
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 1

QoS-Aware Co-Scheduling for Distributed
Long-Running Applications on Shared Clusters
Jianyong Zhu, Renyu Yang, Member, IEEE , Xiaoyang Sun, Tianyu Wo, Member, IEEE , Chunming Hu,

Hao Peng, Junqing Xiao, Albert Y. Zomaya, Fellow, IEEE , Jie Xu, Member, IEEE

Abstract—To achieve a high degree of resource utilization, production clusters need to co-schedule diverse workloads – including both
batch analytic jobs with short-lived tasks and long-running applications (LRAs) that execute for a long time frame from hours to months
– onto the shared resources. Microservice architecture advances the manifestation of distributed LRAs (DLRAs), comprising multiple
interconnected microservices that are executed in long-lived distributed containers and serve massive user requests. Detecting and
mitigating QoS violation become even more intractable due to the network uncertainties and latency propagation across dependent
microservices. However, current resource managers are only responsible for resource allocation among applications/jobs but agnostic
to runtime QoS such as latency at application level. The state-of-the-art QoS-aware scheduling approaches are dedicated for
monolithic applications, without considering the temporal-spatio performance variability across distributed microservices. In this paper,
we present TOPOSCH, a new scheduling and execution framework to prioritize the QoS of DLRAs whilst balancing the performance of
batch jobs and maintaining high cluster utilization through harvesting idle resources. TOPOSCH tracks footprints of every single request
across microservices and uses critical path analysis, based on the end-to-end latency graph, to identify microservices that have high
risk of QoS violation. Based on microservice and node level risk assessment, we intervene the batch scheduling by adaptively reducing
the visible resources to batch tasks and thus delaying their execution to give way to DLRAs. We propose a prediction-based vertical
resource auto-scaling mechanism, with the aid of resource-performance modeling and fine-grained resource inference and access
control, for prompt recovery of QoS violation. A cost-effective task preemption is leveraged to ensure a low-cost task preemption and
resource reclamation during the auto-scaling. TOPOSCH is integrated with Apache YARN and experiments show that TOPOSCH

outperforms other baselines in terms of performance guarantee of DLRAs, at an acceptable cost of batch job slowdown. The tail latency
of DLRAs is merely 1.12x of the case of executing alone on average in TOPOSCH with a 26% JCT increase of Spark analytic jobs.

Index Terms—resource scheduling, cluster management, QoS, tail latency, datacenters

F

1 INTRODUCTION

Production clusters are increasingly consumed by vari-
ous workloads mainly including batch jobs for data analyt-
ics [1], [2], [3], [4] and long-running applications (LRAs) for
online cloud services (e.g., Storm [5], Flink [6], HBase [7],
MongoDB [8], Tensorflow [9], etc.) for transaction analyt-
ics, streaming process, and data store and query. By co-
managing diverse workloads onto the same host server,
workload co-location has become a common practice in
improving resource utilization and cost efficiency. As op-
posed to batch analytic jobs that usually consist of a large

• J.Zhu is with Beihang University, Beijing 100083, China and
North China Electric Power University, Baoding, 071003, China.
Email:zhujy@ncepu.edu.cn.

• R.Yang, X.Sun and J.Xu are with the School of Computing, University of
Leeds, Leeds LS2 9JT, UK. Email: {r.yang1, scxs, j.xu}@leeds.ac.uk.

• T.Wo, C.Hu and H.Peng are with Beihang University, Beijing 100083,
China. Email:{woty, hucm, penghao}@act.buaa.edu.cn.

• J.Xiao is with Alibaba Group, China. Email: junqing.xjq@alibaba-inc.com
• A.Y.Zomaya is with the University of Sydney, Australia. E-mail: al-

bert.zomaya@sydney.edu.au.

Manuscript received 16 December 2021; revised 3 August 2022; accepted 23
August 2022. Date of publication 0 2022; date of current version 0 2022
This work was supported in part by MIIT of China (2105-370171-07-02-
860873), in part by the S&T Program of Hebei (20310101D), in part by
Fundamental Research Funds for the Central Universities (20226941), and
in part by UK EPSRC (EP/T01461X/1), Alan Turing Pilot Project and Alan
Turing PDEA Program.
(J.Zhu and R.Yang are co-first authors with equal contribution.) (correspond-
ing author: Tianyu Wo)
Recommended for acceptance by B. Veeravalli PhD.
Digital Object Identier no. 10.1109/TPDS.2022.3202493

number of short-lived tasks and are measured by the end-to-
end job completion time, LRAs have now become another
mainstream workloads in production clusters (Google [10],
Microsoft [11], Alibaba [12]). LRAs are latency-critical – the
stringent quality-of-service (QoS) such as response latency
and throughput is of the upmost criticality and must be met
to deliver the business promise in the face of network jitters
or load spikes. For example, the 95th percentile of requests
need to complete within a latency threshold.

Microservice architecture is an approach to constructing
a single application as a set of small interconnected ser-
vices. Each microservice runs individually and communi-
cates with each other mostly using remote procedure calls
(RPC) [13]. In this context, a Distributed Long Running Ap-
plication (DLRA) is referred to as the microservice-based ap-
plication with microservices executed in the long-lived dis-
tributed containers. Compared to monolithic applications,
request latency is prone to any network turbulence that
will coherently affect massive communications in the DLRA.
Pinpointing the QoS violation (e.g., mean or tail latency over
a threshold) is ever-increasingly intricate because the latency
in a single microservice can promptly propagate across all
dependent microservices and ultimately result in the entire
performance slowdown [13].

However, traditional cluster managers [14][15][3][16] are
originally designated for short-running batch jobs. The
central resource manager (RM) is only responsible for re-
source allocation among applications/jobs, yet leave all

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 2

application-specific logic to application managers (AMs).
This means that RM is completely unaware of the runtime
QoS requirements of the interactive and latency-sensitive
applications. Other workload co-location solutions either
diminish the performance interference through resource
partition and isolation [17][18][19] or minimize the perfor-
mance interference when co-locating different workloads
[20][21][22]. Nevertheless, they are exclusively devised for
monolithic applications and cannot be directly applied to
tackle the sophisticated component dependencies and la-
tency variations when substantial and dynamic requests
manifest in the constituent microservices of the DLRA.

In this paper we present TOPOSCH, a QoS-centric re-
source management and runtime execution framework that
can prioritize the QoS of DLRAs whilst balancing the perfor-
mance of batch jobs and maintaining high cluster utilization.
TOPOSCH encompasses two coherent stages to tackle the
QoS violation: (i) In QoS violation containment phase, we
first exploit the instrumentation to trace footprints of each
request across different microservices to localize the QoS vi-
olation. We take into account timing information – including
sojourn time on individual microservice and transmission
time between microservices – to establish a latency graph,
and periodically perform the critical path analysis to ascer-
tain the chain of invocations with the longest end-to-end
latency. The microservices on the critical path are recognized
as the victim microservices with higher risks of QoS viola-
tion. Based on microservice-level and node-level risk assess-
ment, a risk-aware mechanism is proposed for adjusting the
resource reservation for DLRAs and the visibility to batch
tasks. We can therefore intervene the scheduling of batch
tasks by preventing packing excessive batch tasks onto
saturated nodes without exacerbating the QoS violation of
DLRAs. (ii) In QoS violation mitigation phase, we perform
prediction-based vertical auto-scaling by learning the QoS
sensitivity of long-running containers – particularly those
risky microservices such as core databases or data streaming
components in the DLRAs – to multi-resources and devising
low-cost task preemption and resource reclamation. We
infer the proper resource to be vertically scaled based on
the QoS-resource model to reach the targeted QoS of the
victim microservices. Multi-dimensional resource isolation
(CPU cores, caches, main memory, memory bandwidth, etc.)
is enforced to precisely control the resource binding and
runtime usage. As opposed to the mandatory kill-based
preemption that lead to substantial termination of running
tasks, we propose a new task preemption mechanism for
gradual resource reclamation from low-priority opportunis-
tic batch tasks and leverage multiple pluggable preemption
strategies to determine the tasks to be preempted.

TOPOSCH is integrated with the Resource Manager
and Node Manager of Hadoop YARN. Experiments show
TOPOSCH outperforms other baselines in QoS assurance.
The tail latency of DLRAs when co-locating with Spark-
based batch jobs is merely 1.12x of the case of executing
alone on average and batch jobs experience 26% JCT in-
crease on average when compared with the case of running
in native YARN. If the QoS-driven auto-scaling mechanism
is disabled, the tail latency of the variant TOPOSCH-n is
1.27x – with less QoS assurance – but the JCT is only
increased by 17%. This indicates a performance balance

when the proposed auto-scaling design comes into effect.
Additionally, the proposed gradual preemption schemes can
reduce the JCT by 26.3% and 15.1% as opposed to the kill-
based scheme and the least-preempted scheme.

This paper makes the following contributions:

• proposing a mechanism for QoS violation assessment
based on critical path analysis which is conducted upon
the breakdown of end-to-end request latency among con-
stituent microservices of DLRAs.

• devising an adaptive co-scheduling approach that delays
the scheduling of batch tasks according to the runtime
risk of QoS violation.

• developing a new mechanism for mitigating QoS vio-
lation through prediction-based resource inference and
cost-effective auto-scaling of key microservices.

We expand upon our previous work [23] that only fo-
cused on the basic scheduling and QoS protection strategy
in the containment phase, by (1) scheduling framework
redesign to underpin co-scheduling (centralized and decen-
tralized) of DLRAs, batch tasks and opportunistic tasks; (2)
significantly augmented scheduling framework to support
prediction-based and on-demand mitigation phase, with the
particular aid of an enhanced node agent for precise QoS
prediction and runtime multi-resource inference and man-
agement, and a new resource autoscaler in the DLRA Master
for cost-effective QoS recovery and resource reclamation; (3)
more comprehensive experimental study with an additional
set of workload co-location compositions and with different
preemption strategies and the state-of-the-art approaches
for comparison.
Organization. Background and solution overview are pre-
sented in §2 and §3. We show the technical details in §4 and
§5 before the evaluation in §6. We discuss related work in
§7 and conclude the paper in §8.

2 BACKGROUND

2.1 Resource Management for Shared Clusters

Cluster scheduling systems typically separate the resource
management layer from the job-level logical execution
plans. YARN[24] and Fuxi[3] share the following compo-
nents: Resource Manager (RM) is the centralized resource
manager, tracking resource usage, node aliveness, enforcing
resource quotas among tenants through either capacity or
fairness control. Application Master (AM) is an application-
level scheduler which coordinates the logical plan of a single
job by requesting resources from the RM, generating a plan
from received resources, and coordinating task execution.
Node Manager (NM) is a daemon process within each cluster
node and responsible for managing task life-cycle and mon-
itoring node information. Traditional workloads in clusters
include the data batch analytic jobs (abbr. batch jobs) [1], [2],
[3], [4] – with short-lived tasks typically in the order of
seconds – and the long-running applications (LRAs):

LRAs are instantiated by long-standing containers or
executors to enable iterative computations in memory or un-
ceasing request-response. Examples of LRAs include appli-
cations using streaming processing frameworks (Storm [5],
Flink [6], Kafka streams [25]), latency-sensitive database ap-
plications (HBase [7] and MongoDB [8]), and data-intensive

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 3

front-end

login

order

memcached

shipping

catalogue memcached

accountInfo mongoDB

wishlist mongoDB

cart mongoDB

ads mongoDB

mongoDB

Fig. 1. An e-commerce DLRA for online clothing store [13]

in-memory computing framework (Tensorflow [9]). Re-
sponse latency and throughput are the key performance
indicators and applications must meet strict QoS.

For the batch workloads, there are typically two classes:
regular jobs/tasks and opportunistic jobs/tasks (aka. best-
effort or speculative in other systems [26], [10], [16], [27]).
Regular tasks are submitted and managed by the central-
ized resource scheduler, while the opportunistic tasks are
managed in a decentralized manner and used for resource
oversubscription and high resource utilization – they are
submitted to fill in the slack left by LRAs and regular tasks.

2.2 Distributed Long-Running Applications (DLRAs)
In the nature of component decoupling and distributed
execution, a DLRA typically comprises multiple microser-
vices, which are deployed on multiple nodes subject to
their resource requirements. Multiple transactions within a
DLRA have strong dependencies across multiple microser-
vices. However, temporal-spatio load variability manifests
over time and across nodes [28][29][30][31]. A user request
(e.g., an application request, a database query, a file access
operation) will transverse a collection of microservices be-
fore being responded. Therefore, end-to-end (E2E) response
latency is broadly used to indicate the execution time of any
operation to complete. Fig. 1 exemplifies a typical DLRA for
online e-commerce store [13] which consists of nine busi-
ness microservices (ranging from account related services
to order management services) and seven data warehouse
microservices. The arrow represents the calling dependency.
After logging in the system, users can browse the inventory
through catalogue or add items into the cart before finishing
an order. Shipping service will also be connected with the
order service so that one can check the shipping status of a
given order. All information needs to be queried and fetched
from underlying database services.

2.3 End-to-End (E2E) Latency in DLRAs
We use PiggyMetrics [32], a financial advisor app built
upon microservice-based architecture, to showcase how an
increase of end-to-end latency can break down into, and
attribute to, the individual microservices.
Motivating Example. Fig. 2(a) shows a test case that covers
microservices associated with account and statistics. The
detailed calling chain is as follows: a user first launches a re-
quest to the system, and the request is then reversely routed
to the Account-service (AcS) via the Gateway (GW). AS is
largely dependent upon the authentication in Authentication-
service (AuS) to complete the account verification. To obtain
the relevant account information, it needs to access the local
database service Account-mongodb (ADb). Once logged in,

 !"#

$%&'()#'*

 !"#$!%&' ()

++,-."/0#123+#&'+4)

-"5/0#123+#&'-4)

++,-."/6,.7,89&':9)

4"!"30"3+0/0#123+#&'44)

4"!"30"3+0/6,.7,89&'4:9)+,-.)#'*

(a) The calling chain in the test case

(b) Latency increase breakdown
Fig. 2. Latency increase in individual microservices in PiggyMetrics

the user can then obtain the required statistics by initializing
another requests to the Statistics-service (SS) and querying
the back-end database Statistics-mongodb (SDb).
Latency Increase and Its Breakdown. Failing to handle
spikes of users and requests is one of the common root
causes to the latency increase. To emulate this scenario,
we conduct a case study by ramping up the number of
users. We track the holistic request processing chain and
measure the 95 percentile latency increase ratio of each
individual microservice. As depicted in Fig. 2(b), different
microservices exhibit different sensitivity to the growing
number of users. Noticeably, two database microservices are
the dominating factor to the E2E latency, while GW and SS
are scalable to, and less prone to the changing system loads.

The result implicates tracking and analyzing the re-
sponse latency is of great importance in QoS assurance for
the long-running services and applications. Unawareness
of such application-level latency at runtime could lead to
higher performance interference among co-located work-
loads. It is thus highly imperative to localize such key
components and take necessary actions of restricting and
mitigating the manifestation of performance degradation.

3 OUR APPROACH
3.1 QoS-Aware Co-scheduling
We enforce two distinct QoS management stages onto the
cluster scheduling in the face of QoS violation:
• Containment: A QoS violation of a single microservice

may propagate and lead to cascading violations across
the entire system. We therefore locally restrict such prop-
agation once the QoS measures are observably degraded
within a compute node. We then delay the procedure of
scheduling more batch tasks onto the node to maintain
the current level of co-location and thus give way to the
existing DLRAs. This intervention aims to contain the
spectrum of influence and diminish the aggravation of
the QoS violation.

• Mitigation: As opposed to the delay-execution policy used
in the containment stage, it is also desirable to proactively

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 4

DLRA Master (DLRAM)

Resource Manager (RM)

QoS Analyzer

Graph

Construction

Critical Path

Analysis

Batch Job

Master

Node Manager (NM)

NodeStatus

Updater

Container

Manager

Resource

Scheduler

Node Risk

Manager

Node Agent (Toposch-PAG)

Runtime Controller

Multi-Res

Manager

Preemption

Manager

Request

Tracking

Component Manager Risk Assessor

Resource Autoscaler

Info UpdaterResource Inferer
Queue

Manager

Prediction

Engine model update

resource update

Container Executor

Opportunistic

Jobs

inferencerequest

Fig. 3. Architecture overview of TOPOSCH

and dynamically adjust the existing resource alloca-
tions (aka. vertical auto-scaling), most notably for latency-
sensitive core DLRA components such as databases or
data stream operators, in the event of transient but severe
QoS degradation. The best-effort tasks that harvest idle
resources need to be properly reclaimed.
To fulfill the two-stage QoS management for the diverse

workload co-location, we need to answer the following
research questions: [Q1] How to localize the performance
hotspots from DLRAs and identify the most vulnerable
microservices? [Q2] How to isolate the victim microservices
from the co-located batch tasks? [Q3] How to effectively
auto-scale the containers of the risky microservices with a
proper resource adjustment to ensure the required perfor-
mance recovery? [Q4] How to minimize the cost of preempt-
ing the running batch tasks during the auto-scaling?

3.2 System Architecture
Overview. TOPOSCH is built based on the state-of-the-art
open source resource management platform YARN [24] to
co-schedule both latency-sensitive containers of DLRAs and
tasks of batch jobs. TOPOSCH encompasses both a central-
ized resource manager, for high-quality resource allocation
with fairness and capacity guaranteed, and a decentralized
scheduling with distributed resource oversubscription ex-
tended from [16][27] to support high job throughput and
high cluster utilization.

Fig. 3 describes the overall architecture of TOPOSCH and
it comprises three main components: the central resource
scheduler Resource Manager (RM), the per-DLRA manager
DLRA Master and the per-node agent TOPOSCH-PAG1, a
co-resident module with the native Node Manager (NM).
Furthermore, batch jobs in TOPOSCH will be separately
managed according to their priority – The regular batch
job will be managed by native per-job Job Master (JM). The
JMs and DLRAMs are responsible for negotiating resources
with the centralized RM, i.e., submitting resource requests
and coordinating the resource allocation after obtaining the
resource response from RM. By contrast, the opportunistic
jobs will be directly submitted for improving utilization and
the pertaining opportunistic tasks will be executed onto the
nodes without a need of resource grant from RM.
DLRA Master (DLRAM). To align with the design of AM
in YARN, we devise a specific programming framework

1. PAG represents Performance prediction based node Agent

to launch a DLRA consisting of microservices, request re-
sources from the central RM, and provide standard func-
tionalities of performance tracing and inter-component com-
munication (e.g., RPC). The working mechanism is similar
to the AM of DAG jobs; users can outline the topological
relationships among microservices and specify the resource
amount in the configuration file. At the core of DLRAM are
QoS Analyzer and Resource Autoscaler:

• QoS Analyzer is the key component to track the request
footprints generated within a certain time frame and build
a weighted DAG that depicts the calling relationship. To
tackle [Q1], TOPOSCH exploits instrumentation to trace
the footprints of all requests through each microservice.
We can then monitor, extract and calculate key measures
– the average sojourn (processing) time on individual
microservice and average transmission time. TOPOSCH
periodically constructs a request calling graph based on
the microservice dependencies and localize the microser-
vices based on critical path analysis (§4.1). Those compo-
nents are regarded as QoS victims and have higher risks
of further slowdown and failures. The risk information
will be passed on to RM to perform preventive delay-
scheduling of batch tasks (§4.2).

• Resource Autoscaler is the controller to infer and vertically
adjust the resource allocation to each microservice con-
tainer on demand to keep up with the varying QoS. In
response to [Q3], the aim is to work out a proper (just-
enough) slice of resources, to dynamically rescuing the
degraded performance whilst minimizing the impact on
the neighboring jobs. To conduct the resource inference,
we need a predictor to understand the sensitivity of the
DLRA container to the multiple resources, i.e., the rela-
tionship between the resource allocation and the resultant
QoS. TOPOSCH pre-trains an initial predictor in an offline
manner, and the parameters will be synchronized to the
autoscaler periodically when the resource usage on-the-
fly is leveraged to tweak and update the model. We take
as inputs the current resource allocation, system loads and
target performance, and yield a new resource plan that
can deliver a specific performance recovery. The resource
change will be used for notifying the corresponding node
agent and determining the detailed plans of task preemp-
tion (§5.2).

Resource Manager (RM). To raise the awareness of DLRA-
level latency, RM differentiates the available nodes by the
level of co-resident victim microservices. To cope with [Q2],
once node’s risk of performance degradation is perceptible,
TOPOSCH recalculates and throttles the resource amount vis-
ible to YARN capacity scheduler – according to the current
risk assessment on per-node basis – so that only a fraction
of real available resources can be assigned to batch tasks,
thereby delaying their execution (§4.2).
Node Agent (TOPOSCH-PAG). We inherit the main func-
tionalities of default NM for container management and
status update. We devise a multi-resource manager to con-
trol the access of a variety of resources such as CPU,
memory, LLC and MBW among different containers. We
employ Docker containers to fulfill an isolated execution
environment for the tasks. Upon receiving the request for
launching a new task or DLRA container, the container

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 5

TABLE 1
Definitions of Identifiers

Parameter Meaning
url the endpoint of a DLRA-level API
serviceID The microservice name in DLRA

requestID The unique identifier of the request, i.e.,
UUID in DLRA

nextServiceID The down-streaming microservice of the request
timestamp Timestamp of event occurrence
eventType Event type (i.e., send or receive)
statusCode Event status (i.e., success or failure)

executor will then launch a docker container (§5.1). In
addition, as opportunistic tasks are submitted and executed
in a distributed manner, such queueable tasks are allocated
by the YARN distributed schedulers [33], without going
through the central RM, and managed by the local queue
manager of each node. In response to [Q4], Preemption
Manager is devised to determine which opportunistic tasks
to be preempted and perform a graceful resource reclama-
tion, upon receiving the updated information of allocation
changes from the Resource Autoscaler (§5.3).

4 QOS-AWARE WORKLOAD CO-SCHEDULING

This section presents how we co-schedule the microservices
of DLRAs and batch tasks by pinpointing the vulnerable
microservices (§4.1) and scheduling intervention of low-
priority batch tasks based on risk assessment (§4.2).

4.1 Pinpointing Vulnerable Microservices
Request Instrumentation and End-to-End Latency Tracing.
To obtain as many footprints as possible, we aim to record
per-request and per-microservice latency at RPC granularity.
We instrument the incoming requests and output responses
by tracking information including endpoints destination,
inbound/outbound timestamp and request status. We use
a set of identifiers to depict the information of each RPC
call including url, requestID, serviceID, eventType, nextServi-
ceID, timestamp, statusCode (see Table 1). We can infer the
elapsed latency of a specific request within a microservice.
Those traces will be aggregated into a centralized database,
e.g., redis (https://redis.io). TOPOSCH integrates the
database with DLRA’s AM to ensure effective data access
whilst reducing the memory consumption of RM.

The aggregated requests/responses over a period of time
constitute the latency trace graph (LTG). Formally, LTG =
(V, E , ϕ) comprises a set of microservice vertices V and a
set of edges E denoting the interconnection links between
microservices, i.e., ϕ : E → (si, sj)|(si, sj) ∈ V2 ∧ si ̸= sj
where an incidence function maps each edge to an ordered
pair of distinct microservices. There are a number of hi-
erarchical execution entities in the system. A microservice
provides multiple access points via RPC or RESTful APIs.
TOPOSCH estimates the average sojourn time per request on
microservices and transmission time between microservices.
Critical Path Analysis on the LTG. To be precise, the Mean
Sojourn Time (MST) is the amount of time that a user request
spends on average in each microservice; the length of MST
is equal to the mean waiting time plus the mean service
time. As a microservice may provide its clients multiple
APIs, hundreds of thousands of requests are performed

TABLE 2
Main Symbol Notations

Symbol Descriptions
sk the kth microservice in the DLRA

tik inbound timestamp of the request i in sk

t̂ik outbound timestamp of request i in sk

S the collection of microservices on the critical path

ST i
k the sojourn time of the request i in sk

TT i
k,l

the transmission time of the request i between
sk and sl

S̃T
(u)

k the intra-API average sojourn time of uth url in sk
Gk,l the set of requests between sk and sl
Gk the set of requests sent to sk
Ek the set of error requests sent to sk
Mn the set of microservices running on node n
rk, Rn the risk of a microservice sk and a node n
ϵ the mini step size of resource reclamation

and aggregated through the API gateway before routing to
specific microservices.

Through the latency instrumentation and tracing, we
can easily obtain the entry and exit timestamps of a given
request into a microservice. t and t̂ represent the inbound
and outbound timestamp. For a given request, the sojourn
latency of a request i within microservice sk and the trans-
mission latency of a request j between microservice sk and
sl can be measured by using two adjacent timestamps:

ST i
k = t̂ik − tik,

TT j
k,l = tjl − t̂jk.

(1)

At the core of generating LTG is to set the weight for
vertices and edges. We assign the edge weight as the mean
transmission latency TT k,l among all requests:

TT k,l =

∑
j∈Gk,l

(tjl − t̂jk)

|Gk,l|
, (2)

where Gk,l is the set of requests between microservice sk
and sl, and the size is denoted by |Gk,l|. Notably, we do
not differentiate the latency among different endpoints here
based on the assumption of uniform RPC communication
between two microservices2. Similarly, we assign the weight
of a single vertex as the mean sojourn latency of all requests
passing through the microservice sk.

STk =

∑
i∈Gk

(t̂ik − tik)

|Gk|
, (3)

where Gk is the set of requests to the microservice sk.
We then divide the vertices into two distinct categories:

functional vertices and auxiliary vertices to embed the mean
sojourn latency STk and mean transmission latency TTk,l,
respectively. To facilitate the graph algorithms, we retain

2. It is a common practice to only adopt one type of standard RPC
library such as gRPC, Apache Dubbo, Apache Thrift, etc. rather than
using multiple RPC libraries. This means all requests within a DLRA
will use the same underlying RPC library, and thus the latency graph
can simply depend upon the mean transmission time without involving
the variation due to RPC frameworks by different DLRAs and even
their cross-language performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 6

main attributes including the service id, relevant microser-
vices upstream id/downstream id, and the timing informa-
tion. We exploit Bellman-Ford [34] to find the longest path
of LTG as the critial path. For clarity, notations used in this
paper are summarized in Table 2.

4.2 Batch Scheduling Intervention
4.2.1 Risk Assessment of QoS Violation
Microservice-Level Risk Assessment. The goal of microser-
vices risk assessment is to quantitatively estimate the victim
microservices on the critical path. We mainly take into
account the following factors:
• Request sojourn time. Longer request latency indicates the

pertaining microservice is prone to QoS violation, as
the increased latency from the microservice would be
amplified and cascaded to the whole critical path.

• API call frequency. Any QoS violation in the microservice
with higher API call frequency will involve more requests
and intrinsically influence a wider range of users.

• Request failure rate. Higher failure rate indicates a reduced
reliability of request handling of the microservice. With-
out further resource adjustment, those microservices have
higher risks of QoS violation.
To combine the first two factors, we consider both inter-

API and intra-API request sojourn time. We calculated the
weighted average sojourn time among different APIs be-
cause of the unbalanced number of requests coming into
different APIs:

WSTk =

∑
u∈Uk

ωuS̃T
(u)

k∑
u∈Uk

ωu
, (4)

where ωu is the proportion, taken up by uth API url of the

microservice k, of the total requests and S̃T
(u)

k denotes the
intra-API averaging measure of uth API url. Particularly,
we use the geometric mean of all requests pertaining to
the url to mitigate the impact of outliers and smooth the
average calculation. We then calculate the weighted sojourn
proportion (WSP) to indicate the proportion and importance
of the targeted microservice in the whole critical path:

WSPk =
WSTk∑
i∈S WSTi

, (5)

where S is the microservice collection on the critical path.
We involve the request failure rate into the risk assessment,
through the weighted request failure proportion (WFP):

WFPk =
|Ek|
|Gk|

, (6)

where the ratio of error requests are calculated. We integrate
them into the risk assessment by setting a configurable
weight α, which indicates a balance between sojourn latency
and failure rate.

rk = α ∗WSPk + (1− α) ∗WFPk. (7)

Node-Level Risk Assessment. TOPOSCH infers the risk
level of QoS violation on a per-node basis, and thus we need
to aggregate the risk score of each microservice i.e.,

Rn =
∑

k∈Mn

rk, (8)

where Mn is the microservice set running on the node n
and then forming the node-level risk Rn by normalizing

the overall risk level (e.g., using min-max normalization)
among all running nodes. The node risk measures over
a fixed time frame are maintained within RM. RM then
transforms the obtained risk information into a dynamic
resource adjustment, in terms of both available resources for
batch tasks and reserved resources exclusively for DLRAs.

4.2.2 Resource Reservation and Scheduling Intervention
Risk-Aware Slack Resource Reservation for DLRAs.
TOPOSCH aims to achieve a dynamic and healthy co-
existence of DLRAs and batch jobs with balanced perfor-
mance among different forces – trading the performance
of batch jobs to some extent for prioritizing the runtime
latency of interactive DLRAs. Intuitively, a node with higher
risk level need to reserve more slack resource for DLRAs
from its available resource pool. In this context, this piece
of slack resource is only visible to DLRAs and cannot be
used for batch tasks for a period of time. Namely, the visible
resource to batch tasks adapts to the on-the-fly risk level,
according to the estimation based on Eq. 5 to Eq. 7. This
intervention mechanism can avoid unnecessary batch task
placement onto the node, thereby reducing the performance
interference in-between.

In practice, we use a simple yet effective linear model
with a reservation coefficient ν to determine the resource
reservation for DLRAs on a specific node. ν represents the
relationship between the risk level and the resource reserva-
tion. A higher value indicates that the amount of resource
reservation is more sensitive to the change of risk level, and
vice versa. The extreme case of zero ν means no dedicated
slack resource for the DLRAs, i.e., completely switch-off
of TOPOSCH with default YARN scheduler enabled. Corre-
spondingly, the ratio of visible resources to batch tasks can
be calculated by 1 − νRn. To make the value always valid,
ν is set to be ensure νRn between 0 and 1.
Batch Scheduling Intervention. Alg. 1 describes the pro-
cedure of resource allocation for task scheduling. YARN
uses Container3 as the basic unit of resource allocation in the
scheduler of Resource Manager and then as resource lease
to run a task. A Container will be reclaimed when a task
is completed or killed. Unsatisfied Containers that represent
the resource requests of the pending tasks will be queued in
the scheduler’s queue.

We select the Container from the waiting queue in a
descending order by the waiting time and filter out a node
list N where each node has sufficient capacity to meet
the task’s requirement (Lines 1-4). The scheduler will go
through all potential nodes and calculate each node’s visible
available resource Rvis

n against the real available resource
Rreal

n according to the risk-aware reservation for DLRAs
(Lines 10-12) if the default QoS violation policy is enabled
(zero-violation policy will be discussed below).

Only if the visible resource is big enough to underpin the
requested amount, the current Container can be assigned to
the node by reusing Assign(), the default scheduling pro-
cedure of the native YARN (Lines 14-16). Otherwise, we will
hold up the Container from scheduling for a given number of

3. In YARN’s resource model, resource scheduler responds to a
resource request by granting a Container. Container is the logical bundle
of resources that grants rights to a Job Master to use a specific amount
of resource (e.g., 1 Core CPU, 2GB RAM, etc.) on a specific node.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 7

Algorithm 1: Batch Scheduling Algorithm
Input: Q: the waiting queue consisting of pending batch

Containers
1 while Q.sort(waiting time) is not empty do
2 c← the head Container of Q
3 // filter out available nodes
4 N ← nodes with sufficient resources for c
5 for n in N do
6 if Zero QoS violation is enabled then
7 // no resources visible to batch tasks
8 Rvis

n ← 0
9 else

10 // set the visible resources by removing reserved ones
11 Rn ← aggregate microservice-level risks via Eq.8
12 Rvis

n ←Rreal
n (1− νRn)

13 end
14 if Rvis

n >= c.resReq then
15 Assign(c, n)
16 break
17 else if c.retry >= maxRetryTime then
18 // the task has a locality requirement to the node n
19 if HasLocality(c, n) then
20 Assign(c, n)
21 break
22 // the task has no locality requirement to the node n
23 else if ! HasLocality(c, n) then
24 n̂← the node with the lowest risk in N
25 Assign(c, n̂)
26 break
27 end
28 end
29 end
30 c.retry += 1
31 end

times (e.g., setting maxRetryTime as 1 indicates the delay
only occurs once). This design is out of consideration of
performance trade-off – we can prioritize the QoS protection
without too much delay of batch task executions. Once
a task petitions for resources more than maxRetryTime,
TOPOSCH attempts to allocate resources to its Container as
soon as possible. In this case, the Container with a data
locality requirement will be directly placed, despite the fact
of temporarily aggravating the QoS violation (Lines 18-21).
For the Container without a locality requirement, TOPOSCH
can relax the scope of node selection – the scheduler will
choose the node with the lowest risk level to reduce the
impact of co-location on the increased latency (Lines 22-26).
Parameter Setting. Finding a suitable system parameter
configuration is a non-trivial task. One common practice
based on our large-scale engineering experience is to ini-
tially set conservative ν for validation in a small-scale test
system that has the same hardware configurations before
deploying into larger-scale production. This procedure can
significantly help to understand system behaviors in a con-
trolled manner. We can set a starting point, such as 1.0, and
gradually relax the parameter to allow for more co-located
batch tasks by a step of 0.1 while observing the latency
variations (e.g., slowdowns or failures) through daily re-
gression tests. This procedure can help us gradually revise
the configuration with a small step until all regression tests
deliver stable outputs and achieve acceptable performance
level of both latency-sensitive applications and batch jobs.
Recent advancement in reinforcement learning can facilitate
the parameter auto-tuning which is beyond the scope of this
paper and will be left for future work.

DLRAs regular batch jobs

CPU root group

opportunistic jobs

CLOS1 CLOS3CLOS2

…DLRA1 DLRAn …rb1 rbn…opp1 oppn

LLC=0xff00 LLC=0x000fLLC=0x00f0

Fig. 4. Cgroup and CLOS based resource isolation

Note that we also allow application-specific decision
making to achieve a customized performance trade-off.
Stricter violation policy, e.g., zero violation, could be applied
to disallow any batch execution further and avoid wors-
ening the QoS of the existing components of DLRAs. This
could be easily implemented by setting up a global binary
flag variable in the configuration file and allowing cluster
administrators to specify the specific targeted scenario. If
zero violation is enabled (Alg. 1 Lines 6-8), all the available
resources on a node will be entirely invisible to batch tasks
until all the targeted DLRA’s QoS recovered.

5 QOS-AWARE AUTO-SCALING

This section addresses how to manage multi-dimensional
resources and isolate resources for a given task (§5.1), how
many resources to revoke for auto-scaling (§5.2), and which
batch tasks to be preempted in a cost-effective manner (§5.3).

5.1 Multi-dimensional Resource Control

TOPOSCH-PAG mainly uses Linux control groups (cgroups)
and Intel RDT technology to achieve fine-grained software-
programmable control over the amount of resource alloca-
tion for different tasks.

We use cgroup cpuset subsystem to fulfill the CPU isola-
tion: we set the cpuset.cpus to indicate the CPU affinity
for different process group and allocate logical cores of
the same CPU slot, as much as feasible, to a given mi-
croservice or batch task container. This can avoid frequent
switches between CPU cores and cache contention in hyper-
threading. We exploit cgroup memory subsystem for limiting
the amount of available memory to the LRA by setting
memory.limit_in_bytes. Fig. 4 outlines how TOPOSCH
agent manages CPU and memory with the group hierarchy.

We adopt Intel RDT to monitor and control the access
to LLC ways and MBW to avoid resource starvation and
consequent performance degradation. We leverage Cache
Allocation Technology (CAT) to group different DLRAs and
batch jobs into different classes of service (CLOS) – seen as
resource control tags – and then assign different capacity bit-
masks (CBM) to show the amount of LLC available to each
CLOS. Similarly, we use Memory Bandwidth Allocation
(MBA) to specify the portion of MBW that each CLOS can
access. TOPOSCH-PAG will predict the required cache ways
according to the result of runtime resource re-allocation. For
example, assuming that there are currently two resource
control tags, CLOS1 and CLOS2. If the required cache ways
are estimated to be 4 and 8, respectively, TOPOSCH will set
0x000f for CLOS1 and 0x0ff0 for CLOS2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 8
TABLE 3

Model Accuracy Comparison for MongoDB microservice

Modeling Accuracy Indicators
Algorithm RMSE MAE R2

Linear Regression 48.20 44.67 0.918
KNN 81.53 59.30 0.374

Adaboost 44.46 39.59 0.920
ElasticNet 55.40 47.54 0.718

GBRT 14.09 19.32 0.983

Fig. 5. The relationship between multi-resources and QoS for a Mon-
goDB microservice

5.2 QoS Prediction Engine
We investigate the relationship between multi-dimensional
resources and the QoS through systematic profiling and
prediction model. We can then use the model to infer how
much the QoS could be mitigated by a given plan of resource
re-allocation. We leverage Million Instructions Per Second
(MIPS) as the QoS indicator to guarantee the measurement
accuracy. Compared with Instructions Per Cycle (IPC) or
Cycles Per Instruction (CPI) [35], [27], MIPS is less depen-
dent upon the measure of CPU frequency and the number
of clock cycles in the event of frequency conversion or
over-clocking techniques, and thus more accurate when an
application experiences an interrupt IO.

Formally, the prediction engine take as input the nor-
malized multi-dimensional vector R of existing resource
allocation (RCPU , Rmem, RLLC , RMBW , i) for the profiled
microservice i, to estimate the targeted QoS Q (the MIPS
value). let F be the regression function trained and fitted
on the resource and resultant QoS. As F is microservice-
specific, each key component of DLRA will be profiled by
the DLRA Master. We pre-train the prediction model in an
offline training stage, similarly to existing approaches [36],
[18], [37], based on a set of workload benchmarking and
profiling, but will update the model parameters periodically
according to the on-the-fly resource usage.

More specifically, we enumerate all possible amount of
the multiple resource vectors by going through the available
range of each individual resource and using a given step-
size. For example, the memory allocation starts from 256MB
to 4G while we increase the LLC cache ways by one way
for each step. To exemplify the procedure, we showcase
how prediction models are trained for a MongoDB microser-
vice. Diverse regressors are applied into the model training
including Linear Regression, k-Nearest Neighbor (KNN),
Adaboost, ElasticNet and Gradient Boost Regression Tree
(GBRT), etc. Model accuracy is determined through the
Root Mean Square Error (RMSE) – an established measure
of regression accuracy when the under-prediction error is
enlarged. We also evaluate metrics such as Mean Absolute

Error (MAE), and R2 (coefficient of determination) to in-
dicate the measurement effectiveness. Table 3 shows that
GBRT has the smallest RMSE and highest R2, indicating its
minimal prediction error. We also observe a stable predic-
tion effectiveness in GBRT with merely 1.2 RMSE deviation.
This is not surprising simply due to the ensemble nature
of combining several base models to produce one optimal
predictive model. Fig. 5 shows an example of the resource-
QoS model.

The learnt model will be periodically synchronized to the
corresponding DLRAM to conduct the resource re-allocation
plan that can help the victim component back to the targeted
QoS. Assume R is the current resource allocation vector and
ρ is the reallocation to be enforced. Our goal is to ascertain
ρ such that the subsequent QoS could reach the targeted
QoS as much as possible, i.e., F(R + ρ) → (1 − ε)Qtgt

where ε is a small number, e.g., 0.01 or 0.05. Practically,
ρ can be determined by starting from setting up the CPU
steps followed by fine-tuning the memory allocation. This
stems from the fact that reclaiming CPU is a much easier and
dominant step – it could effectively throttle disk reads and
thus speed up the memory reclamation [38]. Subsequently,
a vector of memory, LLC and MBW can be then finalized to
achieve the approximated QoS.

5.3 Low-cost Task Preemption
Key Idea. The eviction of running tasks is particularly
expensive. Many existing solutions such as the default
YARN capacity or fair scheduler forcibly kill the preempted
containers without saving the task context, which would
incur substantial repeated task failover and re-submission.
This inevitably results in non-negligible system cost and
delays the job completion. We aim to minimize the cost of
task preemption by progressively reclaiming resources of
opportunistic tasks, keeping task containers alive instead of
interrupting them directly, without introducing noticeable
performance degradation. We uniformly preempt resources
from multiple tasks, a simple yet effective means to amortize
the reclamation among tasks and affect each task as gently
as possible. It can avoid excessive resource withdraw from
one single task which may lead to dramatic execution slow-
down or failures. While elaborating the characteristics of
batch tasks and formalizing the preemption as an optimiza-
tion problem may help to find the optimal solution to task
preemption, it comes with a prohibitive implementation cost
of instrumentation and profiling, and is not generally appli-
cable (i.e. job-dependent and the huge number of tasks).

At the core of the resource reclamation is to re-
throttle the resource upper limit. Reclaiming CPU can be
achieved simply by revoking CPU time slices and pin-
ning them to other tasks. We adopt pageable memory
mechanisms for assigning memory to applications. We
use memory.limit_in_bytes to reduce the upper mem-
ory limit and then memory.memsw.limit_int_bytes to
move the memory parts beyond the limit into the swap
space on disks, without terminating the tasks.

Typically, memory management can be achieved in
either static (page-locked/pinned memory allocation) or
dynamic (pageable/unpinned memory allocation) policies,
which have their inherent advantages and limitations. While
page-locked memory can achieve higher efficiency of mem-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 9

Algorithm 2: Low-Cost Task Preemption
Input: m: The targeted microservice
T : Opportunistic tasks queued on the node,
Qtgt(m): Targeted QoS (MIPS) of m,
c: A pre-defined amount of resource to preempt from each task
w: A mini step of resource reclaim for each task,

1 while Qtgt(m) is unsatisfied do
2 // get the resources to be preempted, from the autoscaler
3 ρ← InferPreemptedResource()
4 // determine the number of preemption
5 K ← ⌈ρ/c⌉
6 // pick up K tasks to be preempted
7 T ← GetKPreemptedTasks(T ,B)
8 for t in T do in parallel
9 // initialize the preemption plan for each task

10 σ ← c
11 // reclaim resource in mini-steps
12 while σ > 0 do
13 // incrementally reclaim resource
14 σ ← σ − ϵ
15 // reclaim the basic stepsize from the preempted task
16 rt ← rt − ϵ
17 // task preemption with reduced runtime resource
18 Preempt(t, ϵ)
19 // check the task aliveness
20 if !AlivenessCheck(t) then
21 // blacklist the task to be exempted from selection
22 B ← B + t
23 break
24 end
25 end
26 end
27 end

ory r/w operations without the need of communicating
with the hard drive, developers must be responsible for
memory allocation and free, which brings additional man-
agement overheads and potential performance uncertain-
ties due to misuse. On the other hand, pageable memory
is more widely-adapted in modern operating systems to
virtually enlarge the memory capacity. It swaps the page-
able segmentations between memory and hard drive based
on page replacement algorithms; it may, however, lead to
performance jitter due to the variation of swap availability.
We adopted swapping-based dynamic allocation, but leave
the option of pinned memory to the developers, who can
decide whether to transfer and store the data from the
pageable segmentation to the pinned memory based on the
application-specific requirement, e.g., r/w frequency.
QoS-Driven Gradual Resource Reclamation. Alg. 2 depicts
the procedure of low-cost task preemption. Upon receiving
the auto-scaling request – together with the resource pre-
emption update (ρ) – from the Autoscaler of the correspond-
ing DLRAM, Preemption Manager will launch the iteration
of task preemption by choosing K opportunistic tasks from
the node’s queue according to a given preemption strategy
and then reclaim resources from multiple task containers
evenly and simultaneously (Lines 2-8). We introduce several
pluggable algorithms to implement GetKPreemptedTasks()
(detailed below). For each individual task, we revoke the
pre-defined amount of resource c by multiple mini-steps
to reduce the noticeable performance degradation to the
preempted task. Specifically, each step of the preemption
will be performed by merely depriving a certain amount ϵ
at once in Preempt() (Lines 13-18). The value of ϵ is tuneable
and should be set moderately – a big step can ensure rapid

performance recovery for the DLRA but would lead to unex-
pected slowdown, or even failure of the opportunistic tasks.
In contrast, a smaller value would delay the performance
rescue and thus not ideal for real-world settings.

To minimize the risk of task failover, we introduce an
aliveness checking process AlivenessCheck() to ensure the
affected task can keep alive as much as possible. Once the
task is detected to lose its heartbeat or hanged due to mem-
ory shortage, we will instantly cease the resource claim and
add it in the blacklist to avoid any further task preemption
(Lines 20-23). The Autoscaler in DLRAM will measure and
check if the MIPS dropdown is mitigated, i.e., the targeted
QoS is satisfied. If not, another round of preemption will be
launched – Preemption Manager will petition for inferring
the amount of resource to be reclaimed from the Autoscaler,
and then the aforementioned procedure repeats.
Pluggable Preemption Strategies. The following pluggable
preemption strategies are configured in TOPOSCH-PAG:
• Random Based Scheme (RB): Opportunistic tasks are

randomly selected for preemption.
• Longest Tasks First (LTF): Opportunistic tasks with the

longest execution time are most likely to be preempted.
This policy is based on the assumption the longest task is
likely to be a straggler [39], [40] compared with its peer
tasks. Reclaiming resources from a task that is already
slow may not incur substantial slowdown further and
even accelerate the straggler handling.

• Newest Tasks First (NTF): The latest tasks are most
likely to be preempted. The intuition is reclaiming partial
resources could have limited impact on the execution
progress at an early execution stage.

• Non-locality Tasks First (NLTF): The tasks without re-
quired data locally are most likely to be preempted. This
policy assumes that such tasks may resume and execute
faster in other nodes with data to be processed.
To analyze the impact of preemptive scheduling on the

execution efficiency of co-located jobs, we also introduce a
preemption scheme which works against the even distribu-
tion of the reclaimed resources among tasks:
• Least Preempted Scheme (LP): The policy will select the

minimal number of tasks that can satisfy the requirement
of resource reclaims. This policy is equivalent to Most
Resources First (MRF) [38] where tasks with the most allo-
catable resources will be preempted. The intuition behind
this scheme is to reclaim resource as fast as possible and
reduce the scope of the affected tasks.

6 EXPERIMENTS
6.1 Experiment Setup
Hardware and Software. TOPOSCH was deployed onto a 12-
machine cluster with each machine containing two 16-core
(32 logical cores) Intel-Xeon(R)-Silver 4110CPU@2.10GHz,
187GB RAM, 11MB LLC and 10 Gb Ethernet network. Each
node was installed with Debian 4.9.82. We have imple-
mented TOPOSCH in 5k+ lines of Java and fully integrated
with YARN 3.0-Beta1. The prediction engine is written in
Python and operates as a separate container. To submit
a DLRA, the topology of microservices was specified in
a configuration file DAG_SERVICE.xml, and all requests
are tracked and recorded in redis key-value database. Each

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 10

DRLAM periodically calculates microservices’ risk level at a
time interval such as 60s or 120s.
Workloads. We emulate a mixture of realistic workloads in
cloud datacenters.

• DLRAs. We adopt PiggyMetrics [32], a microservice archi-
tecture based financial management application, as the
representative DLRA in our experiment. It consists of
12 components and each of them is encapsulated in a
docker image. We embed the instrumentation and tracing
mechanisms detailed in §4.1 into each component. We
use JMeter [41] to generate workloads to PiggyMetrics
and emulate the user behaviors via TPC-W [42]. There
are two latency-critical components each PiggyMetrics
instance: MongoDB serves as the primary database for
each microservice while Kafka is used to support publish-
subscribe model (pub-sub) and the messaging system
among different microservices.

• Batch jobs. We employ Hibench [43] to generate batch
jobs using Spark-2.4.6. They include 8 ML work-
loads: logistic regression (lr), random forest (rf),
Bayesian classification (bayes), singular value decom-
position (svd), principal component analysis (pca), gra-
dient boosted trees (gbt), alternating least squares
(als), and kmeans. The default configuration for each
job is: spark.dirver.memory=512M, spark.executor.memory =
6G, yarn.executor.cores = 4, map.parallelism = 12, shuf-
fle.parallelism = 8, hibench.yarn.executor.num = 60, based on
the profiling of internal traces and daily practice used in
Alibaba’s testing clusters.

Metrics. We measure the following metrics:

• Tail (95th Percentile) Latency of Piggymetrics, indicates the
average performance of DLRAs when handling requests.

• Operations Per Second (OPS) indicates the throughput of
database transactions.

• Throughput of Kafka counts the number of messages per
second, indicating the runtime QoS of stream messaging.

• Million Instructions per Second (MIPS) indicates, as an
operating system level counter, the performance of both
the database and Kafka streaming.

• Job Completion Time (JCT) denotes the entire completion
time of a batch job.

Comparative Approaches and Methodology. Generally, to
validate the effect of QoS assurance, we generate and com-
pare two variants of TOPOSCH as an ablation study, by
switching on/off the procedure of performance prediction
and auto-scaling, and compare against the following two
baselines:

• YARN: The native capacity scheduler of Apache YARN
used for default co-location [24].

• Run-Alone: The run-alone case where Piggy Metrics or
batch jobs are independently executed in an isolated
environment without the related interference.

• TOPOSCH-p: TOPOSCH with auto-scaling enabled with
performance-driven task preemption. Opportunistic tasks
are throttled to prioritize the latency-sensitive compo-
nents, driven by performance modeling and prediction
engine.

• TOPOSCH-n: TOPOSCH with auto-scaling disabled with-
out performance modeling and opportunistic preemption.

We also compare our approach with other baselines,
the state-of-the-art performance-aware scheduling strategies
for co-locating LRAs with batch jobs in shared clusters.
For a fair comparison, we adapt their algorithms to the
YARN setting and conduct their scheduling and QoS control
schemes at the scheduler level:
• Quasar: A scheduling approach that uses collaborative

filtering to predict the performance of monolithic work-
loads. We implemented it to guide the placement of batch
tasks and microservices [44].

• ROSE: A performance-aware scheduling approach that
harvests idle resource by opportunistic tasks and guar-
antees the QoS of long-running applications by tracking
the application-specific performance counters such as CPI
and MPKI [27].

• Kube-auto: Autoscaling [45] is an industry standard for
elastically scaling allocations to acquire resources on
demand. We implement a utilization-based auto-scaling
policy adopted by Kubernetes, one of the most appeal-
ing container management systems. It triggers pod auto-
scaling based on CPU or memory utilization.
We mainly evaluate TOPOSCH in terms of the overall

effectiveness of workload co-scheduling, effectiveness of
autoscaling, and the individual contribution of each system
component. Specifically, the experiments are three-fold:
• We evaluate the performance balance of both DLRAs and

batch jobs. We compare two variants of TOPOSCH with the
baseline approaches and the ground truth when running
the DLRAs alone. (§6.2).

• We examine the effectiveness of auto-scaling with differ-
ent preemptive strategies. For comparison, we evaluate
our proposed schemes against the killing-based mecha-
nism adopted by native YARN (Kill) and the Least Pre-
empted scheme (LP) (§6.3).

• We perform several micro-benchmarks to demonstrate the
performance gains and system overhead. We first evaluate
the impact of multi-dimensional resource control and iso-
lation, particularly on the key microservices. We mainly
compare the proposed method against the default isola-
tion mechanism in native YARN Node Manager (YARN)
and the isolation mechanism provided by cpu subsystem
without LLC and MBW control and isolation (CPU-SBS),
typically adopted by cluster management systems[3], [27],
[16], [26], [36]. We then analyze the parameter sensitivity,
time consumption of conducting critical path analysis,
and the overall system overhead. (§6.4)

Result Report. To minimize the noise, we repeat each ex-
periment 10 times independently and compute the average
running time or performance.

6.2 Overall Scheduling Effectiveness

To emulate realistic production-level workloads, we submit
100 Spark ML jobs in several rounds. 30 of them are oppor-
tunistic jobs, consisting of approximately 400 opportunistic
tasks, to improve the cluster utilization. 3 PiggyMetrics
application instances are initially launched. To further in-
vestigate the impact of different workloads on the effective-
ness, we increase the submitted number of PiggyMetrics
instances with varying resource requirements, concurrent
users, and request distributions. Specifically, we measure

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 11

Fig. 6. Tail latency increase of (a) Log on operation (b) View operation and (c) Update operation in Account service against run-alone. The submitted
PiggyMetrics instances are co-scheduled with different Spark jobs

Fig. 7. The CDF of tail latency of (a) Log on operation (b) View operation and (c) Update operation in Account service when the submitted
PiggyMetrics instances are co-located with Spark jobs

the tail latency of three types of requests including Log on,
View, and Update operations to the Account service as the
performance indicator of DLRAs.

Performance of DLRAs. Fig. 6 shows the tail latency in-
crease ratio against Run-Alone when the DLRAs are co-
scheduled with different Spark jobs. Overall, TOPOSCH-p
outperforms all baselines in all cases and the native YARN
has the worst effectiveness in assuring QoS. For example,
over all co-location scenarios, the tail latency of TOPOSCH-p
is merely 1.12x on average (1.05x∼1.19x) compared with the
case of Run-Alone, and can be significantly reduced by 47%
on average when compared with the native YARN. This ob-
servation derives from the synergetic effect of both the batch
intervention mechanism and the elastic auto-scaling mech-
anism for prioritizing the QoS of latency-critical workloads
over other Spark jobs. When the auto-scaling mechanism is
disabled, the tail latency of TOPOSCH-n increase to 1.27x of
Run-Alone on average (1.1x∼1.36x) due to the single source
of QoS protection by the scheduling intervention.

Regarding other baselines, Quasar ranks the second low-
est in guaranteeing QoS, in the midst of TOPOSCH-p and
TOPOSCH-n, due to its elaborate mechanism in profiling and
performance modeling of co-located workload performance.
However, it is designated for monolithic applications and
thus lacks fine-grained end-to-end track of distributed com-
ponents and timely adjustment of resource allocation and

task scheduling at runtime. We will also demonstrate its
inferior effectiveness of batch JCTs and inflexibility of han-
dling task re-scheduling. Compared with TOPOSCH and
Quasar, Kube-auto has higher tail latency due to the low
accuracy of using straight-forward threshold-based control
scheme to trigger auto-scaling. ROSE relies on CPI and
MPKI, high-level and fluctuated performance counters, to
throttle batch tasks for monolithic long-running applications
without auto-scaling mechanism. This drawback limits the
accuracy of QoS assurance, leading to less competitive re-
sults than other auto-scaling based approaches.

Fig 7 depicts the corresponding cumulative distributed
function (CDF) of the absolute values of tail latency in three
types of requests, separately, when co-scheduling with all
these Spark jobs. Aligned with the observations in Fig. 6, the
curve of TOPOSCH-p is the closest to Run-Alone, followed
by the Quasar and TOPOSCH-n.

Performance of Batch Jobs. Fig. 8 illustrates the normalized
JCT of the Spark jobs when co-located with DLRA against
the jobs are executed alone. Overall, YARN and ROSE have
the shortest JCT unsurprisingly, due to their native focus
on batch job scheduling. Nevertheless, their capability of
QoS assurance is insufficient and thus are not ideal for co-
location of DLRAs and batch jobs. Compared with native
YARN, the adoption of TOPOSCH-n and TOPOSCH-p result
in an average increase of 17% and 26%, respectively. This

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 12

Fig. 8. JCT of Spark jobs when co-scheduled with DLRAs

Fig. 9. Latency increase of PiggyMetrics under different number of DLRA instances when co-scheduled with Spark lr jobs

Fig. 10. Performance of MongoDB co-located with Spark lr jobs

phenomenon conforms to the expectation of compromising
the performance of batch jobs for the QoS assurance of
DLRAs. By contrast, Quasar and Kube-auto have longer
average JCT because of the lack of low-cost resource recla-
mation when making room for DLRAs.

The result shows the trade-off achieved in our design;
considering the characteristics of offline processing, such
an execution delay could be acceptable. Note that one can
flexibly tweak the performance balance between DLRA
and batch jobs by fine-tuning the parameter setting of the
resource visibility in the containment phase and re-setting
up a moderate QoS model in the mitigation phase.
Impact of different size of workloads. We increase the
number of DLRA instances from 3 to 12 when co-scheduling
with Spark lr jobs. For generalization, the DLRA instances
are submitted with different resource requirements. Fig. 9
shows the increase of 95th percentile latency against the
case of DLRA run-alone. All the three types of requests
unexceptionally experience a upward trend. Our approach
consistently outperforms other baselines when the number
picks up. This indicates the performance gain of our ap-
proach does not vary much, not particularly sensitive to
workload instances with different characteristics.

6.3 Autoscaling and Preemption Effectiveness

Effectiveness of Autoscaling. Our experimental study

Fig. 11. JCT under different preemption schemes

shows, as opposed to other microservices in the DLRA, the
database microservices, e.g., statistics-mongo-service, usually
exhibit more latency fluctuations, particularly in the event
of load spikes, i.e., a surging increase in the user access. To
instantiate this, we emulate different numbers of concurrent
users, varying from 50 to 500, and measure the performance
of database and its co-resident batch neighbors.

Fig. 10 presents the relationship between the growth of
concurrent users, the observed OPS of the database compo-
nent and the corresponding JCT of jobs on the same node. In
TOPOSCH-n where the autoscaling mechanism is disabled,
the OPS starts to slowdown when user concurrency be-
comes 200 and to drop gradually when the concurrency
reaches 400; meanwhile, the JCT also climbs up promptly
from the point of 200 concurrent users. By contrast, when
autoscaling is enabled, TOPOSCH-p can ensure more re-
sources reallocated to the key database microservice and
retain a high service level. As a result, the OPS growth
can be proportionally maintained to match the increasing
demand of user access, without any performance degrada-
tion. Intrinsically, the JCT of co-resident Spark jobs will be
enlarged compared with TOPOSCH-n, simply because more
resources are deprived to prioritize the QoS of DLRAs.
Comparison of Difference Preemption Schemes. We inves-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 13

TABLE 4
Task preemption rates of different auto-scaling strategies

Load Level LTF NTF RB NLTF LP
light load 12.5% 12.3% 12.3% 12.4% 7%
heavy load 18.2% 18% 18.1% 18.2% 13.5%

tigate how different preemption schemes perform in a con-
trolled execution environment. We create two representative
co-location settings with distinct system load – roughly 80%
(heavy load) and 40% (light load) utilization by placing dif-
ferent numbers of lr opportunistic jobs on the same node of
the MongoDB. 100 users are created in the PiggyMetrics and
concurrently access the internal microservices, particularly
the MongoDB service.

Fig. 11 and Table 4 shows an overall increase of JCT and
more tasks are involved in the preemption in the heavy load
environment compared with light load environment. This is
because DLRAs experience fiercer resource contention and
need to deprive more resource from batch tasks to recover
the QoS target. We can also observe larger deviations of
JCTs in the heavy load cases, simply because a growing
task-level execution delay or rescheduling caused by re-
source reclamation will affect the job-level progress in a
more stochastic manner. Among all comparative schemes,
the gradual preemption based schemes (LTF, NTF, RB and
NLTF) significantly outperform LP and Kill-based scheme.
For instance, the JCT of NTF can be reduced by 15.1%
and 26.3%, respectively, compared with LP and Kill-based
scheme. This is because the gradual preemption mechanism
reclaims resource from multiple tasks and the mini-steps
of resource reclaim can reduce the perceived performance
degradation compared with the LP. Although less task con-
tainers are preempted in LP than the uniform preemption
among different tasks, the MRF policy in LP can cause
mandatory failover – the low CPU occupation or memory
allocation sometimes fails the heartbeat communication be-
tween the running containers and RM, which eventually
leads to substantial container restart. Killed-based scheme
directly evicts and restarts all relevant tasks, and therefore
has the longest JCT.

While gradual preemption based schemes have similar
JCTs, NTF consistently outperforms others in both light and
heavy load scenarios. This is because the impact on each
individual task in NTF will be limited although more tasks
are involved in the preemption in the heavy load scenario.
In fact, reclaiming a thin piece of resource, particularly the
CPU, from an early-stage task will have negligible impact on
the overall execution. Considering the CPU slack or over-
claiming is the norm rather than the exception in cluster
management, the residual resource is sufficient for under-
pinning the task initialization and enabling the execution
progress. By contrast, LTF and NLTF identify the longest
tasks or the tasks without local data. However, the resource
reclaim slows down those tasks further and the system-level
straggler mitigation and task rescheduling will be triggered,
resulting in longer JCT than NTF.

6.4 Micro-benchmarking
Performance of key latency-sensitive microservices. In this
experiment, we evaluate how the key microservices in the

(a) MongoDB QoS

(b) Kafka QoS

Fig. 12. QoS of key microservices under different isolation mechanisms

Fig. 13. The performance of DLRAs and batch jobs

DLRA perform in the co-located environment when differ-
ent loads are enforced onto the application. We specifically
count the QoS measure of the key database MongoDB and
the key messaging microservice Kafka. We use ycsb-mongo
to stress the database. Both the record count and operation
count are set to be 100 million, and records take up 82GB
roughly. We generate 75 million message to Kafka and
each message occupies 1KB. 4 lr opportunistic jobs with
80 opportunistic tasks are placed onto the same node that
executes the containers of these microservices.

As shown in Fig. 12, the proposed TOPOSCH-p out-
performs other approaches in ensuring the QoS of both
MongoDB and Kafka microservices. For instance, the Mon-
goDB’s OPS of TOPOSCH-p is 1.78x and 1.49x that of native
YARN and CPU-SBS only approach, respectively. This is
primarily due to the synergetic continuum of adaptive delay
scheduling of batch tasks, effective isolation over multi-
ple resources and the QoS assurance in the auto-scaling
mechanism. In effect, regular batch tasks will give ways to
the latency-sensitive DLRA components by leaving enough
room when a rising risk has been detected. Meanwhile, op-
portunistic tasks will be moderately preempted to facilitate
the QoS recovery of such latency-sensitive microservices. It
can be also seen that, even switching off the auto-scaling, the
OPS value of TOPOSCH-n can retain 1.56x and 1.3x that of
the two baselines. This again indicates the individual contri-
bution of the key techniques used in the containment stage
(§4) and in the resource isolation (§5.1). When compared
with executing MongoDB alone, the OPS of TOPOSCH-p and
TOPOSCH-n are merely reduced by 10.9% and 21.9%. Similar
observations can be found in the MIPS measurement and
other experimentation on Kakfa.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 14

Fig. 14. Time consumption for critical path analysis

Performance balance between DLRAs and batch jobs. As
discussed in §4.2, the reservation coefficient ν is leveraged to
tune the impact of node-level risk on the amount of reserved
resource for microservices of DLRAs. We gradually increase
its value and examine the resultant performance of DLRAs
and Spark jobs. Fig. 13 shows an increasing trend in the JCT
of all batch jobs when ν ramps up. Obviously, for a given
node risk, an increased ν will reserve more resources for the
DLRA, and thus trade more batch performance for reducing
the latency of DLRAs. Specifically, the average JCT of ν = 1
is 1.53x higher than that of ν = 0 where no QoS assurance
is given, i.e., the native YARN. Kmeans jobs and lr jobs
experience a 23.4% and 18.2% increase, respectively. Tasks
without data locality – such as the Pi tasks – can be delayed
for a longer time. This is because of a higher likelihood of
throttling or eviction to yield sufficient resources for the
victim microservices. Tasks with data locality requirement
such as tasks of Kmeans jobs and lr jobs, on the other hand,
will be directly launched from the second retry for rapid
task startup, even if the node is detected risky (depicted
in Alg. 1. Accordingly, this will lead to a slightly increased
latency of the co-existing microservices.
System Overhead. We analyze a per-AM overhead from
DLRA Analyzer in terms of time complexity and memory
consumption. (i) Time Consumption. As shown in Fig. 14, the
time cost linearly increases but slows down when the trace
number reaches 30,000. The maximal measured time is no
more than 1.6 seconds. Considering the overall time con-
sumption in the resource allocation, the incurred increase
to the scheduling latency is less than 1% compared with
the native YARN. (ii) Memory Cost. The additional memory
used for fast data access using redis is roughly 126MB, less
than 2% increase compared against native YARN. Given the
intrinsic diversity in request number and arrival pattern,
the number of traces for tracking latency in TOPOSCH over
a given period can be customized in AM to balance the
scheduling precision and the incurred overhead. It is worth
noting that the overhead analysis is on a per-AM basis but
can be naturally extended to cases of multiple DLRAs. For
cases of multiple DLRAs, memory cost will be increased by
multiple times due to redis is instantiated to support multi-
tenancy; each AM of DLRA will independently store its own
request tracing information. Each AM will be encapsulated
in a Docker container, and thus the AM can separately run
with stringent resource isolation and negligible interference.

7 RELATED WORK
Resource managers in shared clusters. Cluster resource
management frameworks, such as YARN [14], Mesos [15],
Fuxi [3] Borg [10] are based on two-level centralized

scheduling. They decouple the inter-job resource sharing
and intra-job task scheduling, and the job managers need
to negotiate with the centralized manager and then take
charge of the job execution. Capacity Scheduling [46] or
Fairness Scheduling [47] are proposed to fulfill an effi-
cient quota-based resource sharing among multiple jobs.
The objective is the enforcement of scheduling invariants
for heterogeneous applications, with policing/security uti-
lized to prevent excessive resource occupation. To further
improve cluster utilization and system throughput, many
other systems are based on fully decentralized design, such
as Apollo [48], Omega [49], or hybrid system design, such as
Mercury [26] and ROSE [16]. However, all these systems are
devised towards scheduling batch analytic jobs. TOPOSCH
is built upon YARN 3.0 and based on a hybrid scheduling
design – our key modules are integrated with the centralized
resource management framework while the opportunistic
tasks are managed in a decentralized manner. The proposed
mechanisms are designed to be complementary to, and can
be implemented upon, the existing protocols in any two-
level resource management systems.
Performance tracing and diagnostics. Many prior works
are devoted into anomaly diagnosis and behavior analysis
of large-scale distributed applications. They can be classified
into two categories: (i) black-box approaches using external
application states to infer and analyze the problems. [29][50]
rely on a tremendous number of log files to extract per-
formance information and infer the dependency models.
[51] trains models to predict and localize latent errors in
microservices based on log information comprising a set of
predefined features. [52] uses fault injection to measure the
execution and data flows of distributed applications and to
diagnose the bottlenecks. (ii) white-box approaches by mon-
itoring causality within microservices instead of inferences
through statistical analysis. [53][54] infer the execution path
of the application based on the static analysis and sym-
bolic execution. [55][56] provide developers with tracing
frameworks to add trace-points within the application to
collect runtime footprints. In comparison, TOPOSCH uses
a white-box methodology to track and trace the requests
over the whole DLRA and avoids over-dependencies upon
prior diagnosis conditions, typically pre-defined in black-
box approaches. Instead of using the existing fine-grained
tracking instrumentation, TOPOSCH adopts a light-weight
tracking method to trace DLRA-level latency data, thereby
significantly reducing per-DLRA runtime overhead.
QoS-aware workload co-location. The ability to co-locate
jobs (i.e., execute within the same CPU or GPU) has been
identified as a means to address under-utilization prob-
lem. Understanding and achieving high resource utilization
or high energy efficiency for heterogeneous workloads in
cloud computing is an important topic [44], [57], [58], [27],
[37]. Existing work on QoS management when co-locating
heterogeneous workloads has two distinct categories: (i)
reducing the probability of resource contention by either
granting isolated execution environments to LRAs [49][59]
or adjusting task placement to reduce the resource con-
tention on a certain node [60][11], primarily for runtime
QoS of LRA. (ii) reducing performance interference caused
by resource contention through performance prediction
and resource inference, prioritizing the resource requests

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 15

of latency-sensitive LRAs [60][17][18][19][57][61]. Many of
them have applied machine learning to precisely character-
ize the behavioral patterns. For instance, [62], [63] leverage
various ML methods such as support vector regression,
random forest and extreme gradient boosting tree to predict
workloads or system load changes. [64], [65] employ neural
networks to estimate JCT and load fluctuation. However,
they can hardly take runtime information into consideration
and thus fail to provide sufficient insights into timely cali-
brating the runtime QoS. [36], [44] use complicated multi-
variable statistical classifiers to predict the expected interfer-
ence among applications. They perform preparatory small-
scale interference tests with varied levels of background
applications. [19], [18] use performance index to depict con-
tention at the time of resource allocation and conduct offline
studies of the relationship between multiple resources and
the resulting performance. However, they are designated to
guarantee performance for monolithic applications, and not
directly applicable to tackle the scheduling problem when
there is tempo-spatial latency fluctuation within DLRAs.
Nevertheless, the key techniques are orthogonal to our QoS
prediction engine and can be modified for profiling the
QoS of key microservices. By contrast, TOPOSCH leverages
the distributed tracing to pinpoint the risky microservices
and intervene the batch scheduling; meanwhile, TOPOSCH
adopts the prediction based auto-scaling to reclaim the most
suitable resources from batch tasks and minimize the cost of
task preemption.

8 CONCLUSION
Balancing cluster utilization and applications’ QoS is a non-
trivial task. Microservice architecture advances the manifes-
tation of distributed LRAs (DLRAs), comprising multiple
interconnected microservices that are executed in long-lived
distributed containers and serve massive user requests. De-
tecting and mitigating QoS violation becomes even more
intractable due to the network uncertainties and latency
propagation across dependent microservices.

In this paper, we present TOPOSCH, a scheduling system
to adaptively co-schedule and co-locate latency-sensitive
applications and batch jobs. TOPOSCH periodically identifies
the risk of QoS violation for the running microservices by
tracing and analyzing the critical path based on substantial
requests and the consequential end-to-end latency graph.
we then propose an effective delay scheduling mechanism
in the scheduler for intervening the upcoming task place-
ment that can prioritize the QoS assurance of DLRAs. A
vertical auto-scaling mechanism, with the aid of resource-
performance modeling and fine-grained resource access
control, is proposed for promptly mitigating the QoS vio-
lation of key microservices in the DLRAs. A graceful task
preemption is leveraged to ensure a low-cost task preemp-
tion and resource reclamation during the auto-scaling.

It is intricate but imperative to understand the end-
to-end and tail latency in a dynamic, highly-concurrent
distributed system at Internet scale. An overt observation
is cloud-based LRAs have now become another main type
of workloads, even more important than the conventional
batch jobs. This particularly boost the requirement for strict
QoS guarantees when diverse workloads are mixed. The
investigated holistic approach at both the cluster-level and

node-level leads to potential implications of workload co-
location in many real-world domains and thus is apt for
adoption in Cloud and HPC schedulers.

In the future, we plan to examine the proposed mecha-
nism over more microservices in production environments
and investigate their QoS sensitivity to fine-grained re-
sources at large scale. We also plan to auto-learn the pa-
rameter settings by using reinforcement learning.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, 2008.

[2] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and
C. Curino, “Apache tez: A unifying framework for modeling and
building data processing applications,” in Proc. of ACM SIGMOD,
2015.

[3] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a
fault-tolerant resource management and job scheduling system at
internet scale,” in Proc. of VLDB, 2014.

[4] M. Zaharia, R. S. Xin et al., “Apache spark: a unified engine for big
data processing,” Communications of the ACM, 2016.

[5] Storm. [Online]. Available: https://storm.apache.org
[6] Flink. [Online]. Available: https://flink.apache.org
[7] Hbase. [Online]. Available: https://hbase.apache.org
[8] mongodb. [Online]. Available: https://www.mongodb.com
[9] M. Abadi, P. Barham, J. Chen et al., “Tensorflow: A system for

large-scale machine learning,” in Proc. of USENIX OSDI, 2016.
[10] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes, “Large-scale cluster management at google with borg,”
in Proc. of ACM EuroSys, 2015.

[11] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao,
“Medea: scheduling of long running applications in shared pro-
duction clusters,” in Proc. of ACM EuroSys, 2018.

[12] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-
containerized co-locating cloud workload: a view from alibaba
trace,” in Proc. of ACM SoCC, 2018.

[13] Y. Gan, Y. Zhang, and K. Hu, “Seer: Leveraging big data to
navigate the complexity of performance debugging in cloud mi-
croservices,” in Proc. of ACM ASPLOS, 2019.

[14] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proc. of ACM
SoCC, 2013, pp. 1–16.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proc. of USENIX
NSDI, 2011.

[16] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and
C. Li, “Rose: Cluster resource scheduling via speculative over-
subscription,” in Proc. of IEEE ICDCS, 2018, pp. 949–960.

[17] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at scale,”
in Proc. of ACM ASPLOS, 2015.

[18] Y. Sfakianakis, C. Kozanitis, C. Kozyrakis, and A. Bilas, “Quman:
Profile-based improvement of cluster utilization,” ACM TACO,
vol. 15, no. 3, pp. 1–25, 2018.

[19] P. Lama, S. Wang, X. Zhou, and D. Cheng, “Performance isolation
of data-intensive scale-out applications in a multi-tenant cloud,”
in Proc. of IEEE IPDPS, 2018.

[20] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and
qos-aware cluster management,” in Proc. of ACM ASPLOS, 2014.

[21] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: reconciling
scheduling speed and quality in large shared clusters,” in Proc. of
ACM SoCC, 2015.

[22] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri,
and R. Bianchini, “History-based harvesting of spare cycles and
storage in large-scale datacenters,” in Proc. of USENIX OSDI, 2016.

[23] C. Hu, J. Zhu, R. Yang, H. Peng, T. Wo, S. Xue, X. Yu, J. Xu, and
R. Ranjan, “Toposch: Latency-aware scheduling based on critical
path analysis on shared yarn clusters,” in Proc. of IEEE CLOUD,
2020, pp. 619–627.

[24] Apache hadoop yarn 3.0.0. [Online]. Available:
https://hadoop.apache.org/docs/r3.1.1/index.html

[25] Kafka stream. [Online]. Available: https://kafka.apache.org

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 16

[26] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil,
G. M. Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga,
“Mercury: Hybrid centralized and distributed scheduling in large
shared clusters,” in Proc. of USENIX ATC, 2015, pp. 485–497.

[27] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng,
J. Xu, and C. Li, “Performance-aware speculative resource over-
subscription for large-scale clusters,” IEEE TPDS, vol. 31, no. 7,
pp. 1499–1517, 2020.

[28] F. Nwanganga and N. Chawla, “Using structural similarity to
predict future workload behavior in the cloud,” in Proc. of IEEE
CLOUD, 2019.

[29] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
mystery machine: End-to-end performance analysis of large-scale
internet services,” in Proc. of USENIX OSDI, 2014, pp. 217–231.

[30] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin,
and J. Xu, “Ga-par: Dependable microservice orchestration frame-
work for geo-distributed clouds,” IEEE TPDS, vol. 31, no. 1, pp.
129–143, 2019.

[31] R. Yang, X. Ouyang, Y. Chen, P. Townend, and J. Xu, “Intelligent
resource scheduling at scale: a machine learning perspective,” in
Proc. of IEEE SOSE. IEEE, 2018, pp. 132–141.

[32] Piggymetrics. [Online]. Available:
https://github.com/sqshq/PiggyMetrics

[33] Hadoop yarn opportunistic containers. [On-
line]. Available: https://hadoop.apache.org/docs/r3.0.0/hadoop-
yarn/hadoop-yarn-site/OpportunisticContainers.html

[34] R. Bellman, “On a routing problem,” Quarterly of applied mathemat-
ics, 1958.

[35] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “Cpi2: Cpu performance isolation for shared compute
clusters,” in Proc. of ACM Eurosys, 2013, pp. 379–391.

[36] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling
for heterogeneous datacenters,” in ACM SIGPLAN Notices, 2013.

[37] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and
P. Garraghan, “Horus: Interference-aware and prediction-based
scheduling in deep learning systems,” IEEE TPDS, vol. 33, no. 1,
pp. 88–100, 2022.

[38] W. Chen, X. Zhou, and J. Rao, “Preemptive and low latency
datacenter scheduling via lightweight containers,” IEEE TPDS,
vol. 31, no. 12, pp. 2749–2762, 2019.

[39] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Transactions on Services Computing, vol. 12, no. 1,
pp. 91–104, 2016.

[40] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effec-
tive straggler mitigation: Attack of the clones,” in Proc. of USENIX
NSDI, 2013, pp. 185–198.

[41] JmeterEB/OL. [Online]. Available: https://jmeter.apache.org.
[42] Tpc-w[eb/ol]. [Online]. Available:

http://www.tpc.org/tpcw/specs.asp.
[43] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench

benchmark suite: Characterization of the mapreduce-based data
analysis,” in Proc. of IEEE ICDEW 2010, 2010, pp. 41–51.

[44] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and
qos-aware cluster management,” Proc. of ACM ASPLOS, vol. 49,
no. 4, pp. 127–144, 2014.

[45] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applica-
tions in clouds: A taxonomy and survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–33, 2018.

[46] YARN Capacity Scheduler. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html

[47] YARN Fair Scheduler. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html

[48] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for
cloud-scale computing,” in Proc. of USENIX OSDI, 2014, pp. 285–
300.

[49] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in Proc. of Eurosys, 2013, pp. 351–364.

[50] A. Pi, W. Chen, X. Zhou, and M. Ji, “Profiling distributed systems
in lightweight virtualized environments with logs and resource
metrics,” in Proc. of ACM HPDC, 2018.

[51] X. Zhou, X. Peng, T. Xie, and J. Sun, “Latent error prediction and
fault localization for microservice applications by learning from
system trace logs,” in Proc. of ESEC/FSE, 2019.

[52] C. Pham, L. Wang, B. C. Tak, S. Baset, C. Tang, Z. Kalbarczyk,
and R. K. Iyer, “Failure diagnosis for distributed systems using
targeted fault injection,” IEEE TPDS, vol. 28, no. 2, pp. 503–516,
2016.

[53] C. Zamfir and G. Candea, “Execution synthesis: a technique for
automated software debugging,” in Proc. of EuroSys, 2010.

[54] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: error diagnosis by connecting clues from run-time logs,”
in Proc. of ACM ASPLOS, 2010.

[55] Systemtap. [Online]. Available:
https://sourceware.org/systemtap/

[56] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proc. of ACM SOSP, 2015,
pp. 378–393.

[57] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers
via sensible co-locations,” in Proc. of IEEE/ACM MICRO, 2011.

[58] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” in Proc. of
ACM ASPLOS, 2017.

[59] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. of USENIX ATC,
2015.

[60] H. Kasture and D. Sanchez, “Ubik: efficient cache sharing with
strict qos for latency-critical workloads,” in Proc. of ACM ASPLOS,
2014.

[61] J. Zhu, R. Yang, C. Hu, T. Wo, S. Xue, J. Ouyang, and J. Xu, “Per-
phon: A ml-based agent for workload co-location via performance
prediction and resource inference,” in Proc. of ACM SoCC, 2019,
pp. 478–478.

[62] C. Liu, Y. Shang, L. Duan, S. Chen, C. Liu, and J. Chen, “Optimiz-
ing workload category for adaptive workload prediction in service
clouds,” in Proc. of ICSOC, 2015.

[63] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proc. of ACM SOSP, 2017.

[64] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn,
and M. Taufer, “Prionn: Predicting runtime and io using neural
networks,” in Proc. of ACM ICPP, 2018, pp. 1–12.

[65] Q. Yang, C. Peng, H. Zhao, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “A
new method based on psr and ea-gmdh for host load prediction in
cloud computing system,” The Journal of Supercomputing, vol. 68,
no. 3, pp. 1402–1417, 2014.

Jianyong is now an assistant professor with De-
partment of Computing at North China Electric
Power University. He received the PhD degree
from Beihang University in 2022. He was previ-
ously a software engineer in Baidu Group. His
research interests include distributed systems,
and data center resource management.

Renyu Yang is an EPSRC-funded Research
Fellow with the University of Leeds, UK. He
was previously with Alibaba Group China and
Edgetic Ltd. UK, having industrial experience
in building large-scale resource scheduling sys-
tems. He is a recipient of Alan Turing Institute
Post-Doctoral Enrichment Award, 2022. His re-
search interests include reliable resource man-
agement, distributed systems and applied ma-
chine learning. He is a member of IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2022 17

Xiaoyang Sun is a PhD student of the Dis-
tributed Systems and Services Group at the
University of Leeds. He participated in research
internships in Alibaba Group Inc., working on
resource management and task scheduling on
the large-scale clusters, accelerating pre-trained
models in the resource-limited environment. His
primary research focuses on system optimiza-
tion for deep learning workflows on heteroge-
neous resources.

Tianyu Wo is an Associate Professor with the
School of Software at Beihang University. He re-
ceived the BEng and PhD Degrees both in com-
puter science from Beihang University in 2001
and 2008 respectively. His current research in-
terests include distributed systems, network op-
eration systems and IoV systems. He is a mem-
ber of IEEE.

Chunming Hu is a Professor and Dean of the
School of Software, Beihang University. He re-
ceived the PhD degree from Beihang University
in 2006. His current research interests include
distributed systems, system virtualization, data
management and processing systems.

Hao Peng is currently an assistant professor
with Beijing Advanced Innovation Center for Big
Data and Brain Computing in Beihang University,
and School of Cyber Science and Technology
in Beihang University. His research interests in-
clude representation learning, text mining and
social network mining.

Junqing Xiao is currently a software engineer
with Alibaba Group. He obtained the MSc degree
from Beihang University in 2018. His research
interests include distributed systems and data
center resource management.

Albert Y. Zomaya is the Peter Nicol Russell
Chair Professor of Computer Science in the
School of Computer Science, Sydney Univer-
sity, and serves as the Director of the Centre
for Distributed and High-Performance Comput-
ing. Professor Zomaya published more than 700
scientific papers and articles and is author, co-
author or editor of more than 30 books. He
is the Editor in Chief of the ACM Computing
Surveys and serves as an associate editor for
several leading journals. Professor Zomaya is

a decorated scholar with numerous accolades including Fellowship of
the IEEE, AAAS, and the IET. Also, he is a Fellow of the Australian
Academy of Science, Fellow of the Royal Society of New South Wales,
Foreign Member of Academia Europaea, and Member of the European
Academy of Sciences and Arts. His research interests are in the areas of
parallel and distributed computing, networking, and complex systems.

Jie Xu is the Chair Professor of Computing at
University of Leeds, the leader for a Research
Peak of Excellence at Leeds, Director of UK EP-
SRC WRG e-Science Centre, Executive Board
Member of UK Computing Research Committee
(UKCRC), and Chief Scientist of BDBC, Beihang
University, China. He has worked in the field of
dependable distributed computing for over 30
years. He is a Steering/Executive Committee
member for numerous IEEE conferences includ-
ing SRDS, ISORC, HASE, SOSE and is a co-

founder for IEEE IC2E, DAPPS, JCC, etc. He has led or co-led many
research projects to the value of over $30M, and published in excess of
400 academic papers, book chapters and edited books. He is a Turing
Fellow of the Alan Turing Institute.

