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Abstract—Serverless computing has gained widespread popu-
larity among developers due to its low cost, fine-grained deploy-
ment, and management-free operation. However, when deploying
serverless applications in practice, a single function is often
insufficient to fulfill complete application requirements. This has
led to the emergence of serverless workflows, which orchestrate a
series of related serverless functions according to predefined logic.
Through our investigation of existing serverless workflow plat-
forms, we identify two major security limitations. First, current
serverless workflows cannot guarantee execution integrity—they
are unable to detect changes in the function execution order and
lack mechanisms to defend against workflow-targeted denial-of-
service (DoS) attacks. Second, identity management is typically
coarse-grained, often resulting in over-privileged access and
lacking support for function-level access control.

To address these issues, we propose and implement the
LASEFlow, a label-aware security enhancement framework for
serverless workflows. A sequential function execution chain is
designed based on the Platform Configuration Register (PCR)
technique to guarantee the integrity of the execution of workflow
in LASEFlow. In addition, a fine-grained function-level access
control mechanism is designed to prevent privilege abuse in work-
flows. The evaluation demonstrates the effectiveness of LASEFlow
against workflow attacks, with an overhead of less than 4% in
performance.

Index Terms—serverless workflows, security label, execution
integrity, access control

I. INTRODUCTION

In the era of cloud computing, serverless computing has
gained widespread popularity across the industry. Major cloud
providers such as AWS, Azure, and Google Cloud have seen
a year-on-year increase in serverless adoption [1]. In server-
less computing, developers only need to submit implemented
functions, and the cloud platform automatically deploys and
schedules these functions [2]. However, as serverless appli-
cations become increasingly complex, simple function invo-
cations can no longer meet application requirements, leading
to the emergence of serverless workflows. To fulfill complex
business needs, multiple serverless functions are expressed and
organized in the form of workflows [3]. Serverless workflows
are typically defined logically as Directed Acyclic Graph
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Fig. 1. Common Security Threats in Serverless Workflows.

(DAG), and functions are scheduled and deployed according
to the DAG during execution.

As the adoption of serverless workflows continues to grow,
security attacks targeting these workflows are also on the
rise. The existing security threats in serverless workflows
are illustrated in Fig 1. In such workflows, attackers can
exploit vulnerabilities in third-party libraries used by function
instances, tamper with unauthorized execution paths, or take
advantage of user misconfigurations to compromise the system.
These attacks may lead to the theft of private data [5], [12],
the triggering of unintended execution paths [4], [6], or denial-
of-service (or even denial-of-wallet) attacks [13], [14]. In this
paper, we focus on two critical issues: the integrity of serverless
workflows and the lack of function-level access control.

Existing serverless workflow platforms do not guarantee
execution integrity. Execution integrity means that the work-
flow’s execution path cannot be altered: no function should
be skipped; no function should repeatedly invoke others to
launch DoS attacks; no function should call another that is
undefined in the workflow; and no unauthorized user should



be able to invoke functions within the workflow. Existing web
application security tools—such as vulnerability scanners and
log analyzers—have been adapted to serverless environments,
but these tools primarily detect known vulnerabilities within
individual functions or their dependencies. They are ineffective
in identifying control-flow tampering that spans multiple func-
tions. For instance, Jeremy [4] demonstrated that an attacker
could craft a malicious S3 object name to inject event data,
causing a function to execute unauthorized shell commands
and trigger unintended workflow paths or malicious operations.
These attacks [4]–[6], [12]–[14] highlight that serverless work-
flows security issues extend beyond individual functions—they
include the integrity of the entire execution path. Ensuring that
a workflow’s execution strictly follows its expected sequence
and logic has become a key challenge in securing serverless
workflows.

Current serverless platforms lack function-level access con-
trol. In platforms such as AWS Lambda, Microsoft Azure
Functions, and Google Cloud Functions, access control relies
primarily on IAM mechanisms [7]–[9], which define static
policies for controlling access to function resources. While
this model is sufficient for simple, single-function scenarios,
it becomes problematic in workflow-based applications. IAM
typically treats the workflow as a monolithic unit, granting
users access to the entire workflow. If a specific function within
the workflow is intended to be accessed only by administrators,
IAM cannot enforce function-level identity checks. To ensure
that regular users can still access non-privileged functions in
the workflow, developers often grant them access to the entire
workflow, leading to over-privileged access [11].

To address the aforementioned challenges, we propose
LASEFlow, a label based security enhancement framework for
serverless workflows, aiming to navigate the complexity of
user permission management and the assurance of execution
path integrity. These goals are achieved by introducing a policy
specification mechanism and a trusted execution chain tailored
for the workflows.

Specifically, LASEFlow uses labels to determine the re-
source trustworthiness, i.e., whether a resource can be accessed
or used to run a function. We introduce two types of labels:
resource labels and workflow labels. Resource labels are as-
signed to various serverless components such as databases and
compute nodes. These labels encode attributes like resource
origin and underlying hardware environment. Workflow labels
are dynamically propagated throughout the execution of the
workflow, carrying integrity measurements of each node’s
execution to ensure the workflow’s execution path has not been
tampered with.

LASEFlow also proposes a policy specification mechanism
for user permission management in serverless workflows. In
our policy model, user identity and permission are tightly
integrated with the workflow definition, simplifying the permis-
sion configuration process. Furthermore, users with different

privilege levels are presented with different workflow views.
This view-based isolation effectively prevents unauthorized
access and illegal invocation of sensitive functions, enhancing
both the security and controllability of the system.

Finally, LASEFlow incorporates the Platform Configuration
Register (PCR) technique from trusted computing to build a
verifiable execution chain for workflows. After each function
executes, it generates an execution digest that is cryptograph-
ically extended with the previous state chain. This process
updates the workflow label, which is then passed to the next
function as an execution token. This design creates a chained
state attestation between functions, ensuring that the workflow
execution path cannot be skipped, forged, or replayed.

Specifically, our contributions are as follows:
• We propose a resource labeling method for serverless plat-

forms, enabling identification and labeling of resources.
We also introduce a mechanism to embed labels within
workflows, allowing function execution metrics to be
recorded and propagated, thus forming a verifiable execu-
tion path. In addition, we define a user permission policy
specification tailored for serverless workflows.

• We implement LASEFlow, a label-based execution control
framework for serverless workflows, which constructs a
verifiable execution chain during the workflow execution
to guarantee workflow integrity.

• We quantitatively evaluate the performance overhead of
LASEFlow and analyze its effectiveness in ensuring the
integrity of serverless workflows.

II. BACKGROUND AND THREAT MODEL

A. Characteristics of Serverless Workflows

Serverless architecture has become a mainstream paradigm
in modern cloud computing due to its advantages such as server
management elimination, elastic scalability, and pay-per-use
billing [19]. As application logic grows increasingly complex,
individual serverless functions often fall short of meeting
full business requirements. Developers are thus orchestrating
multiple functions according to specific logic to build what is
known as a Serverless Workflows [21].

In such workflows, multiple functions must execute in a
defined order or based on conditional logic to accomplish
specific tasks. To achieve this coordinated execution, different
systems and platforms adopt a variety of approaches. Based on
existing research and engineering practices, current mainstream
coordination mechanisms for serverless workflows can be
categorized into three types [3], [25]–[28]:

a) Event-based Orchestration: In this model, functions
communicate and chain together via events. For instance,
after one function completes execution, it publishes a result
to a message queue or event bus (such as AWS SNS/SQS,
Azure Service Bus, RabbitMQ) [20], which in turn triggers
the execution of the next function. This approach offers loose
coupling and high scalability but typically requires developers



to explicitly handle event listening and message-passing logic.
Some platforms (e.g., AWS EventBridge) partially automate
this mechanism, reducing the developer’s burden.

b) Client-side Coordination: In certain scenarios, the
execution order of functions is controlled directly by the client
side (e.g., web pages, mobile applications, or GUI programs).
These “coordinators” typically invoke cloud functions directly
(e.g., via HTTP API gateways), ensuring that each step runs
with the correct data and parameters. While this method is
simple to implement, it lacks observability, fault tolerance,
and state persistence, making it unsuitable for complex or
reliability-critical workflows.

c) Workflow Engines: To address the limitations of event-
driven and client-side coordination models, major serverless
cloud platforms—such as AWS Step Functions, Azure Durable
Functions, and Google Cloud Workflows—have introduced
dedicated workflow engines. These services support the def-
inition of control flow between tasks using either declarative
syntax (e.g., JSON or YAML) or code-based formats. The
platform then automatically handles key operational tasks such
as function scheduling, state persistence, retry mechanisms,
concurrency control, and monitoring and analytics. Compared
to client-side coordinators, workflow engines offer significantly
greater stability, security, and maintainability, and have become
the dominant coordination method in complex serverless sys-
tems.

Building upon workflow engines, the Serverless Workflow
Management System (SWMS) has emerged as a critical layer
that connects users with the underlying execution platform.
SWMS is responsible for managing the entire lifecycle of a
workflow—including its definition, deployment, execution, and
monitoring.

Specifically, the SWMS first receives workflow definitions
written in declarative formats such as YAML or JSON. It
then performs syntax parsing and business logic validation to
ensure the correctness of the workflow model. After validation,
the SWMS sends the verified workflow configuration to the
underlying workflow engine, which autonomously schedules
and invokes the appropriate serverless functions based on the
defined control flow. During execution, the SWMS continu-
ously tracks the state transitions of the workflow, handles data
passing, exception handling, and retry mechanisms, and col-
lects logs and performance metrics. These capabilities enable
users to monitor execution in real time and support subsequent
optimization.

B. Threat Model

In this work, we focus on two core security threats in
serverless workflows: integrity violations and privilege abuse.
The integrity issue refers to attacks in which an adversary
tampers with workflow configurations, forges state inputs, or
replays previously executed paths, thereby undermining the
integrity of the workflow execution path.Attackers may further

exploit valid execution paths to trigger vulnerable functions,
launching DoS attacks against downstream functions or using
them as entry points for malicious operations. Additionally, by
compromising insecure functions, attackers can extract sensi-
tive information or alter function behavior to perform unautho-
rized actions.Privilege abuse stems from the prevalent issue of
over-privileged access in existing access control mechanisms
such as IAM. Attackers may leverage excessive permissions
to indirectly or directly invoke functions that should only be
accessible to privileged users, resulting in privilege escalation
and security policy violations.

We assume that the serverless workflow is deployed by
trusted tenants on a cloud platform, and that the platform
itself—including the serverless runtime, scheduling system,
and network—is trusted. Attackers do not have control over the
underlying infrastructure such as the function runtime. Except
for the functions and resources defined within the workflow,
all other external services—including cloud storage, databases,
and third-party APIs—are considered untrusted and treated as
black boxes. We do not consider attack vectors involving side
channels, platform-level vulnerabilities, or physical attacks.

The attacker’s capabilities are limited to exploiting vulner-
abilities in function code or misconfigurations to manipulate
one or more functions. Attackers may also disrupt workflow
execution integrity by crafting malicious inputs or triggering
illegal state transitions, thereby undermining the workflow’s
execution path correctness.

C. Design Goals
To address the threats outlined in the threat model, LASE-

Flow is designed to achieve the following security goals:
a) Verifiable Execution Path Integrity: LASEFlow should

ensure the integrity of function execution paths within a
serverless workflow. Each function invocation must be crypto-
graphically bound to the legitimate execution state and context
of its preceding function(s), thereby preventing unauthorized
path skipping, interruption, or replay attacks.

b) Protection Against Illegal State Injection and Replay
Attacks: LASEFlow must validate the authenticity and trust-
worthiness of the state inputs received by each function. This
prevents attackers from forging state data or replaying previ-
ously valid execution states to induce incorrect or malicious
behavior.

c) Fine-Grained Access Control: LASEFlow should en-
force access control policies based on user identity, roles, and
workflow execution context. It must support the principle of
least privilege to minimize over-permission risks. Users should
only be able to access or perceive functions and execution paths
explicitly authorized to them.

d) Minimized Attack Surface: Communication between
functions and services should be strictly constrained to what
is defined within the workflow. External visibility should be
limited to reduce the potential impact of a compromised
function on other parts of the system.
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Fig. 2. The overview of LASEFlow.

e) Auditability and Post-Incident Traceability: All func-
tion invocations and state transitions must be logged in a
tamper-evident manner. These logs should support forensic
analysis and root cause tracing in the event of anomalous or
malicious workflow behavior.

III. LASEFLOW DESIGN

LASEFlow is a label-based security framework designed for
serverless workflows. It consists of three main components:
the policy validation module, the label generation module, and
the secure workflow engine. The policy validation module is
responsible for parsing and verifying user-submitted workflow
security policies. It checks for issues such as permission
conflicts, omissions, or unauthorized access within the policy,
ensuring its logical soundness and completeness. The label
generation module produces both resource labels and workflow
labels based on validated policies. Resource labels indicate the
trust level and deployment requirements of individual func-
tions, while workflow labels record the sequential dependencies
between functions and serve as execution credentials. The
secure workflow engine dynamically switches the workflow
graph based on the user’s identity and request. It schedules
function executions in accordance with the policy, verifies
workflow labels during runtime, and constructs a verifiable
execution path chain to prevent path tampering, skipping, or
replay attacks. The architecture of LASEFlow is illustrated in
Fig.2.

A. Label Design for Serverless Workflows

On cloud platforms such as AWS, Azure, and Alibaba Cloud,
resource security is often enforced through the combination
of labels and access control policies. For instance, sensitive
functions can be assigned specific labels, and access can be
restricted in IAM by setting conditional policies based on those
labels. Inspired by this mechanism, this paper proposes a label-
based security framework for serverless workflows.To achieve
the goals of preserving workflow integrity and ensuring secure
function execution, we design two types of labels: resource
labels and workflow labels. Resource labels specify the deploy-
ment requirements of functions and indicate the trustworthiness

of external resources. Workflow labels capture the dependency
and execution order between functions, enabling verification of
the execution path and preventing unauthorized modification.

a) Resource Label: To ensure the security of individ-
ual functions during both deployment and runtime phases in
serverless workflows, this paper introduces a resource label
mechanism that enhances trustworthy resource identification
and fine-grained security control.First, to guarantee the security
of the function deployment environment, nodes can be assigned
a trusted launch label, which indicates whether the node has
undergone a trusted boot process. This ensures that functions
are deployed within a secure and trusted execution environ-
ment. When users require secure deployment for functions, the
presence of a trusted launch label on the hosting node serves as
an indicator of deployment security. Additionally, vulnerability
scanning is performed on nodes, and based on the results, nodes
are classified into different security levels. Functions involving
sensitive operations are preferentially scheduled on nodes with
higher security levels to reduce security risks.

Second, to protect data during function execution, storage
resources in the serverless platform must be assigned source
labels that identify the trustworthiness of their origin (e.g.,
platform-owned, trusted third party, untrusted third party). The
system assesses the security level of resources based on these
labels. When functions access unsafe or untrusted storage
resources, data encryption during transmission and storage is
enforced, or access may be denied outright. Moreover, for
functions handling sensitive data, the system combines the
node security level labels to schedule execution on nodes with
stronger security guarantees, thereby enhancing data protec-
tion.

The resource label mechanism enables trusted identification
and hierarchical management of function deployment envi-
ronments and data storage resources. It provides fine-grained
security guarantees for serverless workflows, significantly im-
proving the overall system’s security and controllability.

b) Workflow Labels: In serverless workflows, traditional
security mechanisms struggle to effectively prevent execu-
tion paths from being bypassed, tampered with, or replayed,
thereby failing to guarantee the integrity and trustworthiness
of the entire workflow execution process. To address this
issue, this paper draws on the Platform Configuration Reg-
ister (PCR) technique from trusted computing and proposes
an execution path protection mechanism based on workflow
labels.This mechanism measures the execution result of each
function—such as the hash of output or state digest—and
extends the current path hash by chaining it with the hash
value recorded in the previous stage’s label. Through this chain
extension, the system continuously updates the current label’s
path hash, thereby constructing an immutable execution chain.

Workflow labels act as metadata carriers passed between
functions and contain key security information related to the
workflow execution path, specifically including:



1) Current PCR Value (accumulated path hash): Records the
cumulative execution digest from the start node to the
current function, used to verify whether the execution
path has been tampered with or skipped;

2) Timestamp: Marks the generation time of the current
label to prevent replay or delayed use of the label;

3) Identity: Records the caller’s identity for the current
function, which is used in conjunction with access con-
trol policies to verify legitimate execution permissions;

4) Workflow Instance Identifiers (Workflow ID and ver-
sion): Ensures that the label is bound to a specific
workflow definition and execution instance, preventing
forgery or confusion across instances or versions.

Through this mechanism, workflow labels not only provide
cryptographic proofs of path integrity but also serve as critical
evidence for policy validation, audit tracking, and security
response. Consequently, they significantly enhance the trust-
worthiness of serverless workflows.

B. Policy Specification Framework

To achieve identity-based least privilege control, this paper
proposes a policy specification framework that is compatible
with the structure of serverless workflow graphs. Building upon
existing workflow definition models in cloud platforms and in-
tegrating Identity and Access Management (IAM) mechanisms,
the framework binds user identity permissions to the workflow
graph through a policy language. This enables the construction
of differentiated workflow graph views, effectively isolating
and protecting sensitive paths and critical functions.

The policy specification corresponds one-to-one with work-
flow state definitions and abstracts three key policy control
elements: Object, Edge, and Identity, representing function
resources, state transition paths, and access subjects, respec-
tively. The policy language allows developers to define access
constraints related to user identities for each state (i.e., func-
tion invocation task) and its outgoing edges, enabling access
isolation control based on granular attributes such as roles,
organizations, or tenants. The syntax of the policy specification
is shown in Table I. The policy specification in this paper is
inspired by the designs of Valve [16], Growlithe [22] and Grasp
[24].

Within this framework, the system dynamically generates a
workflow subgraph tailored to each user based on their identity
context and matching policies, thereby creating a customized
user view. Regular users, by default, only see the minimal
execution path, with access permissions to all edges and
state nodes denied unless explicitly granted. Privileged users
can unlock hidden states, expand branching paths, or modify
default policies for functions and edges by extending their
permission labels, thereby obtaining a more complete workflow
graph and elevated operational privileges. This design not only
effectively controls unauthorized access to sensitive functions
but also reduces the workflow’s exposure and attack surface.

TABLE I
THE POLICY SPECIFICATION OF SERVERLESS WORKFLOWS

Term Description
workflow object+edge identity

object function/storage
function (name, result, functionpolicy)
storage S3 bucket, DynamoDB table, etc.

edge (preobject, nextobject, edgepolicy)
functionpolicy key: value, requirements for node

edgepolicy (counts, read, write)
counts number of requests from pre to next
read whether pre can read next
write whether pre can write next

privilegeworkflow object edge identity
modifyfunctionpolicy identity functionpolicy

modifyedgepolicy identity edgefunctionpolicy

Furthermore, the policy specification supports attaching ad-
ditional control attributes to state transition paths, such as invo-
cation frequency limits, identity consistency verification, and
state dependency constraints. These features further strengthen
the system’s defense against denial-of-service attacks, replay
attacks, and path tampering. After users write policies accord-
ing to this framework, the policy validation module checks for
conflicts, omissions, or privilege escalations in the permission
configurations to ensure the logical correctness and complete-
ness of the policies.

C. Secure Execution of Serverless Workflows

Serverless workflows must comply with user-defined poli-
cies during execution. The execution process is divided into
two stages. First, during the static analysis stage, the policy
validation module performs checks on the policy before exe-
cution. Second, during the runtime stage, policy enforcement
is carried out prior to function invocation to ensure that the
workflow path has not been tampered with and that execution
counts comply with policy requirements. In this section, we
provide a detailed description of these two mechanisms.

a) Static Analysis Stage: Before the workflow is exe-
cuted, the developer must provide a permission policy file writ-
ten according to the policy specification. The policy validation
module constructs a workflow graph based on the user-defined
policy and performs structural and semantic analysis of the
policy file in the context of the graph. This analysis includes,
but is not limited to, the following aspects:

1) Privilege Overlap and Escalation Analysis: The system
detects whether there are workflow paths with missing
permission definitions, or whether low-privileged iden-
tities attempt to access high-sensitivity resources. This
analysis helps identify unauthorized paths and potential
attack surfaces.

2) Unreachable Path Detection: Based on constraints de-
fined in the policy (e.g., invocation count set to zero, or
no read/write permissions), the system identifies logically
unreachable workflow paths. These may result from



misconfigured policies or redundant design elements, and
the system issues warnings accordingly.

3) Indirect Path Attack Detection: The system analyzes
whether it is possible to bypass direct access restrictions
by indirectly reaching sensitive resources through multi-
hop paths, thereby preventing attackers from exploiting
the workflow structure to obtain unauthorized data.

After the policy is successfully validated, the label gener-
ation module creates resource labels for each function and
resource. These labels are used to guide deployment and
access decisions. During deployment, each function is de-
ployed according to the requirements specified by its resource
label. When a function attempts to access a database, the
secure workflow engine checks the resource label to determine
whether the database is trustworthy and decides whether to
allow or block the access.

b) Dynamic Execution Stage: During the actual execution
of the workflow, to ensure path integrity and fine-grained
access control, LASEFlow incorporates PCR technology from
trusted computing to construct a verifiable execution path
chain. The operational mechanism is as follows:

1) Identity Authentication: When a user initiates a workflow
request, the system first performs identity authentication
to ensure the legitimacy of the caller. Based on the
authenticated identity, the system dynamically prunes the
workflow graph, providing each user with a customized
workflow view. A unique workflow instance identifier
(Workflow ID and version number) is then generated for
this execution, which is used for subsequent label binding
and path tracking.

2) Workflow Labels Initialization and Path Chain Start:
Before the workflow execution begins, the workflow
engine invokes the label generation module to create the
initial workflow label. This label contains a timestamp,
identity information, workflow instance identifiers, and
other metadata. An initial PCR value (PCR0) is gener-
ated via hashing, serving as the anchor point for path
integrity.

3) Function Call Interception and Verification: Prior to
each function invocation request, the workflow engine
intercepts the call and enforces the following verification
procedures:

• Label Consistency Verification: The hash of the
workflow label carried in the request is computed
and compared against the latest stored PCR value. If
they do not match, this indicates possible tampering
with the execution path or policy labels; the call is
terminated and a security event is logged.

• Policy Compliance Verification: The system checks
whether the invocation complies with access control
rules defined by the policy, including caller identity,
invocation count, and data access permissions. If

verification fails, the execution is rejected and a
security error code is returned.

• Replay Attack Prevention: Before a function begins
execution, the system verifies the nonce, unique re-
quest identifier (RequestID), timestamp, and HMAC
signature based on a shared key. This prevents
attackers from launching unauthorized invocations
by replaying historical requests or forging request
contents.

• Workflow Labels Update: If the verification suc-
ceeds, the system updates the PCR value in the
workflow label. The new PCR value is computed
by combining the previous PCR value, the cur-
rent function’s state digest, and the invocation edge
information, as defined in (1). In addition to the
PCR value, the workflow label also updates other
fields such as the nonce and timestamp. The updated
workflow label is then attached to the invocation
request and forwarded to the next function.

4) Trusted Path Chain Completion: As the workflow pro-
gresses, LASEFlow constructs a complete trusted execu-
tion path chain through the PCR mechanism. This chain
provides security guarantees against malicious tampering
of the workflow execution path and prevents attackers
from replaying historical labels to repeatedly execute
sensitive paths.

5) Secure Scheduling and Node Constraint Verification:
During function scheduling, the scheduler filters the
available node pool to select compute nodes that satisfy
all policy conditions based on resource labels. If no
eligible nodes are found, the execution is rejected with
a ”policy deployment failure” error. This mechanism
further ensures compliance of function deployment lo-
cations and data security.

PCRi+1 = Hash(PCRi ∥ edge info ∥ function digest) (1)

IV. IMPLEMENTATION AND EVALUATION

This section evaluates the LASEFlow system from two
perspectives: performance overhead and security assurance.
We deployed LASEFlow on a local testbed running Open-
FaaS v0.27.12 atop Kubernetes v1.32 (Docker runtime version
28.0.1), allowing us to assess its runtime performance under
varying workloads. OpenFaaS is a Kubernetes-based serverless
computing platform, which enables controlled experiments
across the full execution lifecycle of serverless workflows.

A. Overhead of LASEFlow

We first evaluated the time overhead introduced by LASE-
Flow during workflow execution. Since native OpenFaaS does
not provide built-in support for workflow execution control,
we implemented a baseline serverless workflow framework.
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This baseline framework supports sequential execution of user-
defined workflows but does not include any security mecha-
nisms. We then compared it with a security-enhanced version
integrated with LASEFlow.

We tested three common workflow structures: Sequential,
Branching, and Parallel. For each structure, we ensured the
number of functions remained constant and pre-deployed all
functions to eliminate time variations caused by cold starts
or deployment delays. Each structure was executed 800 times
under both the baseline and LASEFlow-enhanced frameworks.
We measured the total execution time and calculated the
average overhead.

As shown in Fig. 3., LASEFlow introduces approximately
3%-4% additional overhead in sequential workflows, 3.5%–4%
in branching workflows, and 4%–5% in parallel workflows.
It is worth noting that in branching structures, the number
of executed functions may be fewer due to conditional path
selection, which results in a shorter total execution time com-
pared to sequential or parallel structures. The main sources
of overhead in LASEFlow stem from four security features:
identity authentication, policy validation, PCR verification, and
anti-replay mechanisms. In addition, network fluctuations, CPU
scheduling, and other system-level factors may contribute to
minor variations in the measured timing results.

B. Performance of Security Measures

We further analyze the performance of the four security
mechanisms integrated into LASEFlow across different work-
flow structures: identity authentication, policy validation, PCR
verification, and replay attack prevention.

Identity Authentication: Before each function invocation, the
system verifies the request identity based on the user’s policy.
Only authenticated requests are allowed to proceed to the next
function. This mechanism supports workflow graph pruning
based on identity labels, enabling different users to see different
execution paths and enforcing identity-based dynamic access
control.
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Policy Validation: During workflow deployment, developers
can attach security policies to state transition edges. These
policies are used to prevent DoS attacks and to enforce fine-
grained access control (e.g., read/write permissions) based on
user identity.

PCR Verification: To ensure execution path integrity, LASE-
Flow constructs a trusted execution chain during workflow
execution. The system begins by computing an initial PCR0

value from the workflow’s starting state. After each function
completes, the PCR value is updated and stored in the workflow
label. During the verification phase, the system reconstructs
the execution path from the function sequence recorded in the
label, calculates the expected PCR value, and compares it with
the recorded value. Any mismatch indicates that the execution
path has been tampered with.

Replay Attack Prevention: Before each function request is
sent to OpenFaaS, the system appends a random nonce, a
unique request ID, a timestamp, and an HMAC signature to
prevent malicious users from forging or resubmitting identical
requests.

To evaluate the performance impact of these four mech-
anisms under different workflow structures, we conducted
800 executions each for sequential, branching, and parallel
workflows. We recorded the average processing time for each
mechanism. The results are shown in Fig. 4.

Because branching workflows typically involve fewer actual
function invocations due to conditional path selection, their
overall security overhead is relatively lower. In sequential and
parallel workflows, the number of executed functions is the
same, resulting in comparable time costs for identity authen-
tication, policy validation, and replay protection. However, in
PCR verification, the parallel structure requires merging the
execution results from all concurrent paths before validation,
leading to an average PCR verification time approximately 0.5
ms higher than that of the sequential structure.

In terms of overall proportion within the total workflow exe-



cution time: identity authentication accounts for approximately
0.4%, policy validation about 0.4%, PCR verification around
1.4%–2%, and replay attack protection approximately 0.5%.

C. Security Analysis

LASEFlow provides comprehensive security enhancements
for the entire lifecycle of serverless workflows, systematically
addressing execution path integrity, replay attack prevention,
fine-grained access control, and attack surface reduction. First,
LASEFlow constructs a trusted execution chain based on the
PCR principle, continuously measuring and verifying the work-
flow path to ensure that the execution order remains unaltered.
Upon detecting any path anomalies or skipped nodes, the
system halts execution, effectively preventing unauthorized
and covert path executions. Second, the system incorporates
a uniqueness verification mechanism based on nonces and
timestamps, combined with HMAC signatures to ensure re-
quest integrity and freshness, thereby defending against replay
attacks. Furthermore, building on mainstream serverless plat-
form policy models, LASEFlow enhances the expressiveness
of policies on state transition edges, enabling each invocation
edge to be associated with identity labels and access control
policies. This facilitates function-level permission management
and mitigates the problem of over-privileged access. Finally,
to minimize the attack surface, LASEFlow defaults to deny-
ing all service requests beyond the defined workflow scope,
blocking potential unauthorized access paths at the platform
level. Overall, by integrating trusted computing primitives with
enhanced policy enforcement and access control mechanisms,
LASEFlow systematically improves the controllability and
security robustness of serverless workflows.

V. RELATED WORK

Existing research on protecting serverless workflow execu-
tion paths primarily falls into two categories: Information Flow
Control (IFC) and Control Flow Integrity (CFI) approaches.
IFC is particularly suited for serverless applications composed
of multiple functions. Trapeze [15] implements a dynamic IFC
model that enforces security through static program annotations
and dynamic data labeling. However, its policy specification
and decryption mechanisms rely heavily on developer imple-
mentation and are constrained by the supported programming
languages and a set of predefined key-value storage functions.
In contrast, Valve [16] achieves default policy enforcement
without code modification by proxying network requests and
propagating taints, while also allowing developer customiza-
tion. Unlike Trapeze, Valve requires no decryption and can
infer function behavior at the network layer. Addressing the
limitations of Trapeze, will.iam [17] introduces a language- and
platform-agnostic approach capable of automatically inspecting
access control policies and making proactive decisions on
incoming requests. Valve and will.iam are complementary: the
former provides fine-grained data flow insights, while the latter
strengthens policy enforcement mechanisms.

In terms of control flow integrity, Kalium [18] enforces
control-flow correctness by combining local function state with
the global application state. It constructs both local and global
control-flow graphs (CFGs) by monitoring interactions between
functions and external services, validating them during system
calls. Compared to IFC, CFI approaches ensure the correct
order and frequency of function executions, but face challenges
such as lack of support for concurrent requests and incomplete
CFG coverage.Moreover, many of these methods assume ac-
cess to function source code, which is often unavailable in
practice—especially when functions are sourced from public
marketplaces. This lack of visibility makes it difficult to defend
against path tampering attacks, and the protection offered for
critical workflow steps remains insufficient.

VI. CONCLUSION

This paper addresses key security challenges in serverless
workflows, including the difficulty of ensuring execution path
integrity and the risk of excessive permissions in IAM. We pro-
pose LASEFlow, a label-based security framework inspired by
trusted computing’s PCR technology. By leveraging resource
labels and workflow labels, LASEFlow constructs a verifiable
execution chain that guarantees the immutability of function
execution order and the trustworthiness of execution paths.
Additionally, combining identity labels with policy specifica-
tions enables fine-grained access control and dynamic pruning
of workflow views, reducing the complexity of permission
configurations and mitigating privilege escalation risks. Exper-
imental results demonstrate that LASEFlow enhances security
with minimal performance overhead. In summary, LASEFlow
effectively strengthens the security guarantees of serverless
workflows, resolves critical issues related to execution path
integrity and permission management, and enriches both the
theoretical and practical foundations of serverless workflow
security mechanisms.
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