
conclude our paper and discuss future work in Section 7.

2. SYSTEM OVERVIEW
In this section, we provide an introduction of the Apsara

cloud platform, and then present an overview of Fuxi system.

2.1 Apsara Cloud Platform
Apsara is a large-scale general-purpose distributed com-

puting system developed by Alibaba Cloud Computing In-
c [1] (aka Aliyun). Apsara is responsible for managing the
physical resources of Linux clusters within a data center and
controlling the parallel execution of distributed application-
s. It also hides low-level management chores such as failure
recovery and data replication, thereby providing a highly re-
liable and scalable platform to support distributed process-
ing with many common computing models. Apsara is the
common foundation for a suite of cloud services offered by
Aliyun, such as elastic computing, data storage and large-
scale data-driven computation.

The overall architecture of Apsara is shown in Figure 1,
where the boxes in skyblue are Apsara modules, and the
white boxes are cloud services running on top of Apsara.
Apsara consists of four major parts: 1) common low-level
utilities for distributed computing, such as distributed co-
ordination such as locking and naming, remote process call-
s, security management, and resource management; 2) dis-
tributed file system; 3) parallel job scheduling; and 4) cluster
deployment and monitoring. The resource management and

Linux Cluster

D
e

p
lo

y
m

e
n

t

M
o

n
it
o

r

Coordination

Service

Remote

Communication

Security

Management

Resource

Management

Job SchedulingDistributed File System

Elastic

Compute

Service

Open

Storage

Service

Open

Table

Service

Relational

Database

Service

Open Data

Processing

Service

Aliyun Cloud Engine

Figure 1: Apsara system overview.

job scheduling modules are collectively called Fuxi and is
the topic of this paper.

2.2 Fuxi Overview
As shown in Figure 2, Fuxi follows a common master-slave

architecture and it has three components: central resource
manager (called FuxiMaster), the distributed node manager-
s (called FuxiAgent), and the application masters.

FuxiMaster : In order to schedule cluster resources a-
mong different applications, decisions are made from both
producers and consumers points of view. For example, how
many resources are available for scheduling and what each
application’s specified requirements are. It is FuxiMaster
that acts as the match-maker in between. It not only pas-
sively collects total free resources/virtual resources from each
machine but gathers resource requests from all application
masters as well. Due to the highly dynamic information
from both sides, FuxiMaster must collect information in
time and perform the scheduling quickly and fairly. While
the resource assigned is no longer needed by the applica-
tion, FuxiMaster ought to reschedule it to another applica-
tion as soon as possible for higher cluster utilization. After
scheduling, results will be delivered to the related applica-
tion masters and FuxiAgents. Thereafter, the master can
use this resource to start requisite computation processes
with the guaranteed resource amount and the isolation for
each application process supported by FuxiAgent based on
the scheduling instructions.

FuxiAgent : A single FuxiAgent will run on each machine,
mainly serving two-folded roles. The first is to collect local
information and status periodically, and report them to Fux-
iMaster for further scheduling judgement. The second one is
to ensure application processes to execute normally with the
aid of process monitor, environment protection and process
isolation.

To achieve process isolation, we have adopted three schemes
which is the most important responsibility on FuxiAgent.
Firstly, FuxiAgent will start processes for one application
only if it has obtained sufficient resource on this machine
from FuxiMaster. We call this procedure resource capaci-
ty ensurance. Specifically, when the resource capacity de-
creases and application master does not choose one process
to stop, FuxiAgent will kill one process of this application
compulsorily to ensure the resource capacity. Secondly, each
process is configured with Cgroup [3] soft and hard limit.
When a machine encounters with resource overload, one or
more processes will be killed to maintain the machine load
within an acceptable threshold. One simple rule is to select
the process whose real resource usage exceeds its own re-
source usage most. Thirdly, sandbox is leveraged to isolate
different processes from invalid operations such as file access.

Cluster

Node

Fuxi Agent

App Master

Cluster

Node

Fuxi Agent

Cluster

Node

Fuxi Agent

App Worker

Cluster

Node

Fuxi Agent

App Master

Fuxi Master Client

App Worker

App Worker App Worker App Worker

...

...

Job Scheudling

Resouce Apply

and Assign

Node management

and status collection

Job Submission

Figure 2: An application workflow in Fuxi system.

In fact, different root folders are created for each process
preventing interference and resource access from others.

ApplicationMaster : Different computation paradigms
(e.g. MapReduce, Spark, or Storm etc.) would be repre-
sented by different application masters that are responsible
for application-specific execution logic.

Common Workflow : Figure 2 illustrates how these com-
ponents cooperate with each other. A user firstly submits a
request to launch an application (e.g. a MapReduce job) to
FuxiMaster with the description, which contains the neces-
sary information such as application type, master package
location and application-specific information. FuxiMaster
then finds a FuxiAgent with sufficient resources for the ap-
plication master, and requests that FuxiAgent to start the
corresponding application master. Once started, the appli-
cation master retrieves the application description, and de-
termines the resource demand for different stages of the job
execution, including the appropriate parallelism, the granu-
larity of each allocation, and preferred locality. Afterwards,
it sends resource allocation requests to FuxiMaster in an
incremental manner and waits for resource grants and re-
vocations (if any) from FuxiMaster. Upon the receipt of
resource grants, the application master sends concrete work
plans to the corresponding FuxiAgents. The work plan con-
tains the necessary information to launch a specific process,
such as its package location, resource usage limits and start-
up parameters. Upon receiving a new work plan, FuxiAgent
starts the application worker and uses Linux Cgroup [3] to
enforce resource constraints. FuxiAgent watches the work-
er’s status and restarts it if it crashes. In the meantime,
the application worker also registers itself to the application
master. When a worker is no longer needed, the application
master makes an incremental request to returns the granted
resource back to FuxiMaster.

3. INCREMENTAL RESOURCE MANAGE-
MENT PROTOCOL

In this section, we introduce an efficient resource man-
agement protocol that allows Fuxi to support the scale at
Alibaba. We first introduce the basic idea behind the pro-
tocol design. We then describe the key data structure used
in the protocol. Afterwards, we describe the scheduling al-
gorithm, which is centered around a data structure called
a locality tree. We conclude the section with a few other
considerations for multi-tenancy and scalability.

3.1 Basic Idea
Incremental Scheduling: Consider a cluster with hun-

dreds of thousands of concurrent tasks, running for tens of

seconds on average, the resource demand/supply situation
would change tens of thousands times per second. Mak-
ing prompt scheduling decisions at such a fast rate means
that FuxiMaster cannot recalculate the complete mapping
of CPU, memory and other resource on all machines to all
applications tasks in every decision making.

With the locality tree based incremental scheduling, on-
ly the changed part will be calculated. For example, when
{2CPU, 10GB} of resource frees up on machine A, we only
need to make a decision on which application in machine A’s
waiting queue should get this resource. There is no need
to consider other machines or other applications. Micro-
seconds level scheduling can be achieved in light of this in-
tuitive but effective locality-based approach.

Incremental Communication: Similarly, in the envi-
ronment consisting of thousands of applications and ma-
chines, the massive message communication among differ-
ent components (such as FuxiMaster, application masters
and FuxiAgents) will be a non-negligible factor that greatly
affects the performance of FuxiMaster. An application may
require hundreds of thousands of processes to run. A simple
iterative process that keeps asking for unfulfilled resources
will take too much bandwidth and get worse when cluster is
busy.

For this reason, we try to reduce the flooding messages by
only sending messages from application masters and FuxiA-
gents to FuxiMaster when changes occur. In addition, only
the delta portion will be transferred. Applications could
publish their resource demands in incremental fashion. In
the simplest form, an application only specifies resource de-
mand once and waits for resources being assigned iteratively,
and returns the resources back when it exits. On the other
hand, such a protocol requires states to be maintained in
both FuxiMaster and application masters, and many prob-
lems arise in keeping the states consistent across different
entities. For example, we must ensure the changed portions
be delivered and processed in the same order at the receiver
side as they are generated on sender side. Additionally, we
must ensure the idempotency of the handling of duplicated
delta messages, which could happen as a result of tempo-
rary communication failure. In a word, we must make sure
the full version of information on two communication peers
is exactly the same. As a safety measurement, application
masters exchange with FuxiMaster the full state of resources
periodically to fix any possible inconsistency.

As shown in Figure 3, a simplified example is given to
demonstrate the principle of incremental scheduling and com-
munication. We define ScheduleUnit to be an unit size de-
scription of resource such as 1 core CPU, 1GB memory.
Number 1 to 8 in small rectangles represent steps in tempo-
ral order as explained in sequence below:
1) AppMaster1 applies for 10 ScheduleUnits (say SU A) of
resources in the cluster. Detailed requirements include: a).
one SU A contains one cpu core and 2GB of memory; b).
if free resource on M1 is available, at least 2 SU As on M1
are preferred; c). there is no locality preference on other
machines; d). maximum 10 SU As is needed.
2) On receiving request from AppMaster1, FuxiMaster will
check the available resource, AppMaster1’s group quota avail-
ability before scheduling. In this case, 2 units of resource on
M1 can be met (actually 3 units are assigned on this ma-
chine). After 3 units on M2 and 2 units on M3 are assigned,
the application master still needs another 2 units free re-

FuxiMaster

AppMaster 1

AppMaster 2
ScheduleUnit:

{2cpu, 5gb}

FuxiAgent 1 FuxiAgent 2 FuxiAgent 3

Return:
M3: -1

Assign:
M1: +3,
M2: +3,
M3: + 2

2

Assign:
M3: +2

Return:
M1: -3
M2: -1
M3: -4

Return:
M2: -2

ScheduleUnit:
{1cpu, 2gb}

Apply:
{M1 * 2, C * 10}

Max: 10

1 3 4 5 7

2 A1: +3 A1: +3 A1: +22 2

4 A2: -1
A1: +2

6 A1: -3 6 A1: -1

6 A1: -4
8 A1: -2

Figure 3: Incremental scheduling and communica-
tion

sources on any machine in the cluster. It is noteworthy that
AppMaster1 does not need to update its resource request for
SU A here according to our proposed incremental strategy.
3) AppMaster2 happens to return 1 unit of resource on M3.
4) On receiving the return message, FuxiMaster checks its
waiting queue and happens to identify AppMaster1 to be
the application with the highest priority. Owing to its u-
nit size much smaller than AppMaster2, 2 units of request
can be fulfilled. Therefore, the scheduling decision is to as-
sign 2 units of resource to AppMaster1 after revoking one
unit resource from AppMaster2 on machine M3. In time 4,
incremental scheduling results are transferred to the relat-
ed application master and FuxiAgent separately, also in the
manner of incremental message.
5) 8 units of resource are returned from AppMaster1 on d-
ifferent machines, with the messages up to FuxiMaster in
incremental mode.
6) On the receipt of this message, FuxiMaster conducts the
scheduling and assigns these returned resources to other
waiting applications in the queue.
7) More resources remained in AppMaster1 are given back
in the incremental manner.
8) The same procedure repeats during which FuxiMaster
schedules and assigns these returned resources to other wait-
ing applications by means of the proposed incremental com-
munication and scheduling.

3.2 Key Data Structure

3.2.1 Resource Description: Both Physical and Vir-
tual

On large clusters running different types of computations,
there is a real necessity for a process to have non-proportional
resource demands over different dimensions, e.g. CPU, Mem-
ory. Fuxi unifies all these diverse demands into an uniform
multi-dimensional resource description, which includes CPU
and memory of physical resources at present, but could be
easily extended to more dimensions in the future. It can be
used to describe the total resources and available resources
of a single node and the quantification of a resource request.
All resource allocations are based on this resource descrip-
tion abstraction and all dimensions of this description must
be satisfied in the meantime.

slot_id: 1
max_slot_count: 10
slot_def {
 priority: 1000
 resource {
 resource_type: "CPU"
 amount: 100
 }
 resource {
 resource_type: "Memory"
 amount: 1024
 }
}
Locality_hints {
 value: "r42g04021.aliyun.com"
 count: 2
 type: LT_MACHINE
}
Locality_hints {
 value: "r42g.aliyun.com"
 count: 10
 type: LT_RACK
}

Figure 4: Resource request example.

Apart from physical resource, we also introduce the con-
cept of ’virtual resource’, for applications to easily limit the
concurrency of a certain task on a node. For example, to run
a distributed sort application called ASort in a cluster, if we
only allow 5 concurrent computing processes to be run on
the same node, we can configure each node to only contain
5 virtual resource. We can give the virtual resource a name
(e.g., ’ASortResource’) and the ASort application must be
configured to request one ’ASortResource’ for each comput-
ing process. The total virtual resource on each node can be
changed at any time.

3.2.2 Resource Request
A resource request consists of ScheduleUnit definition,

quantities for each ScheduleUnit, and other attributes (lo-
cation preference, avoidance machine list, priority etc.). It
is sent from application master to FuxiMaster to apply for
resources.

ScheduleUnit is an unit size description of resource(s) such
as {1 core CPU, 1GB Memory}. Resources can be fallen in-
to categories of three-level-tree hierarchy: machine, rack and
cluster. A machine can have dozens of CPU cores and giga-
bytes of memory while a rack consists of tens or hundreds
of machines. Correspondingly, tens of racks with thousands
of machines constitute a cluster. Each application can re-
quest resources on one specific machine, or any machine in
certain rack or machine inside the cluster. This is mainly
determined by data locality preferred by application compu-
tation processes (e.g., computation at best happens where
data resides or at least within the same network switch).

Any subsequent resource request is based on this Sched-
uleUnit and it only needs to specify the number of this unit
on each machine/rack/cluster (See Figure 4). Each appli-
cation can have multiple ScheduleUnits and each unit has
same or different priority, but different unit size. Scheduling
in FuxiMaster will be based on different scheduling units.

Furthermore, application master can change its resource
request dynamically at any time after the first submission of
request. The quantities can be either positive or negative,
meaning increase or decrease of resource request respective-
ly. This will probably happen when location preference is
adjusted due to the fact that some bad nodes are detect-
ed, or unused resources are returned, or more resources are

required for backup running of some instances etc.
To take a map-reduce job with 10 mappers and one re-

ducer as an example, we need to firstly request for 10 units
of mapper. If only 6 units are granted from FuxiMaster, it
is unnecessary to send new requests to FuxiMaster for ad-
ditional 4 units of resource. FuxiMaster will automatically
insert the request into the scheduler’s waiting queue. When
free resource is available, additional 4 units of resource will
be granted to the application master subsequently. When
some mappers finish, the application master returns the re-
source via the same protocol, but only the unit number needs
to be sent.

3.2.3 Resource Response
A resource grant offers application master the privilege to

run worker processes on a specific node. No matter which
level of resource (machine, rack or cluster) the application
master requests, resource on specific machines will be grant-
ed to each application after scheduling. FuxiMaster will
notify the application master of resource grant in response
message in the form of (M1,3), (M2,4), ..., (Mn,1) with each
resource amount attached. The quantities can be either pos-
itive or negative, indicating grant or revocation of resource
respectively. A resource revocation means that a previous-
ly offered resource grant is no longer valid, possibly due to
reasons such as node down or preemption etc. Application
master might react to the message by terminating the cor-
responding worker at an opportune time, or the worker will
be involuntarily terminated by FuxiAgent.

Fuxi separates the notion of task (the application process
that performs the actual work) and container (the unit of re-
source grant). Once an application master receives a grant,
it explicitly controls its life-cycle and may reuse the contain-
er to run multiple tasks. This is one of major differences
between Fuxi and Yarn. In Yarn’s implementation, there is
no separation between a task and the resources for the task.
Whenever a task completes, the node manager always re-
claims back the resources, even though the application mas-
ter has more ready tasks to execution. Thus the resource
manager has to conduct additional rounds of rescheduling,
thereby creating substantial overhead and unnecessary re-
quest messages.

3.3 Locality Tree Based Scheduling
FuxiMaster scheduler maintains two data structures: avail-

able resource pool and locality tree. Upon the receipt of
resource requests from application master, FuxiMaster will
check the free resource pool, and try to find free resource
which meets the application’s locality requirements. Mean-
while, load balance will also be considered. If the free re-
source is insufficient, the resource requests will be queued in
FuxiMaster’s scheduler. Different machine, rack and cluster
have their individual waiting queue and applications that
request resource on the same machine, rack or cluster will
be put into the same queue. These queues on machine, rack
and cluster constitute a locality tree.

In particular, this locality tree based scheduling is an-
other main difference between Fuxi and Yarn. Fuxi queues
these unsatisfied resource requests in FuxiMaster scheduler,
and automatically grants resource to application master up-
on resource free-up. In this way, we can speed up resource
free-up and re-scheduling while increasing cluster utilization.
When resources of one machine are returned by one applica-

Cluster

Rack1 Rack2

M1 M2 M3 M4

App1: P1, 4
App2: P1, 3
App3: P2, 1

App1: P1, 4
App4: P3, 6

App2: P1, 3
App3: P2, 1
App4: P3, 4

App3: P2, 1
App4: P3, 3

App1: P1, 9
App2: P1, 5
App3: P2, 1
App4: P3, 8

App1: P1, 4
App2: P1, 4
App3: P2, 3
App4: P3, 8

App1: P1, 14
App2: P1, 9
App3: P2, 5

App4: P3, 16
App5: P4, 9

Figure 5: Scheduling tree example.

tion master, certain waiting application will be selected to
get the released resources. Priority is the principal consid-
eration, and the application with higher priority will get the
resources first. When priority is the same, the waiting time
will be taken into account. Additionally, applications wait-
ing on the machine queue will take precedence over those
waiting on the rack/cluster queue that the machine belongs
to. The objective is to ensure cluster overall locality com-
putation if priority is identical. An application can choose
to wait on a specific machine, certain rack or any machine
in the cluster and all applications waiting on the same tree
are sorted by priority and submission time. Figure 5 can be
illustrated as an example of the scheduling tree. App1 waits
for each 4 units of resource on M1 and M2 with 9 units, 4
units and overall 14 units on Rack1, Rack2 and the whole
cluster respectively. When any of these waiting requests can
be satisfied, the resources will be assign to App1 and the rel-
evant waiting requests will be decreased by the amount of
assigned units.

3.4 Other Design Considerations
Multi-Tenancy Support: As for the fairness, resource

quota concept is introduced. In this manner, one cluster
can have multiple quota groups while each application must
belong to one and only one group. When applications from
one quota group are idle and cannot take up all resources,
applications from other quota groups can exploit it instead.
When all quota groups are busy, a minimal quota for each
group will be ensured. Dynamic quota adjustment is outside
the scope of this paper and will not be introduced in detail.

To enact the quota redistribution, FuxiMaster must re-
voke some resource grants from applications with quota d-
eficits via preemption. When resource requests of applica-
tions from one quota group increase and the minimal re-
source quota is not satisfied, the quota groups that over-use
resources will be preempted to make space for this quota
group.

Besides quota preemption, we provide preemption on pri-
ority, which targets the scenario that the application with
higher priority submits its resource request late but the clus-
ter resources happen to be all scheduled out. Applications
with lowest priority in its quota group will be preempted
to make space for higher ones. The second level is quota
preemption.

Prioritized Request Handling: As the only central
master in the cluster, FuxiMaster is prone to become bot-

tleneck as numerous messages and requests have to be trans-
mitted, handled and responded in time. For example, when
thousands of jobs are started in a batch in a production clus-
ter at midnight, FuxiMaster might encounter spike requests
asking for resource. To make it even worse, FuxiMaster
also takes important responsibilities for resource schedul-
ing, message disseminations among a great many of peers,
which will occupy FuxiMaster a great amount of handling
time. Additionally, failure is such a routine phenomenon
that cluster availability guarantee and fault tolerance issues
are supposed to be tackled in FuxiMaster, which will sub-
stantially aggravate its burden.

In order to disperse the spike requests and alleviate the
burden, multi-level and prioritized response mechanism is
proposed in which we classify the work done by FuxiMas-
ter into different levels of importance and latency require-
ments. In this scenario, the request handling order is de-
termined according to the emergency priorities. Specifical-
ly, urgent requests like resource reversion and re-assignment
will be triggered by events in order to offer timely response
whilst achieving higher cluster utilization. Furthermore,
some similar requests (e.g., frequently changing resource re-
quests from one application) are merged compactly and han-
dled in a batch mode, mitigating the communication over-
heads. In contrast, other heavy but not emergent requests
such as quota automatic adjusting or bad node detection
will be captured at a fixed time interval (e.g., once a minute)
in a roll-up manner. Owing to these strategies, highly im-
perative items can obtain more processing time and instant
responses, thus improving the effectiveness of resource man-
agement.

4. FAULT TOLERANT JOB SCHEDULING
Different computation paradigms can be implemented on

top of Fuxi’s resource management framework. In this pa-
per, we focus on one specific batch dataflow processing pro-
gramming model and how we can achieve fault-tolerance
in job scheduling. In the following sections, we will firstly
show the overview of Fuxi job model, and then discuss two
techniques: user-transparent failure recovery and multi-level
blacklisting. Finally, we share our experience on practical
optimizations.

4.1 Overview
Fuxi Job uses DAG (Directed Acyclic Graph) to present

the general user workflow, that is similar to other systems
like Tez[2] and Dryad [12]. It is very simple to configure
the Fuxi DAG job. The framework accepts a JSON file as
job description. We take Figure 6 as an example to ex-
plain the job description. The JSON file has a field ”Tasks”
which describes the properties of each task including the
executable binary path and other user customized parame-
ters. The field ”Pipes” depicts all the data shuffle with each
one having a ”Source” and ”Destination” access point asso-
ciated with tasks. The circular numbers clarify the corre-
spondences between JSON file and DAG figure on the right
side. Users embed their task logic by using Fuxi Job SDK
and programming API. For data shuffle, we encapsulate the
common data operators like sort, merge-sort, reduce into a
library named Streamline along with the released SDK. The
library can facilitate the usage of Fuxi to customize user
logic of a job.

"Description":

{

 "Tasks": {"T1": {...}, "T2": {...}, "T3": {...}, "T4": {...}},

 "Pipes":

 [

 {

 "Source": {"FilePattern": "pangu://..."},

 "Destination": {"AccessPoint": "T1:input"}
 },

 {

 "Source": {"AccessPoint": "T1:toT2"},

 "Destination: {"AccessPoint": "T2:fromT1"}

 },

 {

 "Source": {"AccessPoint": "T1:toT3"},

 "Destination: {"AccessPoint": "T3:fromT1"}

 },

 {

 "Source": {"AccessPoint": "T2:toT4"},

 "Destination: {"AccessPoint": "T4:fromT2"}

 },

 {

 "Source": {"AccessPoint": "T3:toT4"},

 "Destination": {"AccessPoint": "T4:fromT3"}

 },

 {

 "Source": {"AccessPoint": "T4:output"},

 "Destination": {"FilePattern": "pangu://..."}

 }

]

}

T4

InputFile

T1

OutputFile

T2 T3

①①

②

②
③

③

④
④

⑤

⑤

⑥

⑥

Figure 6: Job description sample.

The major consideration in design of Fuxi Job model is
fault tolerance. We design user transparent failover schema
to deal with failure of FuxiMaster or FuxiAgent crash. We
also design the JobMaster to recover all the instances states
including the running instances when the JobMaster restart-
s. Moreover, a multi-level blacklist strategy is adopted to
handle general machine failure such as disk hang, network
disconnection etc.

4.2 Job Execution
We provide a plenty of command line tools for users to

manipulate the job. The whole life-cycle of a job execu-
tion consists of the following stages, all of which are fully
automatic except for job starting and stopping by user.

Job Submission: The user should firstly write the spe-
cific task logic code based on the interface functions defined
in Fuxi SDK. Thereafter, the user code is compiled and built
to an executable binary packed in a gzip file. The package
is then unloaded to Fuxi system. After the preparation,
user can submit the job with the description JSON file to
FuxiMaster. Consequently the job life-cycle begins at this
time.

Job Master Launch: When receiving a job submission,
the FuxiMaster schedules an available FuxiAgent to launch
the JobMaster process and sends the command to it. The
selected FuxiAgent will quickly start the JobMaster process
which will report job running status to FuxiMaster.

Instance Scheduling: After the JobMaster parses the
job description, it will request proper resources from Fuxi-
Master by the resource protocol. The request contains both
machine level preference and arbitrary machine in cluster.
Based on the offered resource by FuxiMaster, JobMaster
determines which task to be executed and the correspond-
ing TaskMaster begins to schedule its instances. The data
locality and load balance is taken into account during the
scheduling. When failure is found in instances or machines,
TaskMaster will re-schedule the instances to be tolerant of
disk error or network congestion.

Job Monitoring: All TaskWorkers will periodically re-
port their status including execution progresses to the Task-
Masters. User can also query the whole job status from

JobMaster by command line tool. Moreover, instance fail-
ure details are encapsulated in the reported status for the
sake of easy fault diagnosis.

4.3 Fault Tolerance
From the viewpoint of job execution, the faults can be

categorized into three types: a) FuxiMaster, FuxiAgent and
JobMaster process failure which might result in failure of
the whole job; b) machine or network fault which leads to
failures of the instances running on it; c) instance long-tail
due to hardware and/or software performance dropdown.

4.3.1 User Transparent Failure Recovery
All the roles in Fuxi system, including FuxiMaster, Fuxi-

Agent and JobMaster can support user transparent failover.
Here we describe the detailed design and implementations.

1) FuxiMaster Failover : FuxiMaster as the central man-
aging point has a significant impact on the system overall
availability. We adopt the typical hot-standby approach and
start two FuxiMaster processes in a cluster for high avail-
ability. These two masters are mutually excluded by using
a distributed lock on the Apsara lock service. The primary
master that has grabbed the lock will take charge of re-
source scheduling while the other master is standby. When
the primary FuxiMaster crashes, the standby will immedi-
ately grasp the lock and become the new primary master.

To reconstruct whole resource scheduling results, Fuxi-
Master needs the checkpoint of all states before its crash.
On the other hand, full record checkpoint of all states could
heavily affect the scheduling performance of FuxiMaster. In
order to reduce the overhead of state bookkeeping and ac-
celerate state restoration, we separate the states into hard
states and soft states. Only hard states such as job descrip-
tion and cluster-level machine blacklist are recorded by a
light-weighted checkpoint. The checkpoint is conducted on-
ly when the job is submitted or stopped. The soft states
are collected from all FuxiAgents and application masters
at runtime during FuxiMaster failover.

Figure 7 depicts the requisite information when FuxiMas-
ter experiences the failover. Only application configurations
are loaded from checkpoint while other scheduled resource
information is all collected from FuxiAgents and applica-
tion masters. Each application master re-sends its Sched-
uleUnit configuration, resource request and location prefer-
ence to FuxiMaster. Meanwhile, each FuxiAgent re-sends
the resource allocation on this machine for each application
master. FuxiMaster will use the information above to re-
construct the scheduling states, thus keeping all resource
allocation and existing processes stable. Additionally, the
application master will keep the already assigned resource
during the whole failover.

2) FuxiAgent Failover : FuxiAgent also supports trans-
parent failover. During its failover, FuxiAgent firstly collects
running processes started previously, and then requests the
full worker lists from each corresponding application master.
With the full granted resource amount from FuxiMaster for
each applications, FuxiAgent finally rebuilds the complete
states before failover.

3) JobMaster Failover : JobMaster process crash could
result in whole job failures. Therefore, it is necessary for
JobMaster to support user transparent failover in real clus-
ter with thousands of commodity machines. For failover,
JobMaster exports a snapshot of all instances’ status. The

FuxiMaster

AppMaster 1 AppMaster 2

FuxiAgent 1 FuxiAgent 2 FuxiAgent 3

Checkpoint

ResourceAssign:
App1: 5
App2: 3

ResourceAssign:
App1: 3
App2: 2 Resource Assign:

App1: 2
App2: 3

ScheduleUnit: {1cpu, 2gb}
Request: M1 *2, M2 * 3, R2*3, C*8

MaxCount: 10

ScheduleUnit: {2cpu, 3gb}
Request:M3 * 3, C*8

Max: 9

AppConfig:
App1: [...]
App2: [...]

Figure 7: FuxiMaster’s failover procedure

snapshot exporting is performed by the event of any instance
status change, thus it brings in very little overhead to Job-
Master instance scheduling. This kind of job snapshot is also
light-weighted since only the status like ”Running” is record-
ed. When the JobMaster process restarts, it will initially
load the snapshot of instance status, collect the status from
TaskWorker, and finally recover the inner instance schedul-
ing results before its crash. During the absence of JobMas-
ter process, all the workers are still running the instances
without interruption. This transparent master failover is
extremely beneficial for long-running instances when they
are approaching completion.

4.3.2 Faulty Node Detection and Multi-level Black-
list Mechanism

Partial failures or performance drop down are notoriously
hard to handle by applications and could lead to long tail
execution at best or cascading failures that bring down the
whole cluster at worst [10]. We design a multilevel machine
blacklist to eliminate this kind of machines from resource
scheduling.

In the cluster level, we keep a heartbeat between each
FuxiAgent and FuxiMaster to indicate the health situation
of each cluster node. Once FuxiMaster finds a heartbeat
timeout, the FuxiAgent will be removed from scheduling re-
source list and a resource revocation is sent to JobMaster
so that the JobMaster could migrate running instances from
the timeout FuxiAgent. We also introduce a plugin scheme
to collect hardware information from the operating system
to aid judgement of machine health. Disk statistics, ma-
chine load and network I/O are all collected to calculate a
score. Once the score is too low for a long time, FuxiMaster
will also mark the machine as unavailable. With this plugin
schema, administrators can add more check items to the list
and customize specified error detection.

In the job level, JobMaster will estimate the machine
health based on the worker statuses as well as the failure
information collected by FuxiAgent. The estimation is also
performed in a multilevel way. In particular, if one instance
is reported failed on a machine, the machine will be added
into the instance’s blacklist. If a machine is marked as bad
machine by a certain number of instances, this machine will
be added into task’s blacklist and no longer be used by this

FuxiMaster / FuxiAgent

JobMaster

TaskMaster TaskMaster TaskMaster

TaskWorker

TaskWorker
TaskWorker

Figure 8: Hierarchical Job Master.

task. Among different jobs, FuxiMaster will turn this ma-
chine into disabled mode if a same machine is marked bad
by different JobMasters. To avoid abuse of this bad ma-
chine detection and blacklist, an upper bound limit can be
configured.

To deal with long tail instances, we also adopt a backup
instance schema that will launch another instance with the
same input data when the original instance is found run-
ning much slower than others. There are three criteria for
the backup instance schemes. Firstly, the majority of total
instances(e.g., 90%) have finished in which case judgemen-
t of long tail instances and estimation of average instance
running time can be meaningful. Secondly, the long tail in-
stance must have already run for several times longer than
the average instance running time estimated from the fin-
ished instances. Finally, the instance can really run for a
long time because of input data skew sometimes. To distin-
guish this kind of instance from the long tail, users should
also specify a normal running time of the instances when
configuring the backup instance schema in job description.

4.4 Large Scale Handling
There are two provenances of the challenges for large s-

cale job: the performance of scheduling a huge number of
instances while taking into account the optimal data locali-
ty and load balance; and tons of small shuffle files between
massive instances. In this section, we present several tech-
niques used to scale out the job framework in our production
environment.

To solve the scale problem, we design a two-level hierar-
chical scheduling model in Fuxi Job framework. Technical-
ly, there is only one JobMaster object for each job, and it
takes charge of high-level task scheduling. The JobMaster
firstly parses the job description and analyzes the shuffle
pipes to figure out the task topological order. Each time
only the tasks whose input data are ready can be sched-
uled and then executed. JobMaster performs the communi-
cations with FuxiMaster for resource negotiation and with
FuxiAgent to start/stop workers. This hierarchical model is
illustrated in Figure 8.

When the JobMaster intends to execute a task, an indi-
vidual TaskMaster object is created. The TaskMaster will
conduct the fine-grained instance scheduling to determine
which worker to execute each instance. For the instance
scheduler, we design an efficient algorithm taking the fol-
lowing factors into account: a) instances will be scheduled
to the worker with the most local input data; b) instances

Table 1: Statistics on a production cluster
avg max total

Instance Number 228/task 99,937/task 42,266,899
Worker Number 87.92/task 4,636/task 16,295,167

Task Number 2.0/job 150/job 185,444

are scheduled to available workers uniformly, thus making
computing and network load balanced; c) the scheduling is
performed incrementally by scanning only the unassigned
instances each time. It has been observed that less than 3
seconds is taken to schedule 100 thousand instances, which
demonstrates the effectiveness of the proposed scheduling
algorithm. The scheduled instances are then sent to the
scheduled task workers on which the instances are actually
executed. In summary, we design a hierarchical job schedul-
ing model which decouples the DAG task scheduling and
task instance scheduling, reinforcing the parallelism of task
execution efficiently. The experimental results exhibit sig-
nificant benefits from this model for large scale job.

5. EVALUATION
In this section, we discuss and explain the actual perfor-

mance of Fuxi system to verify its feasibility and efficiency.
We firstly present our practice in real production environ-
ment. We then evaluate the scheduling performance when
1,000 synthetic workloads are submitted simultaneously in
our cluster. To follow up, Sort benchmarks are utilized to
illustrate the high performance and capability of task exe-
cution. Finally, several faults injection experiments are con-
ducted in order to demonstrate the robustness of the system
as well as the fault tolerance mechanisms.

Our testbed is formed by 5000 servers with each machine
consisting of 2.20GHz 6cores Xeon E5-2430, 96GB memory
and 12*2T disk. Machines are connected via two gigabit
Ethernet ports. All the machines run a version of Linux.

5.1 Fuxi in Production
Fuxi plays a significant role and has been deployed in Al-

ibaba’s production system since 2009. Resource in our dai-
ly production scenarios contains 7 dimensions, i.e. CPU,
memory and 5 other types of virtual resources. Table 1
shows the statistics of our workloads based on the tracel-
og collected from one production cluster in a short period
of time. The trace contains 91,990 jobs and over 185,000
tasks, containing total 42 millions parallel instances. The
workload were scheduled onto approximately 16.3 millions
worker. The most complex jobs could have 150 tasks in the
job and the largest task could have almost 10,000 instances,
requiring over 4,600 workers to execute.

5.2 Synthetic Workloads Experiment

5.2.1 Experiment Setup
To evaluate the capability of Fuxi system to handle with

scalability and performance issues, we keep 1,000 jobs con-
currently running by starting a new job when one job fin-
ishes. To simplify the experiment, we use WordCount and
Terasort with the following specifications evenly distribut-
ed. The number of map instance and reduce instance are
(10,10), (100,10), (100,100), (1k,100), (1k,1k) and (10k,5k)
in each type respectively. The average execution time ranges

0 5 0 0 1 0 0 0 1 5 0 0

0

2

4

co
ns

um
ed

 sc
he

du
ling

 tim
e (

ms
)

t i m e (s)

 r e q u e s t s c h e d u l i n g t i m e

Figure 9: FuxiMaster scheduling time with 1,000
concurrent jobs.

from 10 seconds to 10 minutes and each instance resource
request is configured as 0.5core CPU with 2GB memory.

5.2.2 Results Evaluation
We take the following metrics into consideration: schedul-

ing time, resource utilization and scheduling overheads.
FuxiMaster Scheduling Time: We monitor the time

cost of FuxiMaster to schedule each request. Figure 9 reveals
that the request scheduling time begins to rise as the exper-
iment starts and the average value is merely 0.88ms in spite
of a slight fluctuation. Therefore, the transient workload
surges will not give rise to the overall performance degra-
dation. Even the peak time consumption for scheduling is
no more than 3ms, indicating the system is rapid enough to
reclaim the allocated resource and to respond to incoming
requests in a timely manner. To summarize, the millisecond
level performance is quite reasonable for the overall schedul-
ing process in production scale environment.

Resource Utilization: the memory consumption relat-
ed metrics of the holistic computing cluster is illustrated
in Figure 10(a). The FM total represents the total avail-
able resource and 442TB memory in sum among all servers
can be scheduled by FuxiMaster. The total amount of as-
signed resources to all application masters is outlined by
FM planned. Apparently, FM planned is roughly 429.26TB
indicating that 97.1% resource will be initially utilized by
the scheduler.

Additionally, the acquired memory quantity of all ap-
plication masters is demonstrated by AM obtained. Fux-
iAgent receives process plan from application master and
FA planned shows the total resources consumed by all these
processes. The average results for each metrics are 424.56T-
B and 421.52TB, achieving 95.9% and 95.2% utilization of
overall available memory respectively.

Gaps among these curves can be regarded as the overhead-
s of master’s ability to process requests. In fact, they are
formed by cumulative scheduling impacts and negative com-
munication delays on diverse instances. Obviously, higher
throughput and more effective request handling mechanis-
m of the master will give rise to a reduced resource usage
gap. We can also draw the conclusion that most of the job
requirements can be satisfied because the marginal gap is
small enough to be nearly neglected.

Moreover, the results also reveal a very similar phenomenon

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
3 6 0
3 7 0
3 8 0
3 9 0
4 0 0
4 1 0
4 2 0
4 3 0
4 4 0
4 5 0
4 6 0

me
mo

ry
uti

liza
tio

n (
TB

)

t i m e (s)

 F M _ t o t a l
 F M _ p l a n e d
 A M _ o b t a i n e d
 F A _ p l a n n e d

(a)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
8 0

8 5

9 0

9 5

1 0 0

1 0 5

1 1 0

1 1 5

1 2 0

cp
u u

tiliz
ati

on
 (1

k c
ore

s)

t i m e (s)

 F M _ t o t a l
 F M _ p l a n e d
 A M _ o b t a i n e d
 F A _ p l a n n e d

(b)

Figure 10: The planned memory and CPU usage
by FuxiMaster when 1000 jobs are simultaneously
launched.

for the cluster CPU utilization shown in Figure 10(b) reach-
ing almost 92.3% and 91.3% CPU resource usage.

The real memory usage on average is approximately 40%.
The reason for this phenomenon is mainly because of user’s
resource over-estimation. The real CPU usage is less than
10% because our synthetic workloads are memory-intensive
with slight CPU stress. Further improvements will be in-
cluded in the future work.

Scheduling Overhead: Lower overhead indicates rapid
arrangement and effective turnover where more task instances
can be processed. In this case, we consider the following
overheads which are relevant to scheduling effects:

1) JobMaster Start Overhead : the time duration from
when the job execution RPC call is invoked to when the
corresponding application master starts.

2) Worker Start Overhead : the latency between when
application master plans to start a worker and when it re-
ceives the first status reported from the worker.

3) Instance Running Overhead : the difference between
the instance running time on application master and that on
worker.

As shown in Table 2, the total overhead is only 3.9%. The
time latency is supposed to be caused by the communica-
tion delay among distributed nodes as well as the scheduling
throughput especially when a large number of concurrent re-
quests arrive on FuxiMaster resulting in some congestions.
Worker start overhead is relatively high due to downloading
the worker binaries (average 400MB).

Table 2: Scheduling overhead when 1000 simultane-
ous jobs are launched

Types Avg values (s)
Job Running Time 359.89

JobMaster Start Overhead 1.91
Worker Start Overhead 11.84

Instance Running Overhead 0.33

Table 3: Experimental configuration of faults injec-
tion.

Injected Fault Type Node Numbers Node Numbers
NodeDown 2 2

PartialWorkerFailure 2 4
SlowMachine 11 23

Total Number (Ratio) 15 (5% failures) 29 (10% failures)

5.3 Sort Benchmark
GraySort is a very common benchmark used to evaluate

the efficiency of task execution system. In this regard, we
conduct 100TB dataset sort and make a comparison with
other execution results published in [7]. Table 4 reveals the
comparative results and our end-to-end execution time is
2538s which is equivalent to a sort throughput of 2.364T-
B/minute, achieving 66.5% improvement compared with the
most advanced Yahoo’s Hadoop implementation. This sig-
nificant performance improvement benefits from the effec-
tive job scheduling mechanisms we presented in this paper.

We also evaluate the PetaSort benchmark in a 2,800 nodes
cluster with 33,600 disks and the uncompressed data size is 1
Petabyte with 1x sort spill compression factor. The elapsed
time is 6 hours, comparable with Google’s result in 2008 [5],
which shares a similar architecture with Fuxi.

5.4 Performance of Fault Handling
To illustrate the fault handling abilities proposed in Fuxi

system, we design the following scenarios and simulate them
by injecting faults into our 300-nodes cluster:

NodeDown: The machine halts unexpectedly. In this
case, we randomly shutdown servers in the running period.

PartialWorkerFailure: Disk I/O hang or unstable net-
work connection etc. will undoubtedly lead to unresponsive
workers. We can then simulate it by making disk corrupted.
The processes thus can not be launched.

SlowMachine: we deliberately add several sleep inter-
vals in the worker program to mock the system slowdown.

FuxiMasterFailure: we shutdown the server on which
FuxiMaster runs.

As shown in Table 3, we generate and simulate the 5%
and 10% failure scenarios by combinations of different fault
types with different machine number. The results illustrate
that the execution time extends to 1662s and 1762s sepa-
rately, producing 15.7% and 19.6% overhead compared with
the normal execution time (1437s). We attribute it to our
multilevel faulty node detection and backup instance mecha-
nism. Considering the high incidence of failures, it is worth
consuming this extra time to ensure the entire workload’s
execution. Finally, we further terminate FuxiMaster artifi-
cially for once based on 5% failure scenario and only extra
13s is needed which can be almost ignored.

Table 4: GraySort Indi result comparison
Provenance Configurations GraySort Indi Result

Fuxi
(2013)

5000 nodes (2 2.20GHz 6cores Xeon E5-2430,
96 GB memory,12x2TB disks)

100TB in 2538 seconds (2.364TB/min)

Yahoo!Inc.
(2012)

2100 nodes (2 2.3Ghz hexcore Xeon E5-2630,
64 GB memory,12x3TB disks)

102.5 TB in 4,328 seconds (1.42TB/min)

UCSD
(2011)

52 nodes (2 Quadcore processors,24 GBmemory,
16x500GB disks) Cisco Nexus 5096 switch

100 TB in 6,395 seconds (0.938TB/min)

UCSD&VUT
(2010)

47 nodes (2 Quadcore processors,24 GB memory,
16x500GB disks) Cisco Nexus 5020 switch

100 TB in 10,318 seconds (0.582TB/min)

KIT
(2009)

195 nodes x (2 Quadcore processors,16 GB
memory,4x250GB disks)288-port InfiniBand 4xDDR switch

100 TB in 10,628 seconds (0.564TB/min)

6. RELATED WORKS
In this section, we compare Fuxi system against other

existing alternative solutions such as Mesos [11], Yarn [18],
Omega [16], Sparrow [14] etc. when tackling with resource
sharing and management problems.

Both Mesos [11] and Yarn [18] share the same two-levels
scheduling architecture. Mesos provides an offer-based mech-
anism in which the primary master decides the resource as-
signment to each individual computing framework. On the
contrary, Yarn and our Fuxi system adopt request-based
strategy instead, facilitating location-based allocation and
further local optimization. Application master could self-
estimate and make decisions during the resource allocation
process. However, application master in Yarn has to give
up the assigned resource and cannot reuse it for those wait-
ing tasks due to the resource reclaim mechanism in resource
manager.

As for fault tolerance, Mesos master shares some simi-
larities with FuxiMaster’s failover, but Mesos leaves all the
things to frameworks themselves to deal with faulty node
and individual framework scheduler’s failure. Additionally,
Mesos slave’s failover is not depicted in detail. Moreover,
the failover mechanisms for Resource Manager and appli-
cation master in Yarn are not efficient enough to support
larger scale resource management due to the fact that pure
and mandatory terminating and redoing of running appli-
cations and processes will result in substantial wastes and
overheads.

Omega [16] is a shared state scheduler which emphasizes
on distributed and scalable merits. The core idea is the
lock-free optimistic concurrency control to the shared states
which are collected timely from different nodes. In par-
ticular, Omega adopts Multi-Version Concurrency Control
mechanism, thus substantially improving the concurrency
ability of the system. In this case, each framework can com-
pete for the same piece of resource with a central coordinat-
ed component for arbitration. However, the evaluation of
the model is conducted only based on simulations and needs
to be further demonstrated within real production environ-
ment.

Sparrow [14] targets a decentralized scheduler design to
significantly improve the performance of parallel jobs with
a large number of short tasks. With the scalability as well
as high availability considered, multiple concurrently run-
ning schedulers may work if needed. In this regard, all tasks
of a job can be scheduled together rather than scheduling
each single task one by one. Sparrow aims to reduce the
latency and to improve high throughout for scheduling sub-
second tasks. In large scale computing environment, improv-
ing the resource utilization is a non-negligible factor and
crucial metric to estimate the system efficiency. However,

these issues are not presented in Sparrow. Other than short
task, Fuxi also support comprehensive-purpose task models
including DAG task, long running service etc.

Condor [17] is on behalf of a large category of HPC sched-
uler solutions. Each job does not need to schedule its tasks
local to their data while data locality is a key concern in
Fuxi job scheduling mechanism. Furthermore, the resource
request for HPC application is announced when launching
the job and will not be changed. In contrast, Fuxi will dy-
namically allocate and revoke the resource to improve the
utilization.

7. CONCLUSION AND FUTURE WORK
We have presented Fuxi, a distributed resource manage-

ment and job scheduling system at Alibaba. We proposed
three novel techniques that allow Fuxi to tackle the scal-
ability and fault tolerance issues at Internet scale, includ-
ing a incremental resource management protocol, a user-
transparent failure recovery mechanism; and a faulty-node
detection and multi-dimensional blacklisting mechanism. Ad-
ditionally, we presented various practical considerations and
optimization techniques based on our experience of run-
ning Fuxi over several hundred thousand server nodes since
2009. We employed a combination of synthetic workload
and GraySort benchmark to evaluate the effectiveness of
proposed techniques. We found that Fuxi can deliver a 95%
memory and 91% CPU scheduled resource utilization un-
der stress load while maintaining a sub-millisecond response
time. We beat the previous GraySort record by a margin of
67%. Under a 5% and 10% fault-injection rate, the GraySort
benchmark only slows down for 16% and 20% respectively.

A lot of future works remain. Our current scheduling seek-
s to maximize scheduled resources as requested by applica-
tions. However, an application typically would overestimate
its resource demands, and thus leaves a big gap between real
system utilization and scheduled utilization. We also plan
to work on other features such as enforcing IO and network-
ing resource constraints, fine tuning scheduling algorithms
to improve backup task scheduling and guard against star-
vation in corner cases, and better support for short or even
interactive jobs.

8. ACKNOWLEDGMENTS
We would like to thank our colleague Jiamang Wang for

his elaborate assistance in experiments, our colleague Jin
Ouyang and Peter Garraghan from University of Leeds for
their kind suggestions. We would also like to extend our
sincere thanks to the entire Fuxi and Apsara team member-
s. Finally, we thank VLDB anonymous reviewers for their

helpful feedbacks. Renyu Yang is supported by National Ba-
sic Research Program of China (No.2011CB302602), China
863 Program (No.2013AA01A213, 2011AA01A202) and Na-
tional Natural Science Foundation of China(No.91118008,
61170294). Renyu Yang is the corresponding author of this
paper.

9. REFERENCES
[1] Alibaba Cloud Computing. http://www.aliyun.com/.

[2] Apache Tez. http://hortonworks.com/hadoop/tez/.

[3] Cgroup. http://en.wikipedia.org/wiki/Cgroups.

[4] Fuxi. http://en.wikipedia.org/wiki/Fu_Xi.

[5] Google Petabyte Result. http://www.
datacenterknowledge.com/archives/2008/11/24/

google-sorts-1-petabyte-of-data-in-6-hours/.

[6] ODPS: Open Data Processing Service.
http://www.aliyun.com/product/odps/.

[7] Sort Benchmark. http://sortbenchmark.org/.

[8] Hadoop at Yahoo! Sets New Gray Sort Record.
https://developer.yahoo.com/blogs/hadoop/hadoop-
yahoo-sets-gray-sort-record-yellow-elephant-
180650399.html,
2013.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing(TDSC), 1(1),
2004.

[10] J. Dean and L. A. Barroso. The tail at scale.
Communications of the ACM, 56(2), 2013.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Proc. NSDI. Usenix, 2011.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In Proc. EuroSys. ACM,
2007.

[13] A. McAfee and B. Erik. Big data: The management
revolution. Harvard Business Review, 10 2012.

[14] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In Proc.
SOSP. ACM, 2013.

[15] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam,
and Y. Zhang. Failure data analysis of a large-scale
heterogeneous server environment. In Proc. DSN.
IEEE, 2004.

[16] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for
large compute clusters. In Proc. EuroSys. ACM, 2013.

[17] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4), 2005.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache hadoop yarn: Yet
another resource negotiator. In Proc. SoCC. ACM,
2013.

