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Abstract—This article focuses on a simple, yet fundamental
question of distributed edge computing: ‘“how to handle IoT traffic
with different levels of sensitivity and criticality by satisfying the
application-specific latency constraints?” This question arises in
the practical deployment of edge computing, where user data can
arrive at a much faster rate than that they can be processed by
an edge node. Addressing this question is critical for meeting the
latency requirement for latency-sensitive applications, but existing
approaches are inadequate to the problem. We present JANUS, a
multi-level traffic scheduling system for managing multiple data
streams with various degrees of latency constraints. At the edge
node level, JANUS uses multi-level queues to manage data streams
with different latency constraints. It then allocates the output
bandwidth of the edge node according to the requirements of
applications in different priority queues, aiming to reduce the
queuing and processing delay of latency-sensitive streams while
maximizing the edge-node throughput. At the network level, JANUS
actively redirects incoming data streams to the less-loaded ones to
achieve better network-wide load balance and improve the overall
throughput. Experiments show that JANUS reduces the latency to
only 16.6% of a non-priority based solution and improves the
throughput by 1.7x of a state-of-the-art priority-aware data stream
scheduling approach.
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I. INTRODUCTION

HE rise of the Internet of Things (IoT) is making com-
T puting an integrated and ubiquitous part of society, en-
abling data to be collected, correlated and analyzed at an
unprecedented scale. Concurrent to this development is the
quick adoption of edge computing by deploying computing
sources closer to end-users and data sources. Edge computing
paradigm is highly attractive because it offers a cost-effective
and scalable capability of aggregating and processing data of
connected IoT devices and sensors before sending the data
streams to remote clouds [1]. Edge nodes (aka. edge servers,
IoT Edge gateways, etc.) operate as gateways and provide a
smooth connection between such devices on the network and the
cloud.

While promising, edge nodes with heterogeneous computing
power and diverse network bandwidths [2] tend to cause a
fundamental problem in IoT streaming management known as
throughput mismatch. Incoming data are generated at a much
faster pace than that can be processed by an edge node. This
mismatch is more frequently manifested due to high data vol-
ume or data spike (e.g., crowd gathering) of data-intensive loT
applications, and unstable network connectivity (e.g., cellular
network) between edge nodes and the cloud [3], [4], [5]. Con-
sequently, data are massively buffered on the edge nodes and
devastatingly increases the end-to-end (E2E) latency of data
transfer — typically including transmission time over network
links from data sources to cloud servers and waiting time (queu-
ing and processing) on the edge nodes — in many real-life edge
deployments.

Meanwhile, latency requirements vary substantially among
different applications. For example, intelligent transport sys-
tems [6] aggregate traffic information from each road by means
of CCTYV, Piezoelectric Sensor and Radar Microwave Sensors
to support urban road safety warning and traffic efficiency
improvement. While the E2E latency for urban road safety is
usually less than 100 ms, it can be relaxed to 100-500 ms in some
IoT scenarios [7]. Particularly for a latency-sensitive application
with co-flow [8] — a collection of parallel data flows to process
and transmit — each edge node is responsible for transferring
numerous co-flows of multiple applications generated from dif-
ferent IoT sensors. The E2E latency is determined by the last
flow to complete and thus extremely susceptible to any delays
within an edge node and over the network.
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Congestion control approaches in traditional computer net-
works [9], [10], [11] require either heavy support from
switches or modification of transmission protocols and OS ker-
nel/application modules. Such drawbacks make it impossible
to deploy upon commodity hardware and to provide guaran-
teed bound on the latency and flow deadlines. QJUMP [12]
was among the first attempts to tackle the package queuing
delay and control network interference at the switch level. It
prioritizes latency-sensitive applications by allowing data from
higher-priority applications to jump the queue over packets from
lower-priority ones. Although QJUMP s a good fit for traditional
datacenters, it is unsuited for edge environments. QJUMP is a
network-layer solution that requires full control over key net-
work infrastructures such as switches that can be hardly fulfilled
in edge environments. QJUMP also assumes a homogeneous
computing and networking environment where all network de-
vices have the same computational resources and capabilities.
However, such an assumption does not hold in real-world edge
environments. Furthermore, congestion control mechanisms in
sensor networks [13] drop new arrival data packets when the
buffer of an edge node is full or the network bandwidth is
oversubscribed. However, such a passive strategy cannot actively
prevent buffer overflow or bandwidth oversubscription by sim-
ply coordinating the resources used across a distributed network,
inevitably leading to long-standing backlogging and information
loss. Other network-layer load balancing algorithms [14], [15]
lack the application-level communication semantics between
groups of devices and hence fail to customize users’ require-
ments and make the best use of edge nodes. Therefore, we are in
greatneed of a lightweight, easy-to-deploy yet flexible streaming
traffic management system that can tackle diverse requirements
of latency and throughput sensitivity.

We present JANUS, a distributed and QoS-centric streaming
traffic scheduling system to make the best utilization of band-
width resources on edge nodes. It aims to reduce the queuing
delay and maximize the QoS assurance of latency-sensitive ap-
plications without compromising the overall system throughput.
To do so, we formulate two distinct yet interconnected optimiza-
tion problems and tackle them in JANUS based on greedy-based
heuristics for their speed and ability to adapt quickly to chang-
ing conditions at runtime: i) Az edge node level, JANUS queue
manager differentiates the traffic from different streams and
manages them separately through a multiple-level priority queu-
ing mechanism. JANUS then dynamically adjusts the allocated
bandwidth to each queue if the estimated queue delay surpasses a
configurable threshold. At the core of bandwidth allocation is to
ensure the allocated bandwidth be large enough to clear both the
backlogged records that have been awaiting delivery and the new
records accumulated within a time interval within a predefined
latency requirements. ii) Above multiple edge nodes, JANUS
employs a global coordination mechanism for flow redirection. It
detects bandwidth shortage due to traffic spiking by monitoring
traffic and bandwidth usage at application level, and make a
best-fit mapping between the bandwidth shortage and available
bandwidth on idle nodes. Requests from high-priority queue
with a larger amount of bandwidth shortage will be prioritized
in the bandwidth redirection and edge nodes with larger available
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Fig. 1. Streaming pipeline in Cloud-edge computing paradigm.

bandwidth will be first considered as the forwarding destination.
Such an elastic and timely forwarding mechanism facilitates to
break the barrier of local bandwidth capacity and mitigate the
mismatch issue, with the overall throughput improved.
JANUS is easy to deploy as it is agnostic to heterogeneous
computing devices without the need of control access to internal
resources of the network infrastructure. We evaluate JANUS in
simulation settings and an edge testbed built upon real-world
hardware. Experiments show that JANUS reduces the E2E latency
by up to 5x and improves the system throughput by up to 1.5x
over the state-of-the-art priority-aware data stream scheduling
(e.g., QJUMP) in an emulated network environment. In a 4G
network testbed, JANUS reduces the latency to only 16.6% of
a native approach without priority-based queue management
and improves the network-wide throughput by 1.7 x against the
existing priority-aware approach. We showcase that JANUS is
lightweight because it uses only 9.5% RAM and 4% CPU time
on a low-cost Raspberry Pi 3 development board.
This paper makes the following contributions:
e We formulate the streaming delivery in the edge environ-
ment as optimization problems to make the best utilization
of edge nodes (Section IV).

® A novel bandwidth scheduling mechanism for adaptively
allocating output bandwidth for individual edge nodes
based on the node’s forwarding capacity and the require-
ments of input data streams (Section V-A).

e A traffic orchestrator to avoid oversubscribing edge nodes
and improve the overall system throughput (Section V-B).

Organization: Section II outlines the research background
and motivation. Section III describes the system architecture
and overview. Section I'V presents the formalized problems. Key
techniques and system implementation of JANUS are discussed in
Section V and Section VI, respectively. We evaluate the system
in Section VII. Section VIII presents related works and we
conclude the paper in Section IX.

II. BACKGROUND AND MOTIVATION
A. Streaming in Edge-Cloud Paradigm

Streaming Pipeline: Our work specifically targets the typ-
ical streaming management for IoT applications in edge en-
vironments. As depicted in Fig. 1, IoT devices (e.g., smart-
phones, sensors, actuators, etc.) connected to and exchange
information with a proximate edge node (e.g., edge servers,
IoT edge gateways) that serves as intermediary between loT
devices and cloud. Streaming messages are sent to edge nodes
through the lightweight Message Queuing Telemetry Transport
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TABLE I
NETWORK LATENCY REQUIREMENT OF 10T APPLICATIONS [7]

[ Applications [[ Tolerable Latency | Categories |
Factory automation 0-50ms Latency-sensitive (Is)
Smart grids 50-100ms
Road safety urban 50-100ms Normal (nm)
Traffic efficiency 100-500ms
Cooling system 500-1000ms Latency-tolerant (lt)

(MQTT) protocol [16] and then forwarded to remote Cloud
servers through Advanced Message Queuing Protocol (AMQP)
protocol [17] that can provide enhanced reliability. Edge nodes
can be deployed in a variety of environments via wireless or
cellular networks, particularly when the deployment involves
remote or mobile IoT applications, including remote monitoring
in such areas as natural reserves, oil rigs, rural farms, and
smart transportation where edge nodes are usually deployed in
a vehicle or robot.

Latency Criticality: Some studies [7], [18], [19] exemplify
a variety of IoT applications and Table I briefly summarizes
their latency requirements. For example, factory automation
applications are referred to as the real-time control of machines
or systems in production lines and are generally considered to be
highly latency-sensitive. By comparison, smart grids can allow
longer delay to obtain the required data, while cooling and heat-
ing systems in smart buildings can tolerate much longer response
time. According to the sensitivity of applications to E2E latency,
in the context of this paper, we roughly categorize applications
into three classes: latency-sensitive (Is), latency-tolerant (/¢) and
normal (nm) applications. As will be discussed in Section VI-A,
one can flexibly customize the threshold of each class and define
fine-grained categorization.

B. Terminologies

We now summarize the key concepts used in this paper in
terms of streaming applications and the network traffic generated
from stream transmission.

® Stream of records: In this paper, a data record is referred

to as a key-value pair. One producer writes records and
they can be read by one or more consumers. A stream is an
ordered, unbounded and continuously-updating sequence
of records.

® Traffic: The amount of streams transmitted over the net-

work during a given time period. In [T, T + t], the traffic
is measured by the number of records (#records).

® Bandwidth: This refers to the maximal allowed data trans-

fer rate for a fixed period of time and can be practically
measured by #records/s. Bandwidth is physically used
by all co-existing traffic streams. There are two types of
bandwidth: inbound bandwidth is consumed when data
streams come into the device/server while outbound band-
width is referred to as the rate limit when the device/server
sends out data records. In this paper, we mainly target the
outbound bandwidth allocation among different streams to
coordinate their flow rates.

® Throughput and input/output rate: Throughput is the

actual traffic rate, practically measured by the actual
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Fig. 2. Throughput mismatch (WiFi) and the latency of Is streams.

#records/s. The input rate of a given stream literally de-
picts the inbound throughput, while output rate is referred
to as the outbound throughput or equivalently throughput,
which is most notably an indispensable performance indi-
cator. The effect of bandwidth adjustment is to throttle the
runtime traffic throughput.

C. Throughput Mismatch

As a motivating example, consider latency-sensitive (Is) and
latency-tolerant (/f) data streams from the edge to the cloud.

Setup: This experiment is conducted on a micro-testbed con-
sisting of three Raspberry Pi devices and a multi-core server.
We use two Raspberry Pis to generate sensor data and another
to act as an edge node to receive and forward the sensor data to
the server. All the computing devices are connected through a
dedicated WiFi enabled switch with 200 mbps bandwidth; we
control the latency and bandwidth of the network to emulate
the typical 3G, 4G and WiFi environments. More details of our
testbed can be found in Section VII-A. We use a large-scale real-
world smart building dataset [20] consisting of CO4, occupancy
and temperature data samples, to generate the data. We measure
the end-to-end throughput of an edge node when the data are
forwarded to the server via the edge node.

Motivation Results: Fig. 2(a) shows a substantial throughput
mismatch between the inbound and outbound on a given edge
node in a WiFi environment. The data arrive 2x faster than the
amount that can be sent to the remote server. This is unsurprising
because AMQP is, in general, slower than MQTT due to the
overhead associated with its reliability guarantee. The delay is
also because the incoming messages incur a significant CPU and
memory footprint, utilizing 60% of the CPU and occupying over
70% of the RAM, which further limits the processing capability
and responsiveness of the edge node. Fig. 2(b) shows that when
the input rate of It streams climbs up, the [s streams generally
experience an increase in the latency. In reality, the network
bandwidth could be increasingly occupied by the throughput
of [t streams during peak time, which will in turn increase the
forwarding latency of s streams.

Negative Impact on Latency-sensitive Streams: Observably,
throughput mismatch can severely slow down the responsiveness
of latency-sensitive streams. This becomes even worse in a low-
speed network (e.g., 3G cellular network in this experiment),
as records coming into an edge node have to share bandwidth
and await forwarding in the same queue. Latency-sensitive ap-
plications will suffer from a long-standing queue delay if all
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Fig. 3. JANUS system architecture.

incoming data streams are treated equally without considering
the application-specific latency criticality. To tackle this, we
need a scheme to differentiate data streams and prioritize time-
critical streams for reduced latency, and to coordinate available
bandwidth across edge nodes to mitigate the inherent mismatch
issue. JANUS is designed to offer such capabilities.

III. JANUS OVERVIEW
A. Requirements

This paper focuses on streaming data management for satisfy-
ing diverse latency requirements of different applications. Hard-
ware or OS kernel based queuing management approaches [12]
are inadequate for this problem due to the strong dependencies
on switch-level support and intrinsic difficulties of development
and deployment on commodity hardware [21]. We turn to look
at application layer solutions based on throughput control in the
publish-subscribe subsystem. We aim to achieve three research
objectives:

® [R1] We need to differentiate and prioritize data streams,

e., labelling the data records and prioritizing latency-
sensitive applications over other workloads, to allow di-
verse application-specific latency requirements.

e [R2] We need a traffic-aware and multi-level queue man-
agement mechanism for enabling individual management
of a specific type of data records and for harnessing band-
width allocation. Bandwidth of each queue can be dynam-
ically throttled and flexibly allocated at runtime according
to the varying traffic condition.

e [R3] We need to harvest idle bandwidth resources to
achieve a holistic network-level balance in response to the
varying load across edge nodes. This can enable the re-
distribution of overflowed streams, from a saturated edge
node to light-loaded edge nodes, to mitigate the congestion
and the consequential latency increase.

B. System Architecture

JANUS is a loosely-coupled streaming management system
that aims to assure the QoS both locally within an edge node and
globally across edge nodes. Fig. 3 depicts the system architecture
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consisting of a Queue Manager within each edge node and a
global Traffic Orchestrator at the network level.

To satisfy [R1] and [R2], JANUS primarily attempts to resolve
the potential queuing delay by using multi-queue management
within an edge node. JANUS categorizes streams into three dis-
tinct classes and assigns differential priorities according to the
particular type of traffic and the associated QoS requirements.
For example, /s and [t streams are given the highest and lowest
priority, respectively. It is worth noting that this multi-priority
queue model can be extended to underpin any number of
priorities if the applications have additional fine-grained QoS
requirements.

Queue Manager comprises three key components: Message
Dispatcher, Throughput Estimator, and Bandwidth Reallocator.
Specifically, Message Dispatcher sends off the arrived stream
records into different queues. The records are then enqueued
and buffered, awaiting forwarding to the endpoints of cloud
servers. Throughput Estimator exploits runtime metrics of both
throughput and bandwidth (either consumed or available) to
estimate the flow status (step @, Section IV-A). If a QoS vi-
olation is detected — the estimated delayed time surpasses the
pre-defined threshold — bandwidth reallocation for each queue
will be triggered (step @). Bandwidth Reallocator is responsi-
ble for calculating the bandwidth adjustment among different
types of queues to better utilize local bandwidth resources to
guarantee the QoS of high-priority streams such as /s streams.
This is achieved by theoretically formulating an Integer Linear
Programming (ILP) problem (Section IV-B1) and practically
using a heuristic solution to find a proper amount of bandwidth
that is enough to clear the backlogged records in the queue
and satisfy the queue latency requirement (Section V-A). To
meet [R3], we formulate the global traffic scheduling as another
ILP problem (Section IV-B2). A global orchestrator is devised
to harness all available bandwidth resources across the system
in response to traffic redirection requests. If an edge node is
saturated, Bandwidth Reallocator proactively petitions Traffic
Orchestrator by submitting a redirection request. The request
encompasses the amount of bandwidth that is still required
by the sourcing queue to mitigate the long data backlogging
(step ®). Traffic Orchestrator is a key component holistically
responsible for making high-level coordination over edge nodes.
Three replicas of Traffic Orchestrator are deployed in edge nodes
for high availability, with a primary component and others on
hot standby. It globally hunts for a suitable bandwidth match-
ing based on available bandwidth periodically reported by all
running edge nodes or piggybacked in the heartbeat messages
between edge nodes and the Orchestrator. The results will be
returned to the corresponding Bandwidth Reallocator (step @)
and Queue Controller then tweaks the bandwidth among queues
in the edge node or to establish a connection to migrate the
pending records to other edge nodes (step®). More details will
be presented in Section V-B.

IV. PROBLEM FORMULATION

In this section, we first demonstrate how to model and estimate
the runtime queuing delay of each queue based on the data
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TABLE I
SYMBOL NOTATIONS
Symbols | Descriptions
B, 1 edge node i and the index set of all edge nodes

Is, normal and It queue in E;
Individual input rate of stream j in E;

9o Dms Dt
AL
J

A; Total input rate of £;
Al AL AL Total input rate of qi., ¢}, 4,
V' Total output rate of E;
Vie Vo Vi Total output rate of q;_, ¢3m, 4,
(&N Maximal inbound bandwidth of E;
Cl ot Maximal outbound bandwidth of E;
€ Processing delay introduced by E;
tp} ., tDhm, tP], The throughput of queue ¢}, ¢,1m, 4,
tp* The throughput of edge node ¢
Wy, Wy The weights of the penalty function
B, ¢* The variables for replacing max penalties
<I>(qlt D) The volume of the data from q; to Ep.
di, di,., di, Estimated queuing delay of ql L Coms 4
8]os Spms 5“ # of existing records in q;_, 47, 4},
07 ¢r Opms Oy Maximal tolerable latency of q;_, ¢,m, 4,
bw;, bwy,,,, bwlt Inferred bandwidth requirement of q;_, g,/ 4,
P; Available nodes to receive the redirected traffic

streams on the fly and the real-time output rate. We then progres-
sively introduce how we formulate the fwo-level optimization
problem at the local edge node level and at the global orchestrator
level to maximize the throughput of the entire system whilst
ensuring proper QoS of latency-sensitive streams. To improve
readability, we summarize detailed notations used in this paper
in Table II.

A. Runtime Queue Delay and Throughput Estimation

JANUS works on the basis of estimating queue delay and
throughput at runtime. We partition all data records into separate
queues according to their sensitivity to latency. As an example,
we use three queues for latency-sensitive, normal and latency-
tolerant streams. We assume that an edge node F; receives a
collection of streams with an input rate Aj— for the stream j. The
total input rate of an edge node F; is A® = > jeN A], where
N is the total number of the streams. The input rate of each
queue is defined by: Aj, = Y=, (A5), Al =D hen, . (A1)
and Aj, = >, n,, (A), separately, where Nig, N, and Ny
represent the collection of [s, nm and [t streams respectively.
Accordingly, the output rates of these three queues is defined as
Vi Vi and Vi,. Output rate in total is V' = Vi + Vi + Vi,
In reality, the maximum of input rate and output rate are con-
strained by the processing capacity of the edge node and the
available network bandwidth between the edge node and the
cloud. Hence, input rate A and output rate V' constraints can
be formulated as A* < C? and V' < C? ,, where C?, and C?,,
represent the maximum inbound and outbound bandwidth of F;.
For example, for a latency-sensitive queue, with a time window
At, At x A}, data records will be fed into ¢},. Size(q},) € Z*
is the queue length of ¢!,. The total number of data passing
through g}, will be si, = At x A, + Size(q},). As a result, the
estimated queuing delay of the latency-sensitive queue d;, can
be calculated by:

. S
o= 4, (1)
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where ¢ is a bias variable which can be instantiated as the
processing delay introduced by F;. Since the actual throughput is
co-restrained by the data amount passing through (s, ) within the
time window At and the inherent restriction of the queue itself

(V). tp;, can be then expressed as min{ 3, V/, }. Similarly, the
overall throughput of a given node E; can be formulated as (2).

tpi = tp;ls + tp:zm + tp;t (2)
tpfs = min { AL qu}

i . 51 i
tp;; = min {Ali, Vlt}
) Snm 7
1p},,, = min { , Vnm} 3

B. Two-Level Optimization

1) Optimizing Throughput for a Local Edge Node: In a given
edge node E;, the optimization model aims to maximize the
throughput of E; whilst meeting a set of constraints:

max tp’ 4
st. diy < 8, di,, <O di, < 8, ()
Vi S Céut (6)

As shown in (4), the optimization goal is to allocate the most
suitable output bandwidth for each queue {Vi,, Vi, Vi .} to
maximize the node-level throughput. Constraint (5) indicates the
maximal delay allowed by each specific queue while satisfying
the capacity constraint in Constraint (6). However, Section II
shows that low computing capacity or low network bandwidth
may cause the violation of constraint (5), resulting in a non-
existing solution.

During bandwidth insufficiency, to allow soft constraints in
lower-priority queues (nm and [t queues), we can practically
relax Constraint (5) by incorporating the following penalty terms
into the objective function:

max tp' —w’  max{d’,  — &' 0}
— wj,max{dj, — J},,0} (7
s.t. constraints(3) (8)
is < 0l ©)
Wi = Wh (10)

Constraint (9) indicates a stringent latency guarantee for
the latency-sensitive queue, while normal and latency-tolerant
queues could tolerate a certain degree of constraint violation.

. and w}, are the weights in the penalty function, and the
values in constraint (10) indicate the partial order of the queue
priorities and the relative importance of its constraints, e.g., it is
of more importance to allocate available bandwidth to nm queue
than It queue. We then introduce two more variables 3% and ¢ to
overcome the non-smoothness of the objective function revealed
from the max penalties. Based on the bounds and direction of
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optimization, the penalties in the function can be relaxed further
as follows:

max  tp’ — w8t — wipe’ (11)
s.t. constraints (3), and (8) (12)
B> dyy = O 8 2 0 (13)
' = dy — b, " 2 0 (14)

2) Optimizing Global Throughput Across Edge Nodes: We
then formulate the procedure of data stream redirection at the
overall network level. In the event of overflowed streams, the
records in an existing data queue qliS in F;, for example, can be
redirected to a set of destination nodes P; that have available
resources for the time being.

We make the following assumption.

Assumption 1. The queuing data streams can be flexibly split
and sent out to any edge nodes at a specific rate.

Assumption 2. The edge nodes are connected with the local
network which has a much smaller latency than the delay be-
tween edge nodes and the cloud.

We use ®(qi,,p) € Z* to represent the volume of the data
stream sent from ¢/, to a destination edge node E,, where p € P;.
Particularly, if p is equal to 7, the portion of the data stream
remains in the queue of the source node. The total throughput
EpePi ®(qj,

of ¢/, is therefore tpi = At(q“’p). Correspondingly, the

overall system throughput — considering all types of queues and
all edge nodes in the system — can be calculated as follows:

= 3y M)
i€l peP;
(I)(q’fnn’p) (I)(qllt’p)
A T
icl
Hence, the final optimization problem will be:
max TP (16)
st di, <6, d <68 di, <8, Vel (17)
Vi<col  Viel (18)
Y d.p) > s, (19)
pePYiel
> O D) = St (20)
pePNiel
> 2dhp) > s 21
pePYicl

This paper assumes the available resources are sufficient
to transfer the data streams to the cloud within a pre-defined
domain of latency tolerance as indicated in constraint (17).
Otherwise, we can relax the constraint by using the technique
aforementioned in the local node’s optimization. A solution to
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Algorithm 1: Priority Based Throughput Throttle.

1 PBTT ()

2 // Count the input rate of each queue within the time interval ¢
3 i AL AL, Counter(t)

4 / / Compute the queumg delay for three quenes

5 ls7 d’;uru 1t < ”m +e, f;lzt +e€

6 if dj, > 6}, or dnm > 6nm or djy > 5“ then

7 // Reallocate the bandwidth for each queue

8 Vi, Vi, Vi BWAllocator(AlS, Al AL

9 return Vj,, Vi ., Vi,
10 end
1 else

12 | return NULL // Keep current bandwidth for each queue
13 end

the objective (16) necessitates the specific value assignment to
®ecZtand o € {0,1}.

This is an integer linear programming (ILP) problem and
proved to be NP-hard [22] — Capital Budgeting problem [23],
Knapsack problem [24], Traveling Salesperson problem [25].
While the strategies such as Branch-and-Bound, cutting plane
can obtain an optimal solution for these problems, the time
complexity of these algorithms is polynomial time. ILP solvers
such as Gurobi [26] and CPLEX [27] are extremely time-
consuming — even taking a few hours for small instances — and
thus cannot be applied to satisfy the requirements of real-time
streaming systems. We turn to heuristics design in a runtime
traffic management system. Such algorithms are well-suited
for problems particularly in the time-critical domains where
real-time decisions are required to be made with low latency.

V. KEY TECHNIQUES

To fulfill the aforementioned optimization objectives, JANUS
leverages two greedy-based heuristic algorithms. Once any
queue’s delay is detected exceeding a defined threshold, the
throughput will be adjusted at each edge node level to achieve the
objective (7). If any latency constraint of the queues is breached,
Traffic Orchestrator will carry out a plan to achieve the objective
(16).

A. Bandwidth Reallocation in an Edge Node

The key procedure of dynamic bandwidth allocation is to
ascertain and diminish the discrepancy between the pre-defined
latency threshold and the runtime queuing delay within a time
window. To meet the constraints (8) and (9), we leverage a
priority-based bandwidth reallocation mechanism for prioritiz-
ing latency-sensitive queue over other queues. At the core of
the reallocation is to determine the minimal required bandwidth
that is believed to satisfy the latency constraint of each type of
stream, while diminishing the existing queue backlogging delay.
The intuition behind this design is to leverage as less bandwidth
as possible to fulfill a given latency requirement on a per queue
basis (e.g., 67,), and thus to spare unused bandwidth on an edge
node to handle bandwidth shortage on other busy neighbors.

Algorithm 1 shows the detailed procedure: initializing from
the time 7', we evenly assign bandwidth to three queues.
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Algorithm 2: Bandwidth Reallocation (F;).

Input: Al AL, AL current input rate of each queue
bwj,, bwk,,,, bwj,: current bandwidth allocation
freebw*: available bandwidth

1 BWAllocator ()

2 // Predict the output rate requirement of each queue
3 bwiy, bw},, bwj, + using Eq. 22

4 if bwl, < C!,, then

5 Vi <+ bwj,

6 if bw!,, < CL,, — V}, then

7 Vrizm, N bw;m

8 if bwi, < Cl, — Vi, — Vi, then

9 Vi, + bwi,

10 freebw' < Cy — Vi = Vi, — Vi,
11 Vi < Vi + freebw’

12 end

13 else

14 ‘ BWRequest(0, 0, Vi, — bw},)

15 end

16 end

17 else

18 Vi 4= Cour = Vis; Vi 0

19 BWRequest (0, Vi, — bwi,,, —bwi,)
20 end
21 end
2 else

23 Vi Clu; Vi — 0; V], + 0

24 BWRequest (V}, — bwj,, —bwh,,, —bw},)
25 end
26 return V},, Vi, Vi

Counter () reads the monitored input rate of each queue
during a time interval ¢ (Line 3). Afterwards, we calculate
the estimated queuing delay before comparing against the pre-
defined threshold. If any expected queue delay is detected to
surpass the threshold 0, bandwidth reallocation will be trig-
gered, and BWwallocator will rapidly alleviate throughput dis-
crepancy between current allocation and the wanted allocation
(Lines 6-10).

As shown in Algorithm 2, Bwallocator aims to allocate
the finite amount of bandwidth to three prioritized queues.
The decision depends upon both the existing and the estimated
queuing length for the next time interval ¢. Ideally, the allo-
cated bandwidth is desired to be large enough to clear both
the backlogged records that have been awaiting delivery and
the new records accumulating during the time interval within a
predefined latency requirements.

S§s+( %sivlis)*t
618

bwj, = + Vi, (22)
As shown in (22), the estimated queuing accumulation is calcu-
lated by the difference between the input rate Afs and output rate
Vj, times ¢. After the ideal amount of bandwidth of each queue is
calculated, we proceed to the realistic bandwidth re-allocation.
The Is queue has the highest priority to obtain all possibly
available bandwidth C? ,, followed by the nm and It queue,
respectively. This is aligned with the weight associated with
each soft constraint defined in constraint (10). In the event of
bandwidth shortage, bandwidth request will be generated by
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BWallocator via Update () and bandwidth allocation will
take effect on each queue.

B. Global Traffic Coordination Across Edge Nodes

Traffic Orchestrator coordinates the imbalanced data streams
among edge nodes and maps the redirection request from a
saturated edge node onto other edge nodes that currently have
sufficient bandwidth resources. Its core responsibility is to find
the most suitable match between the waiting requests and avail-
able bandwidth resources that can achieve the objective (16).

1) Bandwidth Request and Response: To simplify the band-
width requirement of each edge node in the scheduling model,
we leverage the uniformed 3-attributes tuple (bys,bpm, bit)
to represent the following bandwidth operations for different
queues:

® Available/Allocated Bandwidth: the amount of available

bandwidth that can be provisioned by different queues in
an edge node, and the current bandwidth allocation among
different queues in an edge node;

® Bandwidth Request/Response: the amount of requested

bandwidth (equivalent to the traffic shortage or traffic for
redirection) and the amount of bandwidth granted to an
edge node for redirecting pending stream records.

We use a positive value to indicate the available resource
and a negative value to imply the requested resource to resolve
the current bandwidth shortage. For instance, one could request
[0, —5, 0], indicating 5 units bandwidth shortage in the second-
level queue. The pertaining traffic would be, ideally, redirected
to other edge nodes to avoid the latency violation. An edge node
labelled [0, 0, 10] can lend out 10 units bandwidth to rescue the
traffic delay.

Note that, by design, the available bandwidth tuple (the
unallocated bandwidth pertaining to each queue) is collected
and reported periodically from each edge node to Orchestrator
through an independent thread sitting in the edge node, or
piggybacked in the heartbeat message between edge nodes and
Orchestrator.

2) Prioritized Max Request First Served Heuristic: Key Idea:
We categorize edge nodes into bandwidth provider and band-
width receivers, according to the provision/shortage role, i.e.,
negative/positive value within the attribute tuple. Our previous
algorithmic study on bin packing [28] concluded that Given
that node-centric algorithms can achieve a good trade-off be-
tween running time and solution quality. Based on this, we
propose an approximation Redirection mechanism, Prioritized
Max-Request First Served (PMRFS) algorithm, to i) prioritize
the bandwidth request from the high-priority queue with a larger
amount of bandwidth shortage; and ii) consider edge nodes that
has larger available bandwidth as the bandwidth providers. The
intuition is that the proposed scheme can mitigate bandwidth
shortage as soon as possible to reduce the redirection times
whilstincreasing the success possibility of bandwidth allocation,
and thus maximize the overall throughput.

As shown in Algorithm 3, we first sort both bandwidth request
and available bandwidth in a descending order. Most notably,
we employ a priority first sort (Line 3) to ensure that requests
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Algorithm 3: PMRFS-Based Traffic Redirection.

redirection (bw_requests, bw_availables)

1
2 // Descend Sort of required bandwidth and available bandwidth
3 Receivers < PriorityFirstSort (bw_requests)
4 Providers < Sort (bw_awvailables)

5 forall P; € Providers do

6 forall R; € Receivers do

7 if freebij > regbwg, then

8 tmpbw < reqbwr,

9 BWRespond(R;, P;, tmpbw)

10 BWReserve(P;, tmpbw)

11 Receivers < Receivers\{R;}

12 freebwp; < freebwp, — tmpbw
13 end
14 else
15 tmpbw < freebwp,

16 BWRespond(R;, P;, tmpbw)

17 BWReserve(P;, tmpbw)

18 Providers < Providers\{P;};

19 reqbwr,; < reqbwr, — tmpbw
20 break
21 end
2 end

23 end

from higher priority queue can be ranked on top of requests of
other queues, even if they may have smaller request amount.
To achieve PMRFS, we first pick the head request from the
sorted Receivers and pick the edge node with the largest
available amount of bandwidth from the Providers set. If a
single provider cannot completely satisfy a request, the satisfied
fraction will be held by the receiver; meanwhile the receiver
awaits next available providers until all its requested bandwidth
is satisfied. It is worth noting that the held fraction will be
incrementally assigned and Traffic Orchestrator will notify the
edge node to redirect the given amount of traffic to the desig-
nated edge node (Lines 14-21). Likewise, if one provider from
Providers has more bandwidth than the requested value of the
current receiver, the remaining fraction can be further allocated
to the next receiver (Lines 7-13). The iterative allocation will not
cease until all receivers get the required bandwidth. Once Traffic
Orchestrator makes a decision, the beneficiary node will forward
a specific number of records from its queue to the destination
node according to the allocated bandwidth. The destination node
will reserve the bandwidth (Line 10) and prepare for receiving
the forthcoming record streams.

Working Example: We use the following numerical example to
showecase the algorithm procedure. To simplify the explanation,
we selectively depict the interactions between two edge nodes
(Ey and F») and the centralized Traffic Orchestrator. Fig. 4
shows the details of bandwidth request and response among
these components. More specifically, the current bandwidth
allocation for £y and E5 are [10,10,10] and [18,10,2], respec-
tively. At time 7', E; experiences a bursting traffic into the
latency-tolerant queue and thus requires extra 5 units bandwidth
to resolve the transient latency issue. The bandwidth request
[0,0,-5] will be sent to the orchestrator. Orchestrator will gather
the available bandwidth from each edge node and calculate
which running edge node can provide a spare resource. Given
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Traffic Surge = Is = 10 =ls = 18
5+ =nm=> 10 Allocated BW  =nm=> 10
—_— it D10 it = 2

EdgeNode E,
Reallocate
BW

EdgeNode E,

Calculate

Traffic Orch
Available BW

Available BW [8,0,0]

Request BW

BW Request [0,0,-5]

MRFS BW
Coordination

BW Response [0,0,+5] -
S BW Reservation [5],0,5 1]
Redirect BW
T E; redirects traffic to E» @
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Fig. 4. Bandwidth request, response, and reservation.

8 units free resources can be provided by Fs from its latency-
sensitive queue, the available bandwidth tuple [8, 0, 0] will be
known by the orchestrator via periodic resource updating and
synchronization between edge nodes and orchestrator.

The orchestrator will then carry out Algorithm 3 and confirm
that F; should redirect its overflowed traffic to Fy and Fo
has to reserve the corresponding bandwidth temporarily for
the redirection. To this end, Orchestrator will respond to all
the involved nodes, notifying the satisfied amount [0, 0, 5] to
the requesting edge node. Within the designated edge node,
an internal bandwidth shift [5], 0, 51] to the destination edge
node for the bandwidth reservation. Once upon FEs receiving
the instruction, 5 units of available bandwidth will be secured
to its latency-tolerant queue, i.e., the bandwidth allocation will
shifted from [18, 10, 2] to [13, 10, 7]. Upon receiving the request
response, F; redirects its traffic to Es.

Complexity Analysis: JANUS is a simple and efficient stream
processing system with low complexity. Algorithm?2 only has
O(n) time complexity, where n denotes the types of the queues.
The time complexity of Algorithm3 is O(p x r) where p is the
number of bandwidth provider, and r represents the edge nodes
that redirect their streams to the providers.

3) Other Comparative Heuristics: We are aware of many
other counterpart heuristics that can serve the requests of traf-
fic redirection. Specifically, our previous study [28] presented
comprehensive experimental comparisons among node-centric,
application (request)-centric and multi-node approaches. As will
be shown in Section VII-A, we select the following representa-
tive winning algorithms as baselines to compare their runtime
performance.

VI. SYSTEM IMPLEMENTATION
A. Implementation Details

Message Exchange Protocols: We first present the selection
of message exchange protocols to underpin streaming flows:
1) IoT devices to edge nodes: We leverage MQTT protocol
to fulfill lightweight record transmission due to its dedicated
design for IoT messaging following the Pub/Sub model. Eclipse
Mosquitto [29] is a lightweight implementation of MQTT
protocol and well-suited for diverse devices stretching from
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low-power sensors to high-performance computer servers. We
launch an instance of Eclipse Mosquitto server on each edge
node and other modules can use a Mosquitto client to subscribe
the pre-defined topics through the Pub/Sub. 2) edge nodes to
cloud servers: We choose AMQP as the application-layer pro-
tocol, for it provides resilient flow-controlled communication
with message-delivery guarantees. We use RabbitMQ [30] to un-
derpin the fundamental message delivery in WAN environments,
building up the streaming tunnels between edge nodes and cloud
servers. RabbitMQ is a lightweight and easy-to-deploy messag-
ing system software that has been widely used as Pub/Sub system
by industries for almost a decade. Owing to the in-memory
operations without permanently storing to intermediate disks,
RabbitMQ has far lower latency against Kafka when transferring
messages. Additionally, RabbitMQ offers more flexibility of
developing bespoken redirection algorithms due to its intrinsic
nature of supporting Pub/Sub messaging.

Streams Categorization: Table I presented an example of rep-
resentative value range that approximates the typical latency re-
quirement of the listed applications. One can flexibly determine
the number of categories and define the corresponding thresh-
olds for each of them according to their latency requirement. Our
solution is adaptive to, and working correctly in extreme cases.
For instance, if all streams belong to the same category, JANUS
will perform in the first come first served manner; if all tasks are
completely different in the latency requirement, one can simply
partition the tasks, putting one task into one category.

Scalability: Due to the loosely-coupled system design, addi-
tional edge nodes can be simply added into the system in the
event of increasing demands or insufficient forwarding capabil-
ity. Our redirection approach that adopts greedy heuristic can
underpin thousands of edge nodes even on a low-power com-
putational device. However, collecting information from many
edge nodes to a centralized edge node may become a system
bottleneck. We plan to employ decentralized methods [31], [32],
[33] to tackle this communication scalability in the future work.

Fault Tolerance: In an attempt to reduce single point of failure,
we set up hot-standby replications for key components — such
as Queue Manager, Edge Agent, and Traffic Orchestrator — to
enable their automatic failover in the face of any crash-stop
faults. Each edge node periodically checkpoints the arrived
streams within a given time frame. We use sequence numbers
to track the last consumed records of all streams. Once an edge
node recovers from software component or hardware crashes, we
simply restore the most recently saved checkpoints to continue
the execution: if the faulty node has pending data to transmit,
Queue Manager will retry the transfer to the corresponding
cloud endpoints, and the PMREFS algorithm will be called, where
necessary, to re-transmit the recovered data to other peer edge
nodes.

Fairness: Our current implementation does not consider fair-
ness scheduling among different queues in a single edge node.
However, we found that it is rare to starve It or nm queues. This is
because the arrival rate of /s streaming is typically small and the
available bandwidth on idle edge nodes are thus sufficient for our
redirection mechanism to tackle the overflow in It or nm queues.
Prior work [34], [35], [36], [37] considered the fair bandwidth
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TABLE III
EMULATED NETWORK ENVIRONMENT

Network | Latency | Throughput

WiFi 5ms 200mbps
4G 50ms 18mbps
3G 100ms 780kbps

allocation in the context of cloud computing. These techniques
can be integrated with JANUS to address fairness scheduling
problem and will be left for future study.

B. Discussion

JANUS makes its best effort to target QoS requirements of data
streaming delivery theoretically based on manageable through-
put measurement. This, however, is not an easy task; practi-
cally numerous uncertainties may influence its effectiveness: 1)
resource interference: stream processing is memory and CPU
intensive, and the throughput (input/output) significantly de-
pends on the amount of available resource and the degree of
resource interference in the node, which is however in short
supply and sometimes difficult to predict. ii) network variabil-
ity: our real-world evaluation in Section VII-C indicates that
bandwidth of the [oT network (e.g., cellular network) fluctuates
drastically over time, and is extremely vulnerable to factors
such as weather, shared connections and network coverage,
etc. These variables complicate the design of the robust and
optimal mechanism for throughput throttle and traffic redirec-
tion. JANUS uses a simple and efficient means particularly for
low-power and low-cost computational devices. New algorithms
can be easily plugged into JANUS owing to the loosely-coupled
component-based architecture. Additionally, JANUS focuses on
effective IoT streaming management, without a particular con-
sideration of computation latency. The computational latency
assurance of IoT streaming processing investigated in many
existing works [38], [39], [40] could be easily integrated with
JANUS.

VII. EVALUATION
A. Experimental Setup

Environments: We evaluate JANUS in two environments:

® Lab Testbed: We evaluate JANUS on a testbed consisting of
real edge hardware including Raspberry Pis and servers.
In terms of IoT networking, we consider an emulated
network and real-world 4G: In the emulated network, we
run micro-benchmarks over 10 Raspberry Pi 3 model B+
(with 1.4GhZ 4 cores and 1 GB of RAM) and a bare
metal Ubuntu machine, with 20 cores (Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20 GHz) and 64 GB memory.
The network is emulated by using Linux traffic control
(TC) [41]. Table IIT shows the network configurations for
the experiments where the configuration parameters are
based on real world measurement [42].

® Real-world Testbed: We connect the edge nodes (Rasp-
berry Pis) with an amazon EC2 cloud server (4 vCPU and
8 GB memory, Vodafone 4G network through 4G USB

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on January 16,2024 at 02:08:07 UTC from |IEEE Xplore. Restrictions apply.



WEN et al.: JANUS: LATENCY-AWARE TRAFFIC SCHEDULING FOR 10T DATA STREAMING IN EDGE ENVIRONMENTS

Dongles). In the micro-benchmarks, 4 Pis are set as edge
nodes which consume sensor data sending from sensors.
All Pis are connected through local WiFi network through
Netgear switch with 200 Mbps bandwidth.

Dataset and Workloads: To generate realistic workloads, we
use a real-world smart building dataset [20]. It contains data
samples collected from 4, 0004 sensors such as occupancy, CO»
and temperature etc. We categorize the input data from different
sensors and analyze the distribution of their arrival rates. Input
rate of each edge node is controlled and tuned by changing the
sensor’s forwarding rate to the pertaining edge nodes. According
to the empirical profiling, we set the input rate 30 records/s for
all three types of streams on on idle edge nodes. The input rate
of busy nodes is configured at 30 records/s for latency-sensitive
streams and 300 records/s for normal streams. Since JANUS fo-
cuses on the throughput optimization in streaming data delivery,
we simply run a data query program that includes aggregate
functions, e.g., sum/avg operation in a time window, as the
representative workload in the cloud.

Methodology and Metrics: We vary the input rate of
throughput-tolerant streams (from 1 K records/s to 5 K records/s)
and network environment (3G, 4G and WiFi), and measure their
impact on the system effectiveness. We compare JANUS with
three baselines:

® Native scheme: No queue management mechanism is en-

abled and inbound streams will be directly forwarded from
sensors to cloud without any interventions by priority
queues.

® (OM-Only scheme: This is a comparable strategy adopted

in QJUMP that only encompasses the local queue manager
with the traffic orchestration disabled.

We also compare JANUS that adopts PMRES for global traffic
coordination with several baseline heuristics:

® Random scheme randomly picks requests from multiple

queues among different overloaded edge nodes.

e First Come First Served (FCFS) scheme picks the request

that asks for additional bandwidth first.

® Least Request First Served (LRFS) scheme chooses the

request with minimal bandwidth request.

® Best Fit (BF) scheme traverses the list of available band-

width providers and pick the bandwidth request that is
closest in size to the current available provider.

For accurate results, we repeat each experiment 5 times inde-
pendently and calculate the average. We consider three metrics
in our evaluation:

® End-to-end Latency: This mainly refers to the turnaround

time of latency-sensitive /s workloads that includes the
data transmission latency between data sources and the
cloud and the execution time of workloads in the cloud. For
better evaluating the impact on latency of the neighboring
workloads and their compromise on the performance, we
also measure the end-to-end latency of other standard nm
and latency-tolerant [t workloads.

o System Throughput: This is defined as the total number

of data records forwarded from sensor nodes to the cloud.
This is particularly important for those latency-tolerant yet
throughput-intensive workloads.
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® Resource Consumption: We measure the resource overhead
incurred by running JANUS components to examine the
runtime resource cost to the native system.

B. Effectiveness Evaluation

1) Impact on Latency of Latency-Sensitive Streams: We first
evaluate the end-to-end latency in various network environment.
The comparisons can be carried out from the following three
perspectives:

Comparison by Approaches: As shown in Fig. 5, the latency
can be significantly reduced in both QM-Only and JANUS com-
pared to the Native approach under all network conditions. For
example, in 3G network condition, the latency of Native is
roughly 10.2x times higher than QM-Only and JANUS. This is
simply because the multi-level queue management will prioritize
latency-sensitive streams and secure its first order in the record
forwarding, thereby assuring a low latency. Due to the intrinsic
resource consumption within edge node during the global traffic
coordination, the forwarding capability for latency-sensitive
stream will be dropped, resulting in a reduced turnover rate for
such stream records and accordingly a higher latency of JANUS
against OM-Only.

Comparison by Network Conditions: The overall latency of
all the approaches will decrease when the output bandwidth
increase (i.e., from 3G to WiFi). For instance, the average
latency of JANUS under WiFi can be reduced by roughly 85%
compared against 3G environment. Obviously, an improved
network indicates larger outbound bandwidth that will accelerate
the transmission of all sorts of streams. Hence, the latency will
be inherently decreased.

Comparison by Different Heuristics: Compared with other
methods, Janus can process multiple requests simultaneously
based on streams’ priority, thereby making better use of band-
width on idle nodes. As shown in Fig. 5, JANUS exhibits slightly
higher latency for latency-sensitive data streams compared with
other baselines. This derives from requiring additional resource
and computation cost when conducting PMRFS algorithm and
involving an increased number of stream redirection than other
baselines.

Impact of Input Rate: In 4G and WiFi network, the latency
of Native dramatically ramps up with the increment of input
rate, mainly due to the queuing backlog introduced by the
throughput-intensive records. When the input rate reaches 5 k
records/s, the latency of Native even peaks approximate 20x and
6x times that of QM-Only and JANUS, respectively. By contrast,
the latency of both OM-Only and JANUS remains stable without
noticeable increase when input rate increases. Overall, QM-Only
in most cases has the lowest latency — the most significant
effect in latency management — indicating that administrators
may switch off the global coordination for sake of a constantly
stringent latency control. Notably, when the input rate is lower
than 2 k records/s under 4G and WiFi network, JANUS is in very
close proximity to QM-only because the functionality of traffic
redirection has not been triggered.

2) Impact on Latency of Other Streams: Apart from exam-
ining the impact of different approaches and different network
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Fig. 5. End-to-end latency in various network environment.
TABLE IV
END-TO-END LATENCY OF EACH TYPES OF QUEUES UNDER VARIOUS NETWORK ENVIRONMENT
Network | 3G [ 4G [ WiFi
Approaches ls (s) nm (s) it (s) ls (s) nm (s) It (s) ls (s) nm (s) it (s)
Native 10.86£0.12 7.52+0.08 7.26+0.09
QM-Only 1.13+0.18 8.51+0.19 13.224+0.14 | 0.53+0.07 4.51+£0.08 9.69+0.09 | 0.414+0.07 3.574+0.06 8.72+0.07
FCFS 47540.16  6.95+0.14 7.69+0.07 1.52+0.04 2.29+0.06 5.1940.11 | 1.2940.03 2.244+0.05 4.63+0.08
LRFS 4.73+0.07  6.89+0.11 7.77+0.04 1.48+0.06 2.26+0.04 5.68+0.13 | 1.264+0.03 2.194+0.08 4.81+0.09
Best-Fit 4.68+0.12  6.83+0.11 7.70+0.03 1.554+0.04 2.334+0.16 5.04+0.06 | 1.30+£0.03 2.29+0.12  4.084+0.13
Random 4.81+0.14 6.93+0.07 7.66+0.13 1.49+0.04 2.30+0.08 5.264+0.17 | 1.2740.03 2.21+0.04 4.41+0.08
JANUS 4.714£0.11  6.54+0.09 8.04+0.05 1.584+0.08 2.414+0.11 3.5340.06 | 1.32+0.04 2.39+0.03  3.06%+0.05
TABLE V

LATENCY VIOLATION COMPARISON UNDER 4G NETWORK

Approach [ Is [ nm | It
Native 17.5% | 42% | 5.7%

QM-Only 0 9.8% | 15.5%
JANUS 0 6.7% | 9.4%

conditions on the latency of latency-sensitive streams, we inves-
tigate how the latency of [ and nm streams will be affected so as
to evaluate how JANUS trade their performance for prioritizing
the latency criticality of s streams. Table IV demonstrates
the end-to-end latency of each type of the queues under dif-
ferent network conditions where the input rate is kept to 5 k
records/s.

Comparison by Approaches and Heuristics: Overall, JANUS
outperforms other approaches in balancing bandwidth among
queues and thus well guarantee the low latency of the latency-
sensitive workloads without involving too much starvation to the
standard or latency tolerant workloads. For example, in the 4G
environment, compared with native scheme where no exclusive
queues are differentiated — as shown in Table IV all queues share
the same latency result — JANUS can reduce the latency of /s from
7.52 seconds to merely 1.58 seconds on average. Despite the fact
that QM-Only can even reduce ls’s latency to 0.53 seconds on
average, the resultant latency of [t will ramp up to 9.69 seconds,
much higher than its performance in the native case. This is
because, when compared with QM-Only without system-level
traffic orchestration, JANUS can better utilize the bandwidth
provided by idle nodes to mitigate the impact of latency on
the inferior queues. Different Heuristics do not show obvious
disparities. Table V also reveals the latency violation ratio of

each queue under 4G network. Observably, thanks to the mech-
anism of adaptive bandwidth reallocation among queues, JANUS
and QM-only can guarantee no violation of latency-sensitive
streams, with some violations in the inferior queues. Compared
with QM-only approach, JANUS can use the idle edge nodes to
mitigate the violations of both nm and It streams. While native
approach has much lower violation ratio of nm and /¢ streams, it
suffers from high violation of s streams, which is unacceptable.

Comparison by Network Conditions: It is also observable
that network conditions affect the latency results. Arguably, 4G
and wireless connections can provision much more sufficient
network resource within the entire Edge system than the 3G
environment. The advantage of traffic orchestrator in JANUS can
be thus better leveraged to alleviate the degree of latency increase
of nm and [t streams.

3) Impact on Throughput: Similarly, we measure the overall
throughput under the same experimental environment.

Comparison by Approaches: As illustrated in Fig. 6, JANUS
outperforms other approaches, particularly when the network
condition improves to WiFi environments. It is observable that,
in most cases, Native and JANUS have a substantial through-
put increase compared against QM-Only. For instance, JANUS
achieves similar throughput as Native and 1.7 times more than
that of QM-Only in 4G network. This improvement increases as
the network bandwidth grows. In WiFi network, JANUS achieves
higher throughput than that of Native and more than 2 times of
OM-Only. In fact, QM-Only blocks the traffic redirection for
latency-tolerant streams due to the lack of elastic forwarding
mechanism, even if other edge nodes have sufficient bandwidth
capability. By contrast, Native can directly forward throughput-
intensive records without distinguishing the record types whilst
JANUS can rapidly bypass the congesting edge node other than
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Fig. 6. Overall throughput in various network environment.

using the local capacity, resulting in the highest system through-
put constantly.

Comparison by Network Conditions: Intuitively, the growth
of outbound bandwidth gives rise to the enlarged capability
of record digestion and transmission. For instance, WiFi and
4G network experience far better throughput against the 3G
scenario. In reality, in 3G network, there are marginal disparities
among three approaches purely because of the limited network
bandwidth.

Comparison by Different Heuristics: Janus can yield higher
throughput than other baselines across various network condi-
tions and input rates, and the disparity is more noticeable in
conditions with more bandwidth capacity. For example, In Fig. 6,
JANUS achieves 1.3x higher throughput than other heuristics
under WiFi network. This is because Algorithm 3 can consider
various bandwidth requests simultaneously and thus outperform
others which can merely handle a single bandwidth request a
time.

Impact of Input Rate: Increased input rate indicates a growing
crowd of records feeding into the system. In 4G and WiFi
network, the throughput of QM-Only decreases when the number
of input records ramps up. This is because local processing and
queuing ability of an individual edge node cannot afford timely
forwarding for the growing input, thereby slightly reducing the
overall throughput. However, the throughput of JANUS will,
on the other hand, steadily increase, owing to the redirection
mechanism for rapid forwarding to other nodes. Since the Native
approach directly forwards all records upon their arrival, its up-
per throughput boundary will be confined by the local processing
capacity. JANUS can reuse capacity from both local and neighbor
edge nodes; hence the highest average throughput.

4) Overhead: We mainly measure the resource (CPU and
memory) usages of each component at runtime as the primary
system overhead. The experiment result shows that JANUS’s
overhead is negligible — Edge Agent only consumes approximate
4.5% memory and 2.5% CPU; while Traffic Orchestrator uses
1.5% CPU and 5% memory. This indicates it is worth enabling
the light-weight agent for latency guarantee and throughput
improvement at the cost of marginal system cost.

C. Real-World Evaluation

We evaluate JANUS using real-world 4G network. As pre-
sented in Fig. 7(a), JANUS and QM-Only scheme have far lower
latency than the Native baseline. In particular, latency of Native
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is more than 5 times that of others when the input rate is 3 k
records/s. The difference is further amplified with the increase
of input rate. For example, JANUS is able to reduce the latency to
only 16.6% against Native when the input rate is 5 k records/s.
Interestingly, we observe that in a dynamic mobile network
condition, the latency disparity between JANUS and QM-Only
is negligible. In fact, the available bandwidth between an edge
node and cloud is dramatically volatile that hugely increases
the difficulty in finding the optimal solution to the bandwidth
allocation for different types of queues. As a result, bandwidth
reallocation in Algorithm 2 may not be able to allocate an
optimal bandwidth for low latency queue and thus declines
the effect of redirection and paving ways for latency-sensitive
records.

As shown in Fig. 7(b), the throughput of JANUS can be
improved by 1.56x and 1.7x against the Native baseline and
OM-Only, respectively. The proposed redirection mechanism
greatly facilitates to overcome the dynamicity issue that is
ubiquitously manifested in real-world 4G network. The elas-
ticity provided by traffic redirection advances the throughput
maintenance particularly when available bandwidth of an edge
node fluctuates sharply. It is non-trivial to note that real world
environments bring numerous uncertainties. For example, when
the input rate reaches 3 k records/s, throughput of the Native
scheme is lower than QM-Only, noticeably because of a network
bandwidth drop during the Native experiments.

VIII. RELATED WORK

Network Management in Datacenters: Congestion control is a
common practice in network community, typically by effectively
limiting transmission rate and forwarding network packets to
their destination. [10] extends the window adjustment algorithm
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adopted in DCTCP [43] and uses earlier deadline first policy
in the flow scheduling. [9] improves the congestion avoidance
mechanism in [10] with the aid of packet-pacing NIC. [11]
adopts a first in first out (FIFO) policy to schedule bandwidth.
However, they require either heavy support from switches or
modification of transmission protocols, OS kernel and appli-
cation modules, making it difficult to deploy upon commodity
hardware. They can hardly provide guaranteed bound on the
latency and flow deadlines. QJUMP [12] forwards messages into
different queues based on their priorities, which is aligned with
the intention of multi-level management in JANUS. However,
its proposed method is not applicable in stream processing
applications in the edge environment due to the limited visi-
bility and control of network devices for manipulating internal
data streams. Homa [44], pHost [45] and NDP [46] leverage
receiver-driven flow control mechanism to reduce the latency
of small messages. However, these switch based mechanisms
are highly dependent upon an assumption that the ingress
throughput equals to the egress throughput, to be invalid in
the IoT-edge-cloud continuum. JANUS first develops an effec-
tive mechanism of dynamic bandwidth allocation and holistic
traffic coordination at the application layer, which is flexible to
carry out throughput throttling and bandwidth adjustment over
streaming data.

Stream Processing in Cloud and Edge Computing: Most of
the stream processing platforms [47], [48], [49], [50], [51] rely
on datacenter environments to provide centralized streaming
services. The advances of edge computing facilitate the shift of
cloud-based data processing much closer to the ground, which
can significantly reduce the process latency [52]. Frontier [53]
develops an edge-based stream processing system for ML ap-
plications. However, it focus on reliability of ML applications
on edge nodes in a distributed manner. Approxiot [38] mainly
focuses on optimizing the performance of analytic tasks rather
than considering the queueing delay problem in delivering the
streaming data. NebulaStream [54] develops APIs for specifying
dataflow programs that can direct data streams to different pro-
cessing tasks. However, it does not differentiate latency sensitiv-
ity of different IoT applications and thus fail to effectively cope
with queue delay. JANUS presents an effective traffic scheduling
system across the full stack in the IoT-edge-cloud continuum,
particularly considering different types of data records and their
specific QoS requirements.

Offloading in Mobile Edge Computing: General-purpose of-
floading [55], [56], [57], [58], [59], [60], [61] in mobile comput-
ing mainly targets the problem of task offloading to the cloud,
neglecting the impact of messaging across various computing
resources. LEO [55] optimizes the energy consumption by per-
forming multiple sensor processing tasks on mobile devices,
without considering the dynamicity of IoT network. Despite
the consideration of diverse resources, MAUI [56], Code in
the Air [58] and Odessa [57] are unaware of queuing delay
from edge nodes to cloud. They can benefit from the network
adaptation capabilities in JANUS. Wang et al. [62] proposed a
Edmonds—Karp algorithm to address a mixed-integer nonlinear
programming problem in computation offloading for IoV. Ren
etal. [63] formalized the edge-cloud task offloading as a convex
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optimization problem and resolves it via KKT conditions. Xu et
al. [64] tackled task offloading by simple logistics to optimize
the QoS metrics. They decomposed the optimization problems
into simpler convex forms. However, our system requires a
real-time solution that cannot be resolved by such methods.

IX. CONCLUSION

We have presented JANUS, a traffic scheduling system for
data streams in distributed edge computing. JANUS addresses the
throughput mismatch problem where data arrive faster than they
can be consumed on an edge node. We formulate two distinct
optimization problems and tackle them in JANUS in a practical
manner. At the edge node level, JANUS dynamically allocates
the uplink bandwidth according to the latency constraint of the
application, by giving higher priority to latency-sensitive appli-
cations. JANUS actively monitors the traffic loads of a distributed
edge computing network to direct data from heavily loaded edge
nodes to the less loaded ones to achieve a network-wide load
balancing. In the future, we plan to develop other gradient-based
algorithms for throughput optimization and evaluate it in a
larger-scale environment.
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