
GA-Par: Dependable Microservice Orchestration
Framework for Geo-Distributed Clouds
Zhenyu Wen, Tao Lin , Renyu Yang ,Member, IEEE, Shouling Ji,Member, IEEE,

Rajiv Ranjan , Senior Member, IEEE, Alexander Romanovsky , Changting Lin, and Jie Xu,Member, IEEE

Abstract—Recent advances in composing Cloud applications have been driven by deployments of inter-networking heterogeneous

microservices across multiple Cloud datacenters. System dependability has been of the upmost importance and criticality to both

service vendors and customers. Security, a measurable attribute, is increasingly regarded as the representative example of

dependability. Literally, with the increment of microservice types and dynamicity, applications are exposed to aggravated internal

security threats and externally environmental uncertainties. Existing work mainly focuses on the QoS-aware composition of native VM-

based Cloud application components, while ignoring uncertainties and security risks among interactive and interdependent container-

based microservices. Still, orchestrating a set of microservices across datacenters under those constraints remains computationally

intractable. This paper describes a new dependable microservice orchestration framework GA-Par to effectively select and deploy

microservices whilst reducing the discrepancy between user security requirements and actual service provision. We adopt a hybrid

(both whitebox and blackbox based) approach to measure the satisfaction of security requirement and the environmental impact of

network QoS on system dependability. Due to the exponential grow of solution space, we develop a parallel Genetic Algorithm

framework based on Spark to accelerate the operations for calculating the optimal or near-optimal solution. Large-scale real world

datasets are utilized to validate models and orchestration approach. Experiments show that our solution outperforms the greedy-based

security aware method with 42.34 percent improvement. GA-Par is roughly 4x faster than a Hadoop-based genetic algorithm solver and

the effectiveness can be constantly guaranteed under different application scales.

Index Terms—Service orchestration, dependability, microservice

Ç

1 INTRODUCTION

MICROSERVICES are excellent building blocks for com-
posing applications whose components are distrib-

uted across multiple Cloud datacenters [1] for agility,
performance and fault-tolerance [2], [3], [4]. The strengths
of microservices help enable distributed application deploy-
ments by allowing quick provisioning and updating across
geo-distributed Clouds. For example, a recent study based
on benchmark Docker Containers on AWS EC2 showed that
they need much less time to start or boot up (less than 50
milliseconds) as compared to Virtual machines (VMs) (30-
45 seconds) as well as having no or negligible memory over-
head [5]. Moreover, the containerized microservices provide
considerable freedom in personalizing users’ preferences.
For example, Docker Hub has stored over ten million

images that are available for users to create their customized
applications. Therefore, the diversity significantly increases
the configuration dimension of each single microservice as
well as the scale of the search space to find a suitable micro-
service compared to the VM-based Cloud services.

Dependability is a key system concern that incorporates
attributes of reliability, availability, safety, integrity, main-
tainability, etc. Meanwhile security is increasingly recog-
nized as an important factor of dependability and brings in
considerations of confidentiality, availability and integrity [6].
Given the abstract nature of dependability, we can take secu-
rity as an example and measurable attribute. Microservice
orchestration is the procedure of determining and selecting
best microservice instances to compose an application work-
flow that satisfy application’s functional and nonfunctional
requirements QoS. In this context, system dependability
will be influenced by both internal and external causes. Inter-
nally, topological layout and the security attributes’ satisfac-
tion quantitatively determine the consequent dependability.
Externally, unpredictable environmental variables such as
network jitter and noisy neighbors [7] also impact the
dependability across geo-distributed Clouds. This is due to
the logical satisfaction or optimization that is achieved by
internal examination may no longer exist. For instance, [8],
[9] report that network QoS uncertainties of Cloud-hosted
services have been widely recognized and it is extremely dif-
ficult to accurately capture such uncertainties. Therefore, to
achieve a holistically dependable orchestration necessitates

� Z.Wen, R. Ranjan, and A. Romanovsky are with the Newcastle University,
Newcastle upon Tyne NE1 7RU, United Kingdom. E-mail: {zhenyu.wen,
Raj.Ranjan, alexander.romanovsky}@newcastle.ac.uk.

� T. Lin is with the EPFL, Lausanne 1015, Switzerland.
E-mail: tao.lin@epfl.ch.

� R. Yang and J. Xu are with the University of Leeds, Leeds LS2 9JT, United
Kingdom, and also with the BDBC, Beihang University, Beijing 100083,
China. E-mail: renyu.yang1@gmail.com, j.xu@leeds.ac.uk.

� S. Ji and C. Lin are with the Zhejiang University, Hangzhou Shi, Zhejiang
Sheng 310027, China. E-mail: {sji, linchangting}@zju.edu.cn.

Manuscript received 19 Nov. 2018; revised 6 May 2019; accepted 15 July
2019. Date of publication 19 July 2019; date of current version 18 Dec. 2019.
(Corresponding author: Renyu Yang.)
Recommended for acceptance by L. Wang.
Digital Object Identifier no. 10.1109/TPDS.2019.2929389

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020 129

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-4076-3331
https://orcid.org/0000-0002-4076-3331
https://orcid.org/0000-0002-4076-3331
https://orcid.org/0000-0002-4076-3331
https://orcid.org/0000-0002-4076-3331
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

both internally quantitativemeasurement and environmental
considerations.

Traditionally, security experts decide the service compo-
nent placement based on their domain knowledge to guar-
antee the overall application security level [10]. However,
such method heavily relies on human expertise and fails to
deploy in large-scale applications if the application consists
of a huge number of service components. Thus, a generic
mechanism to express the security risks and quantitatively
measure the security level of a microservice is urgently
required. However, existing security-aware algorithms for
service composition randomly compute or statically deter-
mine the security level by simply checking the adopted
means such as the encryption algorithm or security policy,
etc. [11], [12]. This will result in decreased accuracy in the
context of massive-scale microservices. Also existing works
merely regard the dependability as mathematical optimiza-
tion ignore the exploiting the external system uncertainties,
resulting in less realistic orchestration. Finally, the explo-
sively increasing number of workflow scale and microser-
vice candidates that available for application composition
leads to computation efficiency issues by using traditional
approaches [13], [14].

In this paper, we propose GA-Par framework to provision
a dependable microservice orchestration and deal with the
involved computation efficiency issue. It aims to provide an
optimal solution of deploying microservice workflow across
geo-distributed datacenters. We take the orchestration as an
optimization problem to maximize the dependability satis-
faction in terms of security requirement and network QoS.
We adopt a hybrid (both whitebox and blackbox based)
approach to measure relevant factors. Internally, we propose
a topology-aware security satisfaction model from whitebox
perspective to minimize the discrepancy between the user’s
requirements and actual service provision. We exploit the
discrepancy of individual microservices and adjunct com-
munications between microservices to reach logical optimi-
zation. To achieve this, we comprehensively analyze the
security technologies, pertaining risks and the target security
goals to generate a quantitative measure of the security satis-
factory levels. Regarding environmental uncertainties that
may influence dependability, we develop a statistical model
considering transmission rates and service response time in a
black-boxmanner. Thiswill be added upon the security satis-
faction model to formulate a holistic optimization problem
for an actually improved dependability. Finally, we develop
a novel parallel genetic algorithm framework, GA-Par based
onApache Spark, to effectively find the sub-optimal solution.
A multi-phase hybrid parallelization management can adap-
tively enable both fitness evaluation and population repro-
duction within the genetic algorithm to reach the maximized
parallelism. Experiments show that GA-Par can fulfill up to
33x times acceleration of the execution time compared
against other parallelization approaches and the effective-
ness can be constantly guaranteed under different applica-
tion scales. Themain contributions of this work are:

� A mathematic optimization model to formulate the
dependable microservice orchestration considering
both internal security requirement satisfaction and
environmental uncertainty factors.

� A measurement to quantify the satisfactory level of
security goals by exploiting security risks and techni-
ques among interdependent microservices.

� A data-driven statistical model describe the network
QoS of Cloud based containerized microservices.

� A multi-phase parallelization framework to acceler-
ated the execution of Genetic Algorithms, that can
significantly improve orchestration efficiency.

Organization.We first present the motivation and require-
ments in Section 2. We describe the topology-aware security
satisfaction measurement in Section 3 and the external
uncertainty model in Section 4. In section 5, we formalize
the problem as an optimization problem and then develop a
parallel framework to solve it in Sections 6. Experiments are
shown in Section 7. Following a review of related work in
Section 8, the paper draws conclusions and outlines further
works.

2 MOTIVATION

Geo-Distributed Microservices. Fig. 1 describes an e-banking
example, which is one of representative applications that
adopt microservice architecture [15]. Regarding the front-
end, a logined user can process a payment from their
account, pay or request the credit cards, browse information
and request loans or mortgage, and acquire wealth manage-
ment services. The back-end data-related microservices
consist of in-memory or persistent databases and relational
database that underpin the information system and services.
In the financial and banking scenario, dependability is a pri-
mary consideration not only in security guarantee in a single
microservice (e.g., the privacy protection in lending and
mortgage, the confidentiality in in credit card, the availabil-
ity in database access, etc.), but the secure data transmission
between microservices. For further resiliency and high qual-
ity of service, a global service provider can spread the micro-
services over different data centers or clouds. By leveraging
geographically distributed architecture (shown in Fig. 2), if
one has serious connectivity or late-timing issues, the holistic
service can still operate in other replicas. In this paper, we
propose a microservices orchestration framework which
ensures the dependability of composed microservices across
geo-distributed Clouds.

Dependability and Security. The original definition of
dependability is defined as accepted dependence and the
ability to deliver service that can justifiably be trusted. Tradi-
tional dependability for a system incorporates availability,
reliability, maintainability. Nowadays, applying security
measures to the appliances of a system generally improves
the dependability by limiting the number of externally

Fig. 1. e-banking microservices (a representative case [15]).

130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

originated errors [6]. Therefore, reducing or mitigating secu-
rity risks can reduce the consequences of unforeseen
dependability threats. The measurement of security level
plays a significantly important role in quantifying how well
a service functions dependably in the presence of faults or
attacks over a specified period of time.

Characteristics in Geo-Distributed and Containerized Environ-
ment. A geo-distributed application consists of a set of
microservices with different functionalities. Each type of
microservice has a huge number of candidates with diverse
configurations in terms of resource request, network configu-
ration, QoS requirement, etc. Due to the deviations of sensitiv-
ity to network environment among different microservices,
different scheme ofmicroservice placement in geo-distributed
environments also affects the overall dependability. We sum-
marize the following characteristics thatmotivate thiswork:

� [C1] Customers are exposed to a variety of security risks.
For example, main sources of security threats
include human-caused sabotage of network, mali-
cious attacks, etc. Hence, the achievability of security
goals is highly affected by how microservices can
mitigate or avoid potential security risks.

� [C2] Differentiated security-levels are provisioned by dif-
ferent microservices. There are more than ten million
images stored in Docker Hub. A lot of images share
the same functionalities, but with different non-func-
tional configurations such as security. For example,
the seven most well known cryptographic algo-
rithms are: DES, RSA, HASH, MD5, AES, SHA-1 and
HMAC [16]. However, these algorithms have differ-
ent ease of being attacked. We assume that the more
dependable microservice uses stronger security tech-
niques. Meanwhile, microservice may use multiple
techniques to tackle security. For instance, a storage
service may include access control, data replication,
resource isolation, etc. Therefore, it is extremely
desirable to judge the security levels of a microser-
vice by exploiting and aggregating the adopted
techniques.

� [C3] Microservices are exposed to uncertain and unpre-
dictable network environments. In container manage-
ment systems, the network is typically configured in
a best effortmanner [7]. The host machine tries to pro-
vision network resources to running containers.
Consequently, the network performance interference
drastically manifests outside the confines of strict
QoS guarantee due to unpredictable neighbors [7].

This uncertainty even magnifies when microservices
are geo-distributed across multiple Cloud datacen-
ters through wide area Internet. In fact, network jit-
tering with unpredictable latency is sometimes
difficult to capture [8], [9].

Dependable Orchestration Requirements. Based on afore-
mentioned analysis, the configuration diversity in terms of
security capability and network uncertainty significantly
affect the dependability of containerized microservices
deployment, thereby reducing the satisfaction level of user’s
requirement. To achieve a dependable microservice orches-
tration, we need to deal with following problems: [P1] how
to characterize new security risks associated with the micro-
services and how to bridge and exploit risks and security
techniques to quantify the security goal satisfaction in
microservice orchestration? [P2] how to capture the envi-
ronmental impact of network QoS fluctuation (e.g., through-
put and response latency) on microservice selection? [P3]
How to deal with the increasing computation complexity of
finding the most dependable microservices composition
under different optimization constraints? The significantly
increased scale of application workflow and increased num-
ber of microservices candidate horizontally and vertically
boost the computing difficulty.

Problem Formal Definition. Formally an orchestrated appli-
cation can be represented as a directed acyclic graph (DAG)
G ¼ ðS;EÞ. Vertices S correspond to the service components
and edges E correspond to data transferred between them.
More specifically, each component i in the application has a
group of candidate microservices Si and a candidate p is
denoted by sip 2 Si. We use sip and sjh to represent the
selected microservice of components Si and Sj in the micro-
service workflow respectively. Accordingly, the depen-
dency Ei;j can be determined by dsip!sjh 2 Ei;j, where the
data is transferred from the candidate p of Si to the candi-
date h of Sj. To tackle above challenges, we leverage white-
box- and topology-dividing based method to quantify the
achievable security of G ¼ ðS;EÞ. Each candidate sjh might
have varying data transmission rates and complicated pat-
terns (e.g., latency between request and response) among
different microservices at different times. We use statisti-
cally significant models to measure environmental uncer-
tainties in a blackbox and statistic manner.

3 QUANTITATIVE SECURITY MEASUREMENT

Security is one of the indispensable non-functional aspects
for Cloud-based applications. Most research focuses on
improving the security of each service component within
applications. SecGraph for example is a technique that ena-
bles data owners to anonymize their data, while measuring
the data’s utility, and evaluating the data’s vulnerability
against modern De-Anonymization (DA) attacks [17]. How-
ever, there are a number of security techniques that are
applied to a microservice. Therefore, how to measure the
security level of each candidate microservice becomes diffi-
cult, while essential for composing a set of microservices to
meet the security requirements.

To deal with [P1], we first uncover the relationship
between security level, goal, risks and the techniques/
policies. A microservice may face some security risks due to

Fig. 2. Microservice orchestration in a geo-distributed cloud environment.

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 131

various reasons such as deploying unreliable resource, using
weak authentication techniques and being accessed by inse-
cure devices etc. On the other hand, there are different secu-
rity techniques or policies provisioned by the microservice to
alleviate the corresponding risks, thereby enhancing the
security. Therefore, the achievement of security goals of a
microservice depends on both potential security risks and the
mitigation degree of risk through techniques. We measure
the security level of each microservice by the aggregation of
targeted security goals. In next sections, we investigate the
relationships among the top risks within Cloud comput-
ing [18], the most popular security-enforcement techniques
and Cloud security goals. We further develop a generic
method to measure the security level of each microservice
based on themultiplemapping relationships.

3.1 Mapping between Security Goals
and Cloud Risks

Basic Idea. A complete collection of security goals within the
Central Intelligence Agency (CIA) triad (including acco-
untability, audibility, authenticity, availability, confidentiality,
integrity, non-repudiation and privacy) has been illustrated by
[19]. Cloud security is one of the subcategories within inf-
ormation security realms, thus we consider these goals as
factors to quantify the security level of each candidate
microservice. As discussed above, the achievement of secu-
rity goals is affected by the potential security risks included
in the microservice. Since microservice technology is still at
an early but rapid development stage, there are limited
standards or whitepaper of microservice security risk that
can be widely accepted and generally referred to. Therefore,
we currently applied the commonly-used cloud securities
and risks into our main framework.

In the microservice scenario, the vulnerabilities can be
leveraged by attackers more easily, thereby aggravating the
manifestation of risks. The first reason for this is the archi-
tecture evolution. As monolithic application is de-composed
into hundreds of smaller microservices, the number and
complexity of interactions and communications between
them is substantially increased. Attackers can thus exploit
the decomposition and the inherent complexity to launch
attacks against applications. For example, many separate
APIs and ports per app represent numerous doors for
intruders to try to access within an application. Such micro-
services may also be deployed in a cloud environment that
the application owner is unable to control. Hence, the mani-
festation of specific risk such as loss of governance will
increase accordingly. Second, container-based microservices
provide attackers more chances to break the applications’
security guard down. For example, unlike in a VM, the ker-
nel is shared among all containers and host, which magni-
fies and disseminates the kernel vulnerabilities. If a
container manages to attack the kernel, the corresponding
threat can be spread into the other parts of the system,
resulting in the whole host breakdown. Moreover, sharing
and building container images tends to be much easier and
more efficient than sharing VM images for DevOps pur-
poses. This characteristic, however, increases the chances of
privacy leaks, where the malicious code can be injected in
both in-house written code and third-party libraries by the
image owner [20] and image users are unaware of this.

The following investigates the top security risks in Cloud
computing hinder the achievement of the listed security
goals. These security risks have been summarized in [18]:
[R1] Loss of governance, [R2] Lock-in, [R3] Isolation failure,
[R4] Management interface compromise, [R5] Data protec-
tion, [R6] Insecure or incomplete data deletion, [R7] Mali-
cious insider, [R8] Customers’ security expectations and
[R9] Availability chain. In order to obtain the correlated
mapping between security goals and Cloud risks, we ana-
lyze all the potential attacks caused by each risk and inspect
whether each attack will lead to unreachable security goals.
The following example demonstrates how we map a risk to
the corresponding security goals.

Example. Risk [R1] describes the case where a Cloud user
loses the supervision to the Cloud provider in many
aspects: lack of port scans, vulnerability assessment and
penetration testing. The provider might outsource or sub-
contract services to third-parties (unknown vendors),
resulting in uncertain security guarantees. Specifically,
third-party providers might not be able to meet the organ-
ization’s requirements of certifications and responsi-
bilities, thereby violating the Accountability. Similarly,
Availability, Confidentiality, Integrity and Privacy of data
cannot be guaranteed for the same reason. Since no user
audit is allowed by the Cloud provider, the risk will also
be closely relevant to Non-repudiation and Audibility.
Based on this domain knowledge, we can figure out the
complete mapping as shown in Table 1.

3.2 Microservice Security Level

In this section, we use the installed risk prevention techni-
ques of microservices to measure the security levels of
them. Table 2 shows the notations of the rest of the paper.
We assume that the security level of a microservice depends
on the quantity and quality of the application of security
techniques. For example, a type of risk can be prevented by
many security techniques, and they have a variety of perfor-
mance when they are applied independently. Moreover, we
assume that there is incremental effect by applying more
suitable techniques to a microservice. The following details
how to calculate the security level of a microservice.

We assume that a risk Rk can be handled by a set of tech-
niques and policies TechRk

. Thus, the total capacity of Rk

that can be prevented is:
P

j2TechRk
Vj, where Vj represents

the performance of technique j to reduce risk Rk. Next, if a
microservice s offers a set of techniques and policies Techs,

TABLE 1
Mapping between Cloud Risks and

Security Goals

Security Goal (G) Risk (R)

Accountability R1, R3, R5, R6, R7
Audibility R1, R3, R6, R7, R8
Authenticity R3, R4, R5, R8
Availability R1, R2, R4, R7, R8, R9
Confidentiality R1, R3, R4, R5, R7
Integrity R1, R3, R4, R5, R7
Non-repudiation R1, R7
Privacy R1, R2, R3, R5, R6, R8

132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

the ability of s to handle risk Rk can be represented as

RkðsÞ ¼
P

i2fTechs\TechRk
g ViP

j2TechRk

Vj
. As mentioned in Table 1, a secu-

rity goal gq corresponds to a group of risks Rgq . Therefore
s’s capability of satisfying the security goal gq can be defined
as gqs ¼

P
Rk2Rgq

RkðsÞ. We use set Gs ¼ fg1s; ::; gjGjs g to repre-

sent s’s capacity of targeting different security goals.

3.3 Microservice Security Measurement

Take the e-banking example in Fig. 1 again. We are obliged
to target security goals in essential microservices such as
payment and customer information provider, etc. and
enable secure data transmission (particularly user data and
monetary information) between microservices.

Microservice Security Satisfaction. To identify and sort out
those microservices that can best satisfy customers’ security
requirements, we extend Degree of Security Deficiency (DSD)
[21] into Degree of Service Security Deficiency (DSSD) in our
model to describe the discrepancy between desired security
level and the supplied level. In this context,DSSDðu; sjhÞ ¼ 0
if the selected microservice sjh can fully meet the demands of
customer (u). DSSD can be formalized as

DSSDðu; sjhÞ ¼
XjGj
q¼1

wq
j �Mðgqu; gqsjhÞ

where 0 � wq
j � 1;

XjGj
q¼1

wq
j ¼ 1 and

Mðgqu; gqsjhÞ ¼
0 if gqsjh � gqu

gqu � gqsjh otherwise;

(
(1)

where wq
j is the weight of the qth security goal for compo-

nent Sj and the customer specifies the weights to reflect
their priorities among those goals. M represents the dispar-
ity between sjh security levels and u’s security demands in
terms of each security goal.

Data Transmission Security Satisfaction. For data transmis-
sion between two components Si and Sj, we use Degree of
Data Security Deficiency (DDSD) to depict the satisfaction of
security of the data movement

DDSDðdsip!sjhÞ ¼
XjGj
q¼1

wq
ij �Mðgqsip ; gqsjhÞ

where 0 � wq
ij � 1;

XjGj
q¼1

wq
ij ¼ 1 and

Mðgqsip ; gqsjhÞ ¼
0 if gqsjh � gqsip

gqsip � gqsjh otherwise:

(
(2)

In Eq. (2), dsip!sjh indicates the data transfer from source
sip to the destination sjh. We assume that the candidate
microservice in component Si satisfies the expected security
level of customers. Therefore, Mðgqsip ; gqsjhÞ directly indicates

the customer’s security satisfaction from sip to sjh. Custom-
ers can also define the priority or importance of each secu-
rity goal when transferring data from Si to Sj by adjusting
wq

ij. Thereafter, we can estimate the satisfaction of transfer-
ring holistic data

TABLE 2
Notations

Symbols Descriptions

Security Metrics

gq 2 G The qth goal where jGj ¼ 8

Rgq 2 R The qth goal’s risks set where jRj ¼ 9

RkðsiÞ The ability of si to handle risk Rk

gqsi si’s capabilities of targeting security goal gq

Gsi si’s capabilities of targeting all goals

Microservice Orchestration

u A customer/user
sjh A candidate h selected by microservice component

Sj

usjh u has selected sjh
dsip!sjh The transfer of data from sip to sjh

Security Measurement

DSSDðu; sjhÞ Degree of sjh security deficiency, between its
capability and u’s requirements

DDSDðdsip; sjh Þ Degree of data security deficiency between two
conjunct microservices sip and sjh

VDDSDðu; sjhÞ The security satisfactory degree of moving input
data from other conjunct microservices to sjh for
user u

VSECðu; sjhÞ All security-related metric value of sjh for user u
Util The utility function for selecting a microservice

Network QoS Measurement

"ðtÞ The reduction degree of time consumed or
transmission delays by using off-peak as the
baseline

DTL Data Transmission Latency
SURðtÞ Represents the possibility that a client can get the

response from a Cloud service after t
T ðmrt; sjhÞ Customized user requirements for each service sjh.

If it meets requirements, set to 1 (available), else set
to1

� Optimal solution for the given workflow
�0 One of the solutions for the given workflow

Algorithms

S The set of all microservice candidates
Si The microservices candidate set for components i
M The total population size of each generation
L The numbers of components in a workflow
N The number of Slaves
Partition Partitions are basic units of parallelism and each

partition is responsible for an atomic logical
division of data.

Q0 The partition number used for Fitness Calculation
Q00 The partition number used for Genetic Operation
C The number of cores on each Slave
T The number T of CPUs requested by each task
R The threshold for the number of stable iterations in

termination
iter The total number of GA iterations
Ci The ith constant value
INSj The inputs from Sj’s immediate predecessors
IN A set of all data dependencies in the given

workflow

Algorithms Analysis

E The size of the elitism list
dCollecti The time delay for collecting the local elitism list

from ith partition
dBroadcastEi

The time delay for broadcasting the global elitism
list to ith Slave

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 133

VDDSDðu; sjhÞ ¼
X

fdsip!sjhg2INSj

DDSDðdsip!sjhÞ; (3)

where INSj is all input data pipelines of Sj from all its
immediate predecessors. Finally, we can calculate sjh’s sat-
isfaction of security by Eq. (4)

VSECðu; sjhÞ ¼ VDDSDðu; sjhÞ þDSSDðu; sjhÞ: (4)

4 ENVIRONMENTAL UNCERTAINTY MEASUREMENT

To solve [P2], we leverage a data-driven and statistical
modeling method to capture and describe the environmen-
tal impact on the dependable microservice orchestration.

4.1 Data Transmission Latency

Due to the network bandwidth fluctuation, the data trans-
mission latency varies between upstream and downstream
microservices. The throughput of file transfer to run instan-
ces within an Amazon EC2 datacenter (US East Northern
Virginia Region) is evaluated in [22]. The experiment cap-
tured the network bandwidth every 30 minutes between
20th and 21st May 2013. A throughput surge can be detected
during the period 7.00-8.00 am while the throughput during
other periods is much less and remains stable. Therefore, we
can take 7.00-8.00 am as the peak time and distinguish it from
other off-peak times.We define a latency factor "

"ðtÞ ¼
meanðthrð�tÞÞ
meanðthrðtÞÞ if t ¼ peak time

1 if t ¼ off-peak;

(
(5)

where thrð�tÞ indicates the throughput of time periods �t
(time period except for t). According to real data statistics
[22], the peak throughput is approximately twice that of off-
peak throughput, resulting in " ¼ 1

2. In practice, " is configu-
rable and can be adjusted according to different conditions.
Moreover, the total time and resource consumption also
rely on the amount of data. We can thus define the overall
Data Transmission Latency (DTL). DataSj and Total are the
input size of component Sj and the overall data consumed
within the entire microservice workflow respectively. The
given time tsjh represents the local time of sjh

DTLðtsjhÞ ¼ "ðtsjhÞ �
DataSj
Total

: (6)

Note that the size of transferred data and the execution
time of each microserivce can be taken from provenance

logs. Numerous works [23], [24] describe how to estimate
the time and size based on the execution logs.

4.2 Uncertainty Modeling

4.2.1 Data-Driven Benchmarking and Observations

In order to elaborate on the uncertainty model and its
impact on service provisioning efficiency and availability,
we probe the request response latencies and regard them as
a main indicator. To explore a generic distribution of the
request response time of a specific location, we deploy the
same implementation of clients that are geographically dis-
tributed around the world, and send requests to one central
datacenter (in Dublin). The round trip timespan (RTT) is
collected, and the experiments are repeated 1,400 times for
each individual client within a continuous 24-hour period.
As shown in Fig. 3a, requests from different cities are sent
to Dublin and we display the response time with Cumulative
Distributed Function (CDF). Apparently, distance and loca-
tion have a significant impact on the distribution. In general,
a longer distance indicates a higher probability of traffic
delay. In addition to these observations, we have to form a
uniform model and find a marginal distribution to cover all
distributions of different requests comprehensively, and satisfy the
worst case for each specific datacenter. In Fig. 3a, the target
distribution is supposed to be within the colored area, and
it is highly desirable to obtain an optimal distribution that
fits the marginal bound as closely as possible. Due to space
limitations, we only briefly demonstrate how to find the
required distribution.

4.2.2 Mathematical Modeling

Basically, the exponential distribution class provides a rig-
orous mathematical framework. In reality, our target distri-
bution belongs to a subclass of exponential distribution—
heavy-tailed distribution [25]. We intend to find a regularly
varying tail and determine the most appropriate distribu-
tion with the relevant properties.

First assume a non-negative random variable X, the CDF
of X is F ðxÞ ¼ P ½X � x�ðx � 0Þ and �F ðxÞ ¼ 1� F ðxÞ. The
data (shown in Fig. 3a) conforms to Eq. (7), and thus the
distribution is subexponential (i.e., F 2 S) [26]

lim
x!1

P ½X1 þ � � � þXn > x�
P ½maxðX1; . . . ; XnÞ > x� ¼ 1 for some ðallÞ n � 2;

(7)

where X1; . . . ; Xn are independent and identically distributed
random variables (IID). Ref. [27] further substantiates the

Fig. 3. Distributions; (a) RTT from different locations (b) ME of lower bound data and the fitted distribution (c) The lower bound of the end to end net-
work delay in cloud datacenter (d) The survival distribution of the measured datacenter.

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

implication that such F is regularly varying-tailed (heavy-
tailed). The heavy-tail distribution will have

lim
x!1

�F ðxÞ
e�d�x

!1 8d > 0; F 2 S: (8)

In fact, this indicates that the tail of F decreases more slowly
than any exponential tail. Meanwhile, for a positive measur-
able function f which regularly varies with index a, if
Eq. (9) is satisfied, we can write f 2 RðaÞ [28]

lim
x!1

fðt � xÞ
fðxÞ ¼ ta 8t > 0: (9)

Due to the heavy-tailed pattern, we conclude �F ðxÞ 2
Rð�aÞ and further represent �F ðxÞ ¼ x�a � lðxÞ where x > 0,
a > 0, and lðxÞ 2 Rð0Þ is a slowly varying function. In gen-
eral, Pareto, Brr and Log-gamma distributions are examples
of distribution functions with such regularly varying tails.

Afterwards, we have to determine which offers the best-
fit distribution. To this end, we use the mean-excess (ME)
metric (see Eq. (10)) to sort out the desired distribution from
all these candidtates [29]

MEðxÞ ¼ EðX � xjX > xÞ ¼
R1
x

�F ðyÞdy
�F ðxÞ ; x > 0:

(10)

We extract the data which corresponds to the lower
bound in Fig. 3a, and calculate the ME value with different x
ranges as shown in Fig. 3b. We examine the ME function of
each distribution, and only the Pareto Type I distribution
increases linearly [30]. Specifically, theME of a standard Par-
eto I distribution is shown in Eq. (11) (the blue line in Fig. 3b)

MEðxÞ ¼ x

a� 1
; a > 1: (11)

Therefore, we choose Pareto as our approximate fitting
distribution and use Eq. (12) to calculate the cumulative
probability within a specified time window

F ðtÞ ¼
Z 1

t

a � xa

taþ1
dt: (12)

Fig. 3c illustrates the effectiveness of the application with
Eq. (12). The LowerBound curve can always guarantee the
coverage of the response time boundary and all measured
request cases. In this manner, we have the survive function
(Eq. (13)), which represents the possibility of a client getting
a response from a Cloud service after t (as illustrated in
Fig. 3d). By leveraging the survive function, we quantita-
tively describe the uncertainty in request handling

�F ðtÞ ¼ 1� F ðtÞ ¼ 1�
Z 1

t

a � xa

taþ1
dt: (13)

5 FORMULATION AND SOLUTION

5.1 Orchestration Problem

Based on the model proposed in Sections 3.3 and 4, the over-
all function of user u to run a microservice candidate h in
the component Sj can be expressed as

Utilðu; sjh; tÞ ¼ u � DTLðtsjhÞ þ ð1� uÞ � VSECðu; sjhÞ: (14)

Users can customize the weight u to manifest their
required importance and tradeoff between data transmis-
sion efficiency and the security requirements.

Single Component Utility Function. For each component Sj,
customers have their specific requirements to avoid the
uncertainty. Based on our early experience, we assume that
the survival rate of Sj ought to be higher than 10 percent. In
order to apply the uncertainty factor into our model, we
depict T ðmrt, sjhÞ as in Eq. (15) where mrt is the maximum
response time that the customer can tolerate. In this formal-
ized definition, if the survival rate is lower than 10 percent,
we set the output to be þ1

T ðmrt; sjhÞ ¼ 1 if �F ðmrtÞ � 10%
þ1 otherwise:

�
(15)

Thus, the utility of u selecting an sjh is

Valueðu; sjh;mrt; tÞ ¼ T ðmrt; sjhÞ � Utilðu; sjh; tÞ; (16)

where sjh 2 Sj and Sj 2 S.
Multiple Component Orchestration. We assume that the

optimal orchestration is that each selected microservice sjh
in microservice component Sj within an application can
meet user u’s requirements. It can be defined as

Optimalðu; �Þ ¼
X
sjh2�

Valueðu; sjh;mrt; tÞ ¼ 0; (17)

where � is one of the optimal solutions for the target orches-
tration workflow. However, it is very difficult to guarantee
the optimal solution. The optimal solution may not even
exist due to the lack of candidate services. Therefore, our
objective is to find an orchestration that minimizes the value
from all possible solutions L

Minimize :
X

sjh2�0;�02L
Valueðu; sjh;mrt; tÞ; (18)

where �0 is one of the solutions for the target workflow.

Definition 1 (Optimal Solution). As in the statement of opti-
mization problem in Eq. (18), the number of selected microser-
vices is fixed to j�0j. Therefore the optimal solution can be
obtained by traversing mj�

0j solutions, where each component
in the orchestration workflow has m candidate microservices.
The given optimization problem can be proofed an NP-hard
problem.

Conjecture 1. The dynamic programming method is not suitable
for solving our problem.

We assume that a set SK ¼ fs1; . . . ; skg is the optimal
solution of composing k types of microservice, and a set
SKþ1 is the optimal solution of composing kþ 1 types of
microservices. If Sk 6� SKþ1, the dynamic programming
method will take more time than the direct calculation of
the optimal SKþ1. However, in our optimization problem,
this situation happens very frequently due to the impact of
data dependencies. Thus, a new and more efficient algo-
rithm is desired to solve this optimization problem.

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 135

5.2 Basic Solution Principle

With respect to optimization algorithms, [13] demonstrated
that Genetic Algorithms (GA) outperform other solutions
such as Mixed-Integer Non-linear Programming (MINLP)
or Linear Programming (MIP), etc. The high time complex-
ity of MIP and MINLP solvers make it infeasible to apply
those in large orchestration problems. Therefore, we present
GA-Par (Genetic Algorithm Parallelism)—a novel Parallel
Genetic Algorithm designed to optimize the microservice
orchestration in terms of the security under uncertainty.

In our Genetic Algorithm (GA), a string w ¼ ðb1; . . . ;bLÞ
with length L ¼ j�0j is used as a chromosomal representa-
tion for a workflow and each bi ¼ Si 2 S represents a com-
ponent. Each gene segment derives from a finite set of
microservices Si ¼ fsi1; . . . ; simg. According to our optimi-
zation objective, we set the fitness function fitð�0Þ ¼P

sjh2�0
Valueðu; sjh;mrt; tÞ. Basically, the GA usually includes two
primary parts: Fitness Calculation (FC) and Genetic Operations
(GO) [31]. The effect value of each chromosome (individual)
is calculated in FC, and then the elites are sorted out from
all population members. In GO, the new chromosomes are
generated by operations: Selection, Crossover and Mutation.
After iterations of several generations, a sub-optimal solu-
tion can be found.

6 GA-PAR: DESIGN AND IMPLEMENTATION

To tackle [P3], we propose a novel multi-phase parallelized
GA to accelerate the orchestration procedure. We will
briefly overview existing solutions and introduce our archi-
tecture and detailed implementations.

6.1 Parallelized GA Overview

According to the philosophy of divide-and-conquer, GA
parallelism can be categorized into two approaches:

1) Fitness Evaluation Parallelism—The parallelism is con-
ducted merely within the calculation of fitness value by dis-
tributing individuals to different computing nodes (i.e,
slaves). The centralized master manages all the GO opera-
tions and the generated population. This method is suitable
for cases that have a time-consuming fitness function calcu-
lation. Obviously, the GO will become extremely inefficient
with an increase in population scale due to the single point
of performance bottleneck. The computing power of the
master tends to be limited once dealing with the huge num-
ber of individuals for generating new populations. More-
over, a significant network latency might be aggravated
considering the communication of individual distribution
when computing the fitness value over different slaves.

2) Population Reproduction Parallelism—This approach
allows the process of creating a new population indepen-
dently over different slaves, and each slave generates and
manages a subset of the new population. As a result, the time
consumed in the population generation can be reduced.How-
ever, if the GO is only performed inside each isolated comput-
ing node, the probability of duplicated individuals will rise.
Thus, it is extremely likely to fall into a local optimum.

Recently, [32] introduced a framework for running genetic
algorithms with map reduce paradigm in Hadoop. However,
the design is on the basis of dumping each generation of chro-
mosomes onto disk, thereby dramatically introducing huge

IO costs anddecreasing the operational performance. Further-
more, a large scale workflow optimization problem requires a
very large search space in terms of horizontal (dependencies
of each components) and vertical (different attributes of each
candidate microservice). For these reasons, in-memory data
operations naturally fit in the GA operations, especially for
the crossover operation in which the data for each individual
can be efficiently shuffled among different nodes. We there-
fore propose a new parallel algorithm GA-Par based on
Apache Spark and it adaptively incorporates the paralleliza-
tion of both fitness evaluation and population reproduction.

6.2 GA-Par Framework

6.2.1 Architecture

GA-Par adopts the master-slave architecture and two-phase
parallelization management to fully explore the efficiency
of the fitness calculation and genetic operations. The paral-
lel degree can be dynamically adjusted in order to maximize
the calculation velocity whilst maintaining the optimization
quality. Mechanisms such as adaptive partition control,
global population shuffling and elitist sharing are proposed
to achieve these objectives.

Fig. 4 details the architecture and multiple modules
underpinning the implementation of GA-Par. The GA-Par
Master is responsible for the overall management of paralle-
lization and population life-cycle (i.e., generation and
exchange). The SlaveAgent is the daemon agent that runs
on each GA-Par slave node and handles instructive mes-
sages from the GA-Par Master. More specifically, the popu-
lation will be divided into a number of sub-populations and
each of them is first initiated on each partition. This proce-
dure is controlled by the PopPartitionManager (PPM) with
the master. Correspondingly, on each slave node, the Parti-
tionManager (PM) takes charge of each sub-population and
manages the new generation through FC and GO.

Also, the PPM coordinates the dynamic partition configu-
rations to make partitions fully parallelized over different
slaveswhilst considering the data shuffling cost (Appendix A.1
explains the execution model. It can be found on the Computer Soci-
ety Digital Library at https://doi.ieeecomputersociety.org/
10.1109/TPDS.2019.2929389). To increase the diversity of the
new generation, wemerge several partitions into a single par-
tition for population reproduction and then re-partition it
appropriately to ensure the parallelization of FC (detailed
later). Moreover, the local elite results of each partitionwill be
collected and synthesized into a global elitist list by SharedEli-
tistManager (SEM) in GA-Par Master before the selection
phase. The manager will then broadcast the global elitist list
to the running partitions to ensure each of them has the best
chance to generate advantage offsprings.

Fig. 4. The architecture and module interactions in GA-Par.

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

We adopt Spark to implement the aforementioned func-
tionalities. Compared with Hadoop, Spark can provision a
more flexible approach to manipulate data via Resilient Dis-
tributed Datasets (RDD), which a collection of elements that
will be partitioned across different slaves [33]. Moreover,
the in-memory computation on large clusters strikes the bal-
ance between the maximized parallelism and the diversity
control.

Algorithm 1. GA-Par Master

Input:
S: all candidate microservices
Q0: partition number for FC
Q00: partition number for GO
�0: required composition of microservices

1 Master S, (Q0, Q00, �0)
2 sharedElitist Initialize(S, �0)
3 while do not meet termination condition do
4 setPartitionNumberToSlaves(Q0)
5 // wait all PartitionMasters to finish FC
6 sync for FC
7 // collect all elites from partitions to a list in master node
8 localElitistList collect()
9 // find the best individual
10 s findBest(localElilistList)
11 // update the shared elitist list
12 sharedElitist update(sharedElitist, localElilist

List)
13 // broadcast the shared elitist list to slaves
14 broadcast(sharedElitist)
15 setPartitionNumberToSlaves(Q00)
16 // wait all PartitionMasters to produce new generation
17 sync for GO
18 end
19 return s

6.2.2 Two-Phase Parallelization

A candidate microservice within a workflow component
must satisfy all security and efficiency requirements, while
guaranteeing service availability. Herein, we describe the
asynchronized messaging between GA-Par Master and Par-
tition Managers and the main procedures on both sides real-
ize the adaptive partition operations. GA-Par Master will
finally output the optimal orchestration solution.

Algorithms 1 and 2 depict the collaborative and interactive
procedure of the master and pertaining slaves. The master
will read candidate list, configurations before initializing the
shared elitist information. Regarding the slave, after receiv-
ing the candidates from the GA-Par Master, individuals will
be initialized onQ partitions, followed by the GOwithin each
partition. The population size per partition is M

Q , where M is

the total population size of each generation, which has been
pre-defined. Q is the number of partitions selected from the
set fQ00; Q0g, whereQ00 < Q0.Q can therefore be dynamically
adjusted in different execution phases to ensure the tradeoff
between parallelism and diversity. In particular, during the
FC phase, in order to rapidly finish the FC computation and
obtain the elitist list, the degree of parallelism should bemax-
imized to Q0. In other words, the individuals of the whole
population (M size) are distributed to the maximal number

of partitions, in order to fully utilize the computational
resources. On the other hand, in the GO phase, individuals
within the same partition are involved to produce a new gen-
eration. Therefore, the more individuals involved, the more
diverse generations can be produced. As a result, there are
increasing chances to obtain individual advantage. Accord-
ingly, as shown in Algorithm 1 (Lines 4 and 15) and Algo-
rithm 2 (Lines 6 and 13), the partition number is shrunk from
Q0 toQ00 to guarantee the offsprings’ diversity.

It is noteworthy that the elitist list is computed by the
extension method from [31] to guarantee the diversity of
each generation. The local elitist list will be sorted out, sent
within the PartitionMaster (Algorithm 2 Lines 10-12) and col-
lected in the GA-Par Master (Algorithm 1 Line 8). The local
list will be aggregated into a sharedElitist by selecting the
individuals that have better fitness values. Afterwards, the
global sharedElitist will be disseminated to each Partition-
Master across different slaves (Algorithm 1 Lines 9-11). Com-
pared with conventional methods, our elitism method also
benefits from the global elitist list over the partitions, giving
rise to the fact that the outstanding individuals of each parti-
tion can be selected and synchronized. This can significantly
minimize the fitness value and reduce the execution time.
The PartitionMaster continues the GO phase by using the lat-
est synchronized list. When new generations are generated
and notified from the slave (Algorithm 2 Line 18 to 20),
GA-Par Master will update by selecting the individuals that
have better fitness values (Algorithm 1 Line 17) and repeat
the iteration loop until a certain condition emerges. Finally,
GA-Par Master outputs the best fit microservice selection
for the submittedworkflow (Algorithm 1 Line 19).

Algorithm 2. GA-Par Slave and PartitionMaster

Input:
shareElitist: shared elitist list
Q0: partition number for FC
Q00: partition number for GO
pop: population
M: the population size

1 Slave (shareElitist, Q0, Q00,M , pop)

2 // initialize a M
Q0 size population for each partition

3 pop Initialize(M, pop)
4 while not be terminated by master do
5 // get the partition number Q0 from Master
6 PartitionNumber(Q0)
7 // compute the fitness value for each individual
8 fitpop FC(pop)
9 // find the best N individual
10 localElitist find(fitpop, N , pop)
11 // send localElitist to Master
12 Send(localElitist)
13 // sync latest shareElitist from Master
14 shareElitist Sync()
15 // get the partition number Q00 from Master
16 PartitionNumber(Q00)
17 // generate a new generation
18 pop GO(pop, sharedElitist)
19 // notify new generation pop to Master
20 Notify()
21 end

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 137

6.2.3 Algorithm Termination

The GA algorithm will eventually compute the best solution
as the total number of iterations iter goes to 1 [34]. How-
ever, limited by computation resources, the value of iter
should be decided in some sense of optimal. The termination
control in GA-Par assumes that the process will be termi-
nated if there is no further improvement in the global fitness
value for a fixed number of iterations R. Literally, the value
of R can be defined by users according to the complexity of
their problems. In our experiments, we perform the grid
search to find the optimal R within the range of [10, 20, 30,
40]. Eventually 20 is selected since we cannot observe any
efficiency gain of reaching the optimal when R surpasses 20.

6.3 Time Complexity Analysis

Since our algorithm involves intensive computation while
having low I/O consumption, we simplify our analysis by
only providing the majority cost for one iteration (genera-
tion) under the case of a single core executor: 1) population
creation/reproduction: OðMjSjÞ; 2) fitness score computa-

tion: OðMðL3ÞÞ; 3) elitism list updating: OðOðMlog ðMQ0Þ þ
EQ0log ðEQ0ÞÞ where E is the size of the elitism list; 4) cross-

over: OðMLÞ; and 5) mutation: OðMÞ. The total complexity
of one iteration for the single core executor is OðMðjSj þ
L3 þ log ðMQ0ÞÞÞ.

In contrast, under the parallel cluster environment, the
time complexity of GA-Par computation can be reduced to

Oð T
NC 	 ½MðjSj þ L3 þ log ðMQ0ÞÞ þEQ0log ðEQ0Þ�Þ where T is

the requested CPU cores of each task, and C and N repre-
sent the number of CPU cores on each node and node num-
ber respectively. The analysis has been omitted and details
are in Appendix A.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

Platform. We perform all experiments on a 20-node cluster
hosted on Google Cloud Platform. Each node is hosted as a
n1-standard-8 instance with 8 vCPU (single hardware
hyper-thread and chosen from 2.5 GHz Intel Xeon E5 v2,
30 GB RAM, and 100 GB storage.

Dataset. The used datasets consist of: 1) a list of 4,532 web
services’ response-times distributed in 150 computing
nodes across over 20 countries [35];1 2) one week through-
put records that are derived from Dublin Microsoft Cloud
servers [22]; 3) 51 collected techniques and policies for secu-
rity improvements of Cloud-based services.2

Workloads. In the following experiments, we assume that
the customers prefer the highest security that Cloud-based
microservices can provide, given by gqcj ¼ 1; q 2 f1; ::; 8g. To
evaluate our algorithm, we first assign a number from 0 to
24 to each microservice, representing the local time period.
Next, we randomly select n techniques out of total 51 techni-
ques to each microservice and n is also randomly generated.
In addition, we randomly generate four types of DAGs as
workflows: The number of vertices in the DAG #w is

selected from (50, 100, 150 or 200) and dependencies
between vertices are randomly generated to simulate the
workflow (e.g., the example in Fig. 1). For each vertex
within a workflow, we then randomly select #s = (100, 300,
500, 1000 or 1500) microservices as the candidates. We use
different mappings of workflow and service configurations
for the application (marked as App(w, s)) in our experi-
ments. We deploy App(w, s) and set up the same initial
population.

Methodology. We first evaluate the security enhancement
by comparing GA-Par with the SU (a generalized security-
unaware method) and SA-Greedy (a greedy-based security-
aware approach). Afterwards, the overall orchestration
effectiveness and efficiency of our GA-Par (multiple slaves
with two-phase parallelization) will be evaluated against
other schemes: SGA (a standalone GA, running GA in a sin-
gle machine) and HGA (a Hadoop-based Parallelized GA,
following the elephant56 [32]). Since the setting-up of map-
per and reducer in [32] is equivalent to our partition setting
during the two-phase parallelization, we evaluate GA-Par
and HGA under completely the same configurations for
fairness considerations. Furthermore, we conduct the analy-
sis of impact on the GA-Par efficiency by varying parame-
ters such as diverse application scale, parallelization setting,
etc. The scalability of the proposed method is also assessed
by varying the number of machines.

Metrics. In particular, we use three complementary
metrics:

� Security Discrepancy. The discrepancy between the
requirement and the targeted security level that the
given approach can achieve.

� Consumed Time. The time consumption of the orches-
tration by different methods.

� Utility Value. The generated utility value of Eq. (18)
by applying different algorithms. The value implies
the reachable distance to the theoretically optimal
solution.

7.2 Effect of Using Security-Aware Approach

In this section, we investigate the security improvement
introduced by the security-aware mechanism by running
the App(100, 100). Basically, we evaluate 1) the presented
security discrepancy between the user requirements and
the actual provision by the selected service and 2) the
achievable utility value by using different schemes.

As shown in Fig. 5, the resultant discrepancy can be sig-
nificantly reduced by 67.34 and 42.34 percent against SU and
SA-Greedy respectively. This substantial decrease within

Fig. 5. Security enhancement effects by different methods.

1. The original dataset is not available now, we therefore publish the
dataset used in our experiments in [36].

2. The list of the techniques and policies is available in [36].

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

GA-Par is because the proposed algorithm is aware of the
security satisfaction in both services themselves and the data
transmission. Additionally, an approximately 63 and 40 per-
cent reduction of utility value can be observed compared
with SU and SA-Greedy respectively. This is because only
the network uncertainty (Eq. (6)) is considered in the utility
function when adopting SU, while our approach takes both
uncertainty and security into account as shown in Eq. (14).
Although the uncertainty and security are included in SA-
Greedy, the greedy algorithm only has one shot to compute
the optimal solution, which makes it very hard to have a cor-
rect design to find the optimal solution. Moreover, this type
of algorithm is limited in generalization in that each single
optimization requires a new and carefully designed algo-
rithm. The results indicate that holistically GA-Par can mini-
mize the utility values and effectively find amore reasonable
solution from the candidate space.

7.3 Overall Effect Evaluation

In this experiment, we first deploy an application App(100,
100) by using the SGA, HGA and GA-Par. The initial popu-
lation size in all cases is uniformly set to be 5,000.

SGA versus GA-Par. It is observable from Table 3 that GA-
Par obtains a better solution for the optimization problem in
terms of fitness(utility) values, compared to SGA (i.e., the
ratio between them is 1.85). Moreover, the time consump-
tion of SGA is approximately 5.85 times more than that of
GA-Par which is far beyond the range of tolerance. The rea-
son is that the stage of reproduction requires a great number
of computing resources and the capacity of a single compu-
tation node typically cannot satisfy this vast demand. In
contrast, by using two-phase parallelization, GA-Par can
accelerate the procedures of both fitness value calculation
and generation reproduction. Considering the intolerable
time inefficiency, we will not take SGA into account in the
following experiments.

HGA versus GA-Par. Table 3 demonstrates the ratios of
time and value are roughly 2.54 and 1.39 for App(100, 100),
indicating that GA-Par outperforms HGA with respects to
both time efficiency and the fitness calculation. Table 4
shows more detailed comparison results when deploying
applications with different configurations of w and s. It is
observable that the average time and value ratio are 3.349
and 1.462 respectively. There is a stable behavioral ratio
between HGA and GA-Par in spite of some marginal fluctu-
ations. Although the value ratio slightly decreases with the
increment of workflow size, there still exists a guaranteed
improvement of utility value by GA-Par. The improvements
are predominately caused by the in-memory processing and
communication and the efficient parallelization level within
GA-Par. In effect, GA-Par obtains a trade-off for efficiency
between fitness and time, as elite list sharing and synchroni-
zation guarantee the fitness efficiency and population divi-
sion ensures the time efficiency. Furthermore, we will

illustrate the significant reduction of consumed time and
the improvement of effectiveness by varying parameters
(such as Q, Q00) in GA-Par in following sections.

7.4 Impact of Different Application Scales

Fig. 6 demonstrates the experimental results under different
workflow size and candidate number of microservices by
using GA-Par. We can observe that with the increment of
workflow size, the time consumption increases accordingly.
The linear increase demonstrates that the growth of task
numbers in the workflow will increase the search range to
find optimal solution, thereby taking longer time to finish
the overall computation. In Fig. 6a, the number of service
candidates is not an obvious factor that influences the time
consumption. The consumed time slightly fluctuates when
the topology and size of the workflow is determined.
Apparently, given the workflow size w and each component
in the orchestrated workflow has s candidates, the search
space is sw. Thus, the impact of s on the consumed time will
not be as significant as that of w.

Likewise, a similar phenomenon can be observed in
terms of the fitness calculation. In particular, the increased
workflow size will naturally degrade the optimization effec-
tiveness given the fixed setting of the total population. Com-
pared with a smaller-scale workflow, larger workflows with
soaring component numbers are less likely to converge and
obtain the optimal result once the population is set up.

7.5 Impact of Parallelization Parameters

Herein, we discuss the impact of some parallelization
parameters on the execution performance. We will evaluate

TABLE 3
Overall Evaluation by Submitting App(100, 100)

Exp Group Time Ratio Value Ratio

SGA/GA-Par 5.85 1.85
HGA/GA-Par 2.54 1.39

TABLE 4
Time and Value Ratio of HGA/GA-Par Under Different App(w,s)

Time Ratio Comparison

w\s 100 300 500 1000 1500 avg

50 3.901 2.844 3.407 4.789 4.132 3.815
100 2.182 2.535 2.670 2.684 2.691 2.553
150 2.415 4.065 2.391 2.571 3.775 3.043
200 3.277 3.965 4.544 3.720 4.416 3.985
avg 2.944 3.352 3.253 3.441 3.754 3.349

Value Ratio Comparison

50 1.648 2.114 2.118 1.726 1.745 1.870
100 1.506 1.389 1.326 1.347 1.374 1.388
150 1.345 1.240 1.348 1.317 1.385 1.327
200 1.361 1.197 1.253 1.260 1.249 1.264
avg 1.465 1.485 1.511 1.413 1.438 1.462

Fig. 6. Time and value of GAPar.

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 139

the impact on the fitness value and execution time under
different population size and partition numbers during the
two-phase parallelization depicted in Section 6.2.2.

First, we fix Appð50; 100Þ and change the initial popula-
tion size ranging from 1000 to 5,000 and 10,000; and it is
observable from Fig. 7a that the consumed time will dra-
matically increase with the population size going up while
the fitness value reduced when the population size soars, as
illustrated in Fig. 7b. This is because the expanded popula-
tion will increase the opportunities of emerged elitist since
more individuals are involved in the genetic operations.
Undoubtedly, it leads to increased effectiveness towards
the optimal result, but with an expected extension of time
consumption. Therefore, within the orchestration we need
to strike the balance between the time consumption and
orchestration quality.

Second, we fix Appð100; 100Þ with the 5,000 population
and dynamically adjust Q0 and Q00. Q0 ranges from 40 to 160
with an equal interval while Q00 is initially set to the same as
Q0 and will shrink to 1=2, 1=4 or 1=8 of Q0. Fig. 8a illustrates
that with the decrement of Q0, the time consumption grows
accordingly. It is obvious that the increase of parallelization
will accelerate the procedure of fitness calculation, where
the computation time difference becomes more significant
when Q0 is large, while for small Q0, the benefit of parallel-
ism is trivial and can even be governed by the randomness
introduced by our holistic algorithm. Additionally, given Q0

is fixed, the execution time reaches the bottom when the
partition number in the GO phase reduces by 50 percent. In
fact, the resource capacity in our Spark-based computation
model will determine the maximal number of co-locating
executors within the same slave node, and the resultant
merge scheme considering IO consumption and messaging
communications. Specifically, if three vcores are requested
per executor and the physical capacity is eight vcores per
slave node, at most two executors can be simultaneously
launched within a node during the fitness calculation phase.

Equivalently, when Q00 ¼ 1=2Q0, the partitions can be
merged locally for GO phase without any global shuffles
across nodes, thereby minimizing the execution time. After-
wards, the reduced number of Q00 will increase the network
communication overheads, and thus slow down the holistic
computing. This is identical to our theoretical discussion in
Section 6.3 and Appendix A. The trade-off between the scale
of parallelism Q0 and the communication overhead ofQ00=Q0

further motivates us to better configure our algorithm based
on the hardware characteristics.

However, the corresponding fitness value for different Q0

and Q00=Q0, as in Fig. 8b, indicates the enlarged partition
number during the fitness calculation phase has an indirect
impact on the quality of the optimization solution. In fact,
the overall effectiveness is merely relevant to the quality of
generated individuals, thus the fitness value is predomi-
nantly influenced by the proportion of elites in the GO
phase. This will result in weak correlation between the util-
ity value and the Q0. Assuming the total population size
and Q0 is fixed, the decreased Q00 indicates the growth of
sub-population per partition in the subsequent GO phase.
In this case, the proportion of elite individuals in the
population descends. From Fig. 8b, we observe a slight
decrease of fitness value at the beginning followed by an
increase with the decrease of Q00. Therefore, GA-Par trades
off the population diversity through controlling Q00 to find
suitable parameters.

7.6 Scalability Evaluation

We evaluate how the machine number involved in GA-Par
affects the execution performance. We fix the application
type as App(100, 100) and the total population is initialized
as 5000. Because of the relationship between Q0 and Q00

found in Section 7.5, we only conduct the experiments
under the pre-assumption of Q00 ¼ Q0=2with fixed Q0 ¼ 160.

Fig. 9 demonstrates the scalability of our algorithm if the
machine number is scaled from 5 to 20 nodes, where each
node maintains the same number of partitions. In this man-
ner, the total partition number will be proportional to the
number of nodes. Due to the increased number of partitions,
it leads to less computation workload involved within a par-
tition. As a result, the increased level of parallelization can
be achieved, substantially reducing the consumed time as
shown in Fig. 9a. Regarding the achievable optimal level, as
demonstrated in Fig. 9b, there is no direct correlation
between the machine number and the fitness value. Despite
the fact that increased machines will result in the increment
of partition number Q0, the varying partition number Q00

will not directly impact on the fitness value (similar to the
explanation for Fig. 8b).

Fig. 7. The impact of population size setting.

Fig. 8. Impact analysis of partition configuration.

Fig. 9. Fixed number of partitions per node.

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Fig. 10 describes another case where we fix the number of
total partitions in different experiments. We can observe a
consistent time reduction with the increment of the cluster
size. Apparently, the increased computation capability from
adding more machines will considerably accelerate the
computation over a fixed population and partition number,
in spite of increased communication overheads among par-
titions. Furthermore, for the aforementioned reason, the
number of machines will not affect the fitness value.

8 RELATED WORK

To deal with load spikes and vendor locks-in issue whilst
fully exploiting the cloud diversities with reduced cost and
guaranteed QoS, geo-distributed cloud techniques and archi-
tectures are proposed recently such as SuperCloud [37], [38],
MultiCloud [39], JointCloud [1]. In many cases, the use of
sound security engineering techniques can reduce risks. An
alternative approach is to directly utilize the reliable plat-
form-as-a-service (PaaS) components provided by different
Cloud providers, instead of designing and building applica-
tions from scratch. Refs. [10], [11] introduced a set of algo-
rithms to orchestrate applications over federated Clouds.
However, the security level of each microservice is randomly
assigned. Ref. [12] assigned the security level by the perfor-
mance of a specific security technique such as encryption
algorithm applied in a Cloud-based service. However, it is
extremely difficult to handle the Cloud diversities. Addition-
ally, the complexity of large-scale geo-distributed Cloud
environments results in a great number of uncertainties
which cannot be modeled by the availability in conventional
information security approaches [19], [40]. In this paper, we
propose a genericmethod to quantitativelymeasure the secu-
rity level and its availability aspects under uncertainties of
Cloud-based service components. Furthermore, how to opti-
mize the service selection or component placement to meet
different requirements has become a research hotspot in the
last few years. Refs. [41], [42], [43] focused on QoS-aware ser-
vice composition and its implementation in middleware. The
QoS attributes typically include the response time, availabil-
ity, reliability, price, and reputation, etc., without quantita-
tively depicting the secure objectives with risks and solving
them in real Cloud environments. Meanwhile, the above
reviewed works have not yet considered the uncertainties
within federated Clouds and the corresponding impacts of
massive-scale microservices on the security aspects. These
motivate us to combine them in the emerging microservice
orchestration to realize a reliable service-oriented system.

As for the optimization solution, solvers such as
Mixed-Integer Non-linear Programming (MINLP) or Linear

Programming (MIP) etc. are infeasible in the proposed large
orchestration scenario due to the high time complexity [13].
Genetic Algorithm has been widely used to optimize
resource management and task placement [44], [45], and
parallel Genetic Algorithms also have been explored for
decades [14]. However, there is no general and easily-used
framework that allows for implementing the GA over large-
scale clusters. [46] first proposed how to implement GA
over Hadoop and conducted detailed studies on the factors
that would affect the algorithms’ scalability. Similarly, this
paper also studies the scalability factors of GA-Par within
in-memory computing scenarios. The most recent works
[32], [47] introduced a general framework using a map
reduce paradigm, but neglected the linked data among
interdependent or interactive Cloud services and their non-
functional requirements. By contrast, GA-Par can be easily
adapted into distributed models to accelerate the orchestra-
tion. [48] proposed an architecture to deploy and execute
parallel GAs based on the available resources over Clouds.
This architecture can be considered as an effective supple-
ment to GA-Par.

9 CONCLUSION

In this paper, we describe a new microservice orchestration
framework by considering both internal security threats
and environmental uncertainties. The internal security satis-
faction levels stem from application’s topology and diverse
provisioning capability of microservice candidates. The
uncertainties are captured by black-boxed modelling in
terms of response time and transmission rates over Clouds.
We adopt a novel paralleled GA-Par on Spark to accelerate
the solving of the proposed orchestration. Some important
findings and conclusions can be drawn as follows:

� Improving dependability of massive scale orchestration is
becoming of increasing importance. Quantitatively
formalized modeling and measurement through-
out both internal and external factors can compre-
hensively empower maximized achievability of
dependability.

� Standing on the security viewpoint reveals an effective
means to measure the system dependability. Although
we focus on the security-aware modeling and prob-
lem formulation, the presented methodology can be
easily applied into other dimensions for depicting
dependability such as reliability, availability and
safety, etc.

� Relying on real dataset and data-driven approach is
critical to understanding the real-world problems and
formulating assumptions under realistic circumstances.
Statistic approaches can be exploited to deal with the
long-standing environmental uncertainty issues and
it is also an effective means to capture the long-tail
response characteristics of Cloud-based services.

� Integrating GA-Par with IoT and Fog eco-system to facili-
tate the service orchestration. Within the coming deca-
des, the concept of the exascale system will become
increasingly commonplace, interconnecting billions
of different sensors, things and other data sources
across a vast number of industries which will likely

Fig. 10. Fixed number of total partitions.

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 141

co-exist in some form of Fog and smart mobility eco-
system [49], [50]. The challenges of orchestration per-
taining to security and uncertainties will continue to
play a critical concern for designing these systems.

More practical validations are underway to demonstrate
the industrialized process into production-level cluster sched-
uling and container orchestration systems based on collabora-
tive works with Alibaba such as [51], [52], [53]. Technically,
we will further consider data partition to achieve individual
reduction of GA incurred by partitioning the data to different
Slaves. Finally, studies are also needed to develop partition
algorithms tomakeGA-Parmore efficient.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Program (2016YFB1000103) and the National
Natural Science Foundation of China (61421003). This work
is also supported by Beijing Advanced Innovation Center
for Big Data and Brain Computing (BDBC).

REFERENCES

[1] H. Wang, P. Shi, and Y. Zhang, “JointCloud: A cross-cloud coop-
eration architecture for integrated internet service customization,”
in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2017, pp. 1846–1855.

[2] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
“Fog orchestration for internet of things services,” IEEE Internet
Comput., vol. 21, no. 2, pp. 16–24, Mar./Apr. 2017.

[3] A. C. Zhou, Y. Gong, B. He, and J. Zhai, “Efficient process map-
ping in geo-distributed cloud data centers,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2017, Art. no. 16.

[4] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data
transfer for graph processing in geo-distributed datacenters,”
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1397–
1407.

[5] M. Natu, R. K. Ghosh, R. K. Shyamsundar, and R. Ranjan, “Holistic
performance monitoring of hybrid clouds: Complexities and
future directions,” IEEE Cloud Comput., vol. 3, no. 1, pp. 72–81,
Jan./Feb. 2016.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE
Trans. Depend. Secure Comput., vol. 1, no. 1, pp. 11–33, Mar. 2004.

[7] A. Dusia, Y. Yang, and M. Taufer, “Network quality of service in
docker containers,” in Proc. IEEE Int. Conf. Cluster Comput., 2015,
pp. 527–528.

[8] Y. Chen, A. Gorbenko, V. Kharchenko, and A. Romanovsky,
“Measuring and dealing with the uncertainty of SOA solutions,”
Perform. Dependability Service Comput.: Concepts, Techn. Res. Direc-
tions. IGI Global, pp. 265–294, 2012.

[9] A. Gorbenko and A. Romanovsky, “Time-outing internet serv-
ices,” IEEE Secur. Privacy, vol. 11, no. 2, pp. 68–71, Mar./Apr. 2013.

[10] P. Watson, “A multi-level security model for partitioning work-
flows over federated clouds,” J. Cloud Comput.: Advances Syst.
Appl., vol. 1, no. 1, 2012, Art. no. 15.

[11] Z.Wen, J. Cala, P.Watson, andA. Romanovsky, “Cost effective, reli-
able and secure workflow deployment over federated clouds,” IEEE
Trans. Services Comput., vol. 10, no. 6, pp. 929–941, Nov./Dec. 2017.

[12] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, “Security-aware
intermediate data placement strategy in scientific cloud work-
flows,” Knowl. Inf. Syst., vol. 41, pp. 423–447, 2014.

[13] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An extensible
framework for improving a distributed software system’s deploy-
ment architecture,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 73–100,
Jan./Feb. 2012.

[14] E. Cant�u-Paz, “A summary of research on parallel genetic algo-
rithms,” IlliGAL Report No. 95007, Illinois Genetic Algorithms
Laboratory (IlliGAL), UrbanaChampaign, IL, USA, Jul. 1995.

[15] Y. Gan, Y. Zhang, D. Cheng, et al., “An open-source benchmark
suite for microservices and their hardware-software implications
for cloud and edge systems,” in Proc. ACM Int. Conf. Archit. Sup-
port Program. Languages Operating Syst., 2019, pp. 3–18.

[16] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “A study
of the energy consumption characteristics of cryptographic algo-
rithms and security protocols,” IEEE Trans. Mobile Comput., vol. 5,
no. 2, pp. 128–143, Feb. 2006.

[17] S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah, “SecGraph: A uniform
and open-source evaluation system for graph data anonymization
and de-anonymization,” in Proc. USENIX Conf. Secur. Symp., 2015,
pp. 303–318.

[18] D. Catteddu and G. Hogben, “Cloud computing: Benefits, risks
and recommendations for information security,” in Proc. Iberic
Web Appl. Secur. Conf., Springer, 2009, p. 17.

[19] M. E. Whitman and H. J. Mattord, Principles Inf. Secur., Cengage
Learning, 2011.

[20] D. Trihinas, A. Tryfonos, M. D. Dikaiakos, and G. Pallis, “DevOps
as a service: Pushing the boundaries of microservice adoption,”
IEEE Internet Comput., vol. 22, no. 3, pp. 65–71, May/Jun. 2018.

[21] T. Xie and X. Qin, “Performance evaluation of a new scheduling
algorithm for distributed systems with security heterogeneity,” J.
Parallel Distrib. Comput., vol. 67, pp. 1067–1081, 2007.

[22] M. Forshaw, “Operating policies for energy efficient large scale
computing,” PhD dissertation, School Comput. Sci., Newcastle
Univ., Newcastle upon Tyne, U.K., 2015.

[23] M. Dobber, R. van der Mei, and G. Koole, “Effective prediction
of job processing times in a large-scale grid environment,” in
Proc. 15th IEEE Int. Symp. High Perform. Distrib. Comput., 2006,
pp. 359–360.

[24] T. Miu and P. Missier, “Predicting the execution time of workflow
activities based on their input features,” in Proc. SC Companion:
High Perform. Comput. Netw. Storage Anal., 2012, pp. 64–72.

[25] R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical Guide
to Heavy Tails: Statistical Techniques and Applications. Cambridge,
MA, USA: Birkh€auser, 1998.

[26] A. B. Downey, “Evidence for long-tailed distributions in the inter-
net,” in Proc. 1st ACM SIGCOMM Workshop Internet Meas., 2001,
pp. 229–241.

[27] V. P. Chistyakov, “A theorem on sums of independent positive
random variables and its applications to branching random proc-
esses,” Theory Probability Appl., vol. 9, pp. 640–648, 1964.

[28] E. Seneta, Ed., Regularly Varying Functions. Berlin, Germany:
Springer, 1976.

[29] P. Embrechts, T. Mikosch, and C. Kl€uppelberg, Modelling Extremal
Events: For Insurance and Finance. Berlin, Germany: Springer, 1997.

[30] P. Cirillo, “Are your data really pareto distributed?” Physica A:
Statistical Mech. Appl., vol. 392, no. 23, pp. 5947–5962, 2013.

[31] D. Bhandari, C. Murthy, and S. K. Pal, “Genetic algorithm with
elitist model and its convergence,” Int. J. Pattern Recognit. Artif.
Intell., vol. 10, pp. 731–747, 1996.

[32] P. Salza, F. Ferrucci, and F. Sarro, “elephant56: Design and imple-
mentation of a parallel genetic algorithms framework on hadoop
MapReduce,” in Proc. Genetic Evol. Comput. Conf. Companion, 2016,
pp. 1315–1322.

[33] M. Zaharia, M. Chowdhury, T. Das, et al., “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2012, pp. 2–2.

[34] C. Murthy, D. Bhandari, and S. K. Pal, “"-optimal stopping time
for genetic algorithms,” Fundamenta Informaticae, vol. 35, no. 1–4,
pp. 91–111, 1998.

[35] Y. Zhang, Z. Zheng, and M. R. Lyu, “WSPred: A time-aware per-
sonalized QoS prediction framework for web services,” in Proc.
IEEE 22nd Int. Symp. Softw. Rel. Eng., 2011, pp. 210–219.

[36] Dataset used for the experiments. [Online]. Available: https://
github.com/lukewen427/GA-Par-data, Accessed on: Apr. 25, 2019.

[37] Z. Shen, Q. Jia, G.-E. Sela, W. Song, H. Weatherspoon, and
R. Van Renesse, “Supercloud: A library cloud for exploiting cloud
diversity,” ACM Trans. Comput. Syst., vol. 35, 2017, Art. no. 6.

[38] Q. Jia, Z. Shen, W. Song, R. Van Renesse, and H. Weatherspoon,
“Supercloud: Opportunities and challenges,” ACM SIGOPS Oper-
ating Syst. Rev., vol. 49, pp. 137–141, 2015.

[39] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, “A
federated multi-cloud PaaS infrastructure,” in Proc. IEEE 5th Int.
Conf. Cloud Comput., 2012, pp. 392–399.

[40] D. B. Parker, Fighting Computer Crime: A New Framework for Protect-
ing Information. New York, NY, USA: Scribner, 1998.

[41] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web serv-
ices selection with end-to-end QoS constraints,” ACM Trans. Web,
vol. 1, 2007, Art. no. 6.

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

https://github.com/lukewen427/GA-Par-data
https://github.com/lukewen427/GA-Par-data

[42] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for
QoS-based web service composition,” in Proc. ACM Int. Conf.
World Wide Web, 2010, pp. 11–20.

[43] S. Rosario, A. Benveniste, S. Haar, and C. Jard, “Probabilistic QoS
and soft contracts for transaction-based web services orches-
trations,” IEEE Trans. Services Comput., vol. 1, no. 4, pp. 187–200,
Oct.–Dec. 2008.

[44] C. Guerrero, I. Lera, B. Bermejo, and C. Juiz, “Multi-objective
optimization for virtual machine allocation and replica placement
in virtualized hadoop,” IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 11, pp. 2568–2581, Nov. 2018.

[45] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344–1357, May 2016.

[46] A. Verma, X. Llor�a, D. E. Goldberg, and R. H. Campbell, “Scaling
genetic algorithms using MapReduce,” in Proc. 9th Int. Conf. Intell.
Syst. Des. Appl., 2009, pp. 13–18.

[47] F. Ferrucci, P. Salza, and F. Sarro, “Using hadoop MapReduce for
parallel genetic algorithms: A comparison of the global, grid and
island models,” Evol. Comput., vol. 26, no. 4, pp. 535–567, 2018.

[48] P. Salza, F. Ferrucci, and F. Sarro, “Develop, deploy and execute
parallel genetic algorithms in the cloud,” in Proc. Genetic Evol.
Comput. Conf. Companion, 2016, pp. 121–122.

[49] A. Longo, M. Zappatore, M. Bochicchio, and S. B. Navathe,
“Crowd-sourced data collection for urban monitoring via mobile
sensors,” ACM Trans. Internet Technol., vol. 18, 2017, Art. no. 5.

[50] A. Longo, M. Zappatore, and S. B. Navathe, “The unified chart of
mobility services: Towards a systemic approach to analyze service
quality in smart mobility ecosystem,” J. Parallel Distrib. Comput.,
vol. 127, pp. 118–133, 2019.

[51] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: A fault-
tolerant resource management and job scheduling system at inter-
net scale,” Proc. VLDB Endowment, vol. 7, pp. 1393–1404, 2014.

[52] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu,
Z. Zhang, and C. Li, “Reliable computing service in massive-scale
systems through rapid low-cost failover,” IEEE Trans. Services
Comput., vol. 10, no. 6, pp. 969–983, Nov./Dec. 2017.

[53] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and
C. Li, “ROSE: Cluster resource scheduling via speculative over-
subscription,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst.,
2018, pp. 949–960.

Zhenyu Wen received the MS and PhD degrees
in computer science from Newcastle University,
Newcastle Upon Tyne, United Kingdom, in 2011
and 2015, respectively. He is currently a postdoc
researcher with the School of Computing, New-
castle University, United Kingdom. His current
research interests include multi-objects optimisa-
tion, crowdsources, AI, and cloud computing.

Tao Lin received the BE degree from Zhejiang
University, and the MSc degree from EPFL. He is
currently working toward the PhD degree at
EPFL, Switzerland. His research interests include
distributed machine learning, optimization etc.

Renyu Yang received the PhD degree from
Beihang University. He is a research fellow with
the University of Leeds, United Kingdom. He is
also an adjunct research scientist with BDBC,
Beihang University, China. He was previously
with Alibaba Group and had industrial experience
in building large-scale systems. His research
interests include reliable resource management,
distributed systems, data processing, etc. He is a
member of the IEEE.

Shouling Ji received the BS (Honors) and MS
degrees from Heilongjiang University, and the
two PhD degrees from the Georgia Institute of
Technology and Georgia State University. He is a
professor with Zhejiang University and a research
faculty with the School of Electrical and Compu-
ter Engineering, Georgia Institute of Technology
(Georgia Tech). His current research interests
include data-driven security and privacy, AI secu-
rity, and big data analytics. He is a member of
the IEEE.

Rajiv Ranjan received the PhD degree from the
Department of Computer Science and Software
Engineering, University of Melbourne. He is a pro-
fessor in computing sciencewithNewcastle Univer-
sity, United Kingdom. Before moving to Newcastle
University, hewas Julius fellow (2013-2015), senior
research scientist and project leaderwith the Digital
Productivity and Services Flagship of Common-
wealth Scientific and Industrial ResearchOrganiza-
tion. Prior to that, he was a senior research
associate (lecturer level B) with the School of Com-

puter Science and Engineering, University of New South Wales. He is a
senior member of the IEEE.

Alexander Romanovsky is a professor in com-
puting science with Newcastle University, United
Kingdom. He is the investigator of the EPSRC
platform grant on Layers for Structuring Trustwor-
thy Ambient Systems (STARTA) and a co-investi-
gator of the EPSRC PRiME programme grant on
Power-efficient, Reliable, Many-core Embedded
systems. Before this, he coordinated the major
EU FP7 DEPLOY IP that developed the Rodin
tooling environment for formal stepwise design of
complex dependable systems using Event-B. His

main research areas are system dependability, fault tolerance, safety,
modelling, and verification.

Changting Lin received the BE and MS degrees
from Zhejiang Gongshang University, in 2009
and 2012, respectively. He is currently working
toward the PhD degree at Zhejiang University.
His research interests include software defined
network, reconfigurable, and network security.

Jie Xu is chair professor of computing with
the University of Leeds, director of UK EPSRC
WRG e-Science Centre, chief scientist of BDBC,
Beihang University, China. He has industrial
experience in building large-scale networked sys-
tems and has worked in the field of dependable
distributed computing for more than 30 years. He
is a Steering/Executive Committee member for
numerous IEEE conferences including SRDS,
ISORC, HASE, SOSE and is a co-founder for
IEEE IC2E. He has led or co-led many research

projects to the value of more than $30M, and published in excess of 300
academic papers, book chapters and edited books. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WEN ET AL.: GA-PAR: DEPENDABLE MICROSERVICE ORCHESTRATION FRAMEWORK FOR GEO-DISTRIBUTED CLOUDS 143

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

