
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 i

GA-Par: Dependable Microservice Orchestration
Framework for Geo-Distributed Clouds

Zhenyu Wen, Tao Lin, Renyu Yang, Member, IEEE , Shouling Ji, Member, IEEE , Rajiv Ranjan, Senior
Member, IEEE , Alexander Romanovsky, Changting Lin, Jie Xu, Member, IEEE

Abstract—Recent advances in composing Cloud applications have been driven by deployments of inter-networking heterogeneous
microservices across multiple Cloud datacenters. System dependability has been of the upmost importance and criticality to both
service vendors and customers. Security, a measurable attribute, is increasingly regarded as the representative example of
dependability. Literally, with the increment of microservice types and dynamicity, applications are exposed to aggravated internal
security threats and externally environmental uncertainties. Existing work mainly focuses on the QoS-aware composition of native
VM-based Cloud application components, while ignoring uncertainties and security risks among interactive and interdependent
container-based microservices. Still, orchestrating a set of microservices across datacenters under those constraints remains
computationally intractable. This paper describes a new dependable microservice orchestration framework GA-Par to effectively select
and deploy microservices whilst reducing the discrepancy between user security requirements and actual service provision. We adopt
a hybrid (both whitebox and blackbox based) approach to measure the satisfaction of security requirement and the environmental
impact of network QoS on system dependability. Due to the exponential grow of solution space, we develop a parallel Genetic
Algorithm framework based on Spark to accelerate the operations for calculating the optimal or near-optimal solution. Large-scale real
world datasets are utilized to validate models and orchestration approach. Experiments show that our solution outperforms the
greedy-based security aware method with 42.34% improvement. GA-Par is roughly 4x faster than a Hadoop-based genetic algorithm
solver and the effectiveness can be constantly guaranteed under different application scales.

Index Terms—service orchestration, dependability, microservice

F

1 INTRODUCTION

M ICROSERVICES are excellent building blocks for com-
posing applications whose components are dis-

tributed across multiple Cloud datacenters [1] for agility,
performance and fault-tolerance [2] [3] [4]. The strengths of
microservices help enable distributed application deploy-
ments by allowing quick provisioning and updating across
geo-distributed Clouds. For example, a recent study based
on benchmark Docker Containers on AWS EC2 showed that
they need much less time to start or boot up (less than 50
milliseconds) as compared to Virtual machines (VMs) (30-45
seconds) as well as having no or negligible memory over-
head [5]. Moreover, the containerized microservices provide
considerable freedom in personalizing users’ preferences.
For example, Docker Hub has stored over ten million im-
ages that are available for users to create their customized
applications. Therefore, the diversity significantly increases
the configuration dimension of each single microservice as
well as the scale of the search space to find a suitable
microservice compared to the VM-based Cloud services.

Dependability is a key system concern that incorporates
attributes of reliability, availability, safety, integrity, main-

• Z.Wen, R. Ranjan and A.Romanovsky are with Newcastle Uni-
versity, United Kingdom. E-mail: {zhenyu.wen, Raj.Ranjan, alexan-
der.romanovsky}@newcastle.ac.uk

• T.Lin is with the EPFL, Switzerland. E-mail: tao.lin@epfl.ch
• R.Yang and J.Xu are with University of Leeds, UK and BDBC, Beihang

University, China. E-mail: renyu.yang1@gmail.com, j.xu@leeds.ac.uk. Dr.
Renyu Yang is the corresponding author.

• S. Ji and C.Lin are with Zhejiang University, China. E-mail:{sji, lin-
changting}@zju.edu.cn

Manuscript received ???; revised ???

tainability, etc. Meanwhile security is increasingly recog-
nized as an important factor of dependability and brings
in considerations of confidentiality, availability and in-
tegrity [6]. Given the abstract nature of dependability, we
can take security as an example and measurable attribute.
Microservice orchestration is the procedure of determining
and selecting best microservice instances to compose an
application workflow that satisfy application’s functional
and nonfunctional requirements QoS. In this context, sys-
tem dependability will be influenced by both internal and
external causes. Internally, topological layout and the se-
curity attributes’ satisfaction quantitatively determine the
consequent dependability. Externally, unpredictable envi-
ronmental variables such as network jitter and noisy neigh-
bors [7] also impact the dependability across geo-distributed
Clouds. This is due to the logical satisfaction or optimization
that is achieved by internal examination may no longer
exist. For instance, [8] [9] report that network QoS uncertain-
ties of Cloud-hosted services have been widely recognized
and it is extremely difficult to accurately capture such un-
certainties. Therefore, to achieve a holistically dependable
orchestration necessitates both internally quantitative mea-
surement and environmental considerations.

Traditionally, security experts decide the service compo-
nent placement based on their domain knowledge to guar-
antee the overall application security level [10]. However,
such method heavily relies on human expertise and fails to
deploy in large-scale applications if the application consists
of a huge number of service components. Thus, a generic
mechanism to express the security risks and quantitatively
measure the security level of a microservice is urgently

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 ii

required. However, existing security-aware algorithms for
service composition randomly compute or statically deter-
mine the security level by simply checking the adopted
means such as the encryption algorithm or security policy,
etc. [11][12]. This will result in decreased accuracy in the
context of massive-scale microservices. Also existing works
merely regard the dependability as mathematical optimiza-
tion ignore the exploiting the external system uncertainties,
resulting in less realistic orchestration. Finally, the explo-
sively increasing number of workflow scale and microser-
vice candidates that available for application composition
leads to computation efficiency issues by using traditional
approaches [13] [14].

In this paper, we propose GA-Par framework to provi-
sion a dependable microservice orchestration and deal with
the involved computation efficiency issue. It aims to provide
an optimal solution of deploying microservice workflow
across geo-distributed datacenters. We take the orchestra-
tion as an optimization problem to maximize the depend-
ability satisfaction in terms of security requirement and net-
work QoS. We adopt a hybrid (both whitebox and blackbox
based) approach to measure relevant factors. Internally, we
propose a topology-aware security satisfaction model from
whitebox perspective to minimize the discrepancy between
the user’s requirements and actual service provision. We
exploit the discrepancy of individual microservices and
adjunct communications between microservices to reach
logical optimization. To achieve this, we comprehensively
analyze the security technologies, pertaining risks and the
target security goals to generate a quantitative measure of
the security satisfactory levels. Regarding environmental
uncertainties that may influence dependability, we develop
a statistical model considering transmission rates and ser-
vice response time in a black-box manner. This will be
added upon the security satisfaction model to formulate
a holistic optimization problem for an actually improved
dependability. Finally, we develop a novel parallel genetic
algorithm framework, GA-Par based on Apache Spark, to
effectively find the sub-optimal solution. A multi-phase
hybrid parallelization management can adaptively enable
both fitness evaluation and population reproduction within
the genetic algorithm to reach the maximized parallelism.
Experiments show that GA-Par can fulfill up to 33x times
acceleration of the execution time compared against other
parallelization approaches and the effectiveness can be con-
stantly guaranteed under different application scales. The
main contributions of this work are:

• A mathematic optimization model to formulate the de-
pendable microservice orchestration considering both
internal security requirement satisfaction and environ-
mental uncertainty factors.

• A measurement to quantify the satisfactory level of se-
curity goals by exploiting security risks and techniques
among interdependent microservices.

• A data-driven statistical model describe the network QoS
of Cloud based containerized microservices.

• A multi-phase parallelization framework to accelerated
the execution of Genetic Algorithms, that can signifi-
cantly improve orchestration efficiency.

Organization. We firstly present the motivation and require-

Fig. 1. e-banking microservices (a representative case [15])

US Datacenter

China Datacenter

UK Datacenter

Geo-distributed Clouds Environment

Scheduling Optimizer

Resource
Monitor

Metric
Aggregator

Deployment Manager

Requirement
Interpreter

Job
Dispatcher

Orchestrator

A

A’

B

C

C’

D E
User-Defined
Requirement
 (UDR)

submit

Fig. 2. Microservice orchestration in a geo-distributed Cloud environ-
ment.

ments in Section 2. We describe the topology-aware security
satisfaction measurement in Section 3 and the external un-
certainty model in Section 4. In section 5, we formalize the
problem as an optimization problem and then develop a
parallel framework to solve it in Sections 6. Experiments are
shown in Section 7. Following a review of related work in
Section 8, the paper draws conclusions and outlines further
works.

2 MOTIVATION

Geo-distributed Microservices. Fig 1 describes an e-
banking example, which is one of representative appli-
cations that adopt microservice architecture [15]. Regard-
ing the front-end, a logined user can process a payment
from their account, pay or request the credit cards, browse
information and request loans or mortgage, and acquire
wealth management services. The back-end data-related
microservices consist of in-memory or persistent databases
and relational database that underpin the information sys-
tem and services. In the financial and banking scenario,
dependability is a primary consideration not only in se-
curity guarantee in a single microservice (e.g., the privacy
protection in lending and mortgage, the confidentiality in
in credit card, the availability in database access, etc.), but
the secure data transmission between microservices. For fur-
ther resiliency and high quality of service, a global service
provider can spread the microservices over different data
centers or clouds. By leveraging geographically distributed
architecture (shown in Fig. 2), if one has serious connectivity
or late-timing issues, the holistic service can still operate
in other replicas. In this paper, we propose a microservices
orchestration framework which ensures the dependability
of composed microservices across geo-distributed Clouds.
Dependability and security. The original definition of de-
pendability is defined as accepted dependence and the
ability to deliver service that can justifiably be trusted.
Traditional dependability for a system incorporates avail-
ability, reliability, maintainability. Nowadays, applying se-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 iii

curity measures to the appliances of a system generally
improves the dependability by limiting the number of exter-
nally originated errors [6]. Therefore, reducing or mitigating
security risks can reduce the consequences of unforeseen
dependability threats. The measurement of security level
plays a significantly important role in quantifying how well
a service functions dependably in the presence of faults or
attacks over a specified period of time.
Characteristics in geo-distributed and containerized en-
vironment. A geo-distributed application consists of a set
of microservices with different functionalities. Each type
of microservice has a huge number of candidates with
diverse configurations in terms of resource request, network
configuration, QoS requirement, etc. Due to the deviations
of sensitivity to network environment among different mi-
croservices, different scheme of microservice placement in
geo-distributed environments also affects the overall de-
pendability. We summarize the following characteristics that
motivate this work:

• [C1] Customers are exposed to a variety of security risks.
For example, main sources of security threats include
human-caused sabotage of network, malicious attacks,
etc. Hence, the achievability of security goals is highly
affected by how microservices can mitigate or avoid
potential security risks.

• [C2] Differentiated security-levels are provisioned by different
microservices. There are more than ten million images
stored in Docker Hub. A lot of images share the same
functionalities, but with different non-functional config-
urations such as security. For example, the seven most
well known cryptographic algorithms are: DES, RSA,
HASH, MD5, AES, SHA-1 and HMAC [16]. However,
these algorithms have different ease of being attacked.
We assume that the more dependable microservice uses
stronger security techniques. Meanwhile, microservice
may use multiple techniques to tackle security. For in-
stance, a storage service may include access control,
data replication, resource isolation, etc. Therefore, it is
extremely desirable to judge the security levels of a
microservice by exploiting and aggregating the adopted
techniques.

• [C3] Microservices are exposed to uncertain and unpre-
dictable network environments. In container management
systems, the network is typically configured in a best
effort manner [7]. The host machine tries to provision
network resources to running containers. Consequently,
the network performance interference drastically man-
ifests outside the confines of strict QoS guarantee due
to unpredictable neighbors [7]. This uncertainty even
magnifies when microservices are geo-distributed across
multiple Cloud datacenters through wide area Internet.
In fact, network jittering with unpredictable latency is
sometimes difficult to capture[8] [9].

Dependable Orchestration Requirements. Based on afore-
mentioned analysis, the configuration diversity in terms
of security capability and network uncertainty significantly
affect the dependability of containerized microservices de-
ployment, thereby reducing the satisfaction level of user’s
requirement. To achieve a dependable microservice orches-
tration, we need to deal with following problems: [P1]

TABLE 1
Mapping between Cloud risks and security goals

Security Goal (G) Risk (R)
Accountability R1, R3, R5, R6, R7
Audibility R1, R3, R6, R7, R8
Authenticity R3, R4, R5, R8
Availability R1, R2, R4, R7, R8, R9
Confidentiality R1, R3, R4, R5, R7
Integrity R1, R3, R4, R5, R7
Non-repudiation R1, R7
Privacy R1, R2, R3, R5, R6, R8

how to characterize new security risks associated with the
microservices and how to bridge and exploit risks and
security techniques to quantify the security goal satisfaction
in microservice orchestration? [P2] how to capture the envi-
ronmental impact of network QoS fluctuation (e.g. through-
put and response latency) on microservice selection? [P3]
How to deal with the increasing computation complexity
of finding the most dependable microservices composition
under different optimization constraints? The significantly
increased scale of application workflow and increased num-
ber of microservices candidate horizontally and vertically
boost the computing difficulty.
Problem Formal Definition. Formally an orchestrated ap-
plication can be represented as a directed acyclic graph
(DAG) G = (S,E). Vertices S correspond to the service
components and edges E correspond to data transferred
between them. More specifically, each component i in the
application has a group of candidate microservices Si and
a candidate p is denoted by sip ∈ Si. We use sip and sjh
to represent the selected microservice of components Si and
Sj in the microservice workflow respectively. Accordingly,
the dependency Ei,j can be determined by dsip→sjh ∈ Ei,j ,
where the data is transferred from the candidate p of Si

to the candidate h of Sj . To tackle above challenges, we
leverage whitebox- and topology-dividing based method
to quantify the achievable security of G = (S,E). Each
candidate sjh might have varying data transmission rates
and complicated patterns (e.g. latency between request and
response) among different microservices at different times.
We use statistically significant models to measure environ-
mental uncertainties in a blackbox and statistic manner.

3 QUANTITATIVE SECURITY MEASUREMENT

Security is one of the indispensable non-functional aspects
for Cloud-based applications. Most research focuses on im-
proving the security of each service component within ap-
plications. SecGraph for example is a technique that enables
data owners to anonymize their data, while measuring the
data’s utility, and evaluating the data’s vulnerability against
modern De-Anonymization (DA) attacks [17]. However,
there are a number of security techniques that are applied
to a microservice. Therefore, how to measure the security
level of each candidate microservice becomes difficult, while
essential for composing a set of microservices to meet the
security requirements.

To deal with [P1], we first uncover the relationship be-
tween security level, goal, risks and the techniques/policies.
A microservice may face some security risks due to various
reasons such as deploying unreliable resource, using weak
authentication techniques and being accessed by insecure

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 iv

devices etc. On the other hand, there are different security
techniques or policies provisioned by the microservice to
alleviate the corresponding risks, thereby enhancing the se-
curity. Therefore, the achievement of security goals of a mi-
croservice depends on both potential security risks and the
mitigation degree of risk through techniques. We measure
the security level of each microservice by the aggregation of
targeted security goals. In next subsections, we investigate
the relationships among the top risks within Cloud comput-
ing [18], the most popular security-enforcement techniques
and Cloud security goals. We further develop a generic
method to measure the security level of each microservice
based on the multiple mapping relationships.

3.1 Mapping between Security Goals and Cloud Risks
Basic Idea. A complete collection of security goals within
the CIA(Central Intelligence Agency) triad (including ac-
countability, audibility, authenticity, availability, confidentiality,
integrity, non-repudiation and privacy) has been illustrated
by [19]. Cloud security is one of the subcategories within
information security realms, thus we consider these goals
as factors to quantify the security level of each candidate
microservice. As discussed above, the achievement of secu-
rity goals is affected by the potential security risks included
in the microservice. Since microservice technology is still
at an early but rapid development stage, there are limited
standards or whitepaper of microservice security risk that
can be widely accepted and generally referred to. Therefore,
we currently applied the commonly-used cloud securities
and risks into our main framework.

In the microservice scenario, the vulnerabilities can be
leveraged by attackers more easily, thereby aggravating the
manifestation of risks. The first reason for this is the archi-
tecture evolution. As monolithic application is de-composed
into hundreds of smaller microservices, the number and
complexity of interactions and communications between
them is substantially increased. Attackers can thus exploit
the decomposition and the inherent complexity to launch at-
tacks against applications. For example, many separate APIs
and ports per app represent numerous doors for intruders to
try to access within an application. Such microservices may
also be deployed in a cloud environment that the application
owner is unable to control. Hence, the manifestation of
specific risk such as loss of governance will increase ac-
cordingly. Secondly, container-based microservices provide
attackers more chances to break the applications’ security
guard down. For example, unlike in a VM, the kernel is
shared among all containers and host, which magnifies
and disseminates the kernel vulnerabilities. If a container
manages to attack the kernel, the corresponding threat can
be spread into the other parts of the system, resulting in
the whole host breakdown. Moreover, sharing and building
container images tends to be much easier and more efficient
than sharing VM images for DevOps purposes. This char-
acteristic, however, increases the chances of privacy leaks,
where the malicious code can be injected in both in-house
written code and third-party libraries by the image owner
[20] and image users are unaware of this.

The following investigates the top security risks in Cloud
computing hinder the achievement of the listed security
goals. These security risks have been summarized in [18]:

[R1] Loss of governance, [R2] Lock-in, [R3] Isolation fail-
ure, [R4] Management interface compromise, [R5] Data
protection, [R6] Insecure or incomplete data deletion, [R7]
Malicious insider, [R8] Customers’ security expectations and
[R9] Availability chain. In order to obtain the correlated
mapping between security goals and Cloud risks, we ana-
lyze all the potential attacks caused by each risk and inspect
whether each attack will lead to unreachable security goals.
The following example demonstrates how we map a risk to
the corresponding security goals.
Example. Risk [R1] describes the case where a Cloud user
loses the supervision to the Cloud provider in many aspects:
lack of port scans, vulnerability assessment and penetration
testing. The provider might outsource or subcontract ser-
vices to third-parties (unknown vendors), resulting in uncer-
tain security guarantees. Specifically, third-party providers
might not be able to meet the organization’s requirements
of certifications and responsibilities, thereby violating the
Accountability. Similarly, Availability, Confidentiality, Integrity
and Privacy of data cannot be guaranteed for the same
reason. Since no user audit is allowed by the Cloud provider,
the risk will also be closely relevant to Non-repudiation and
Audibility. Based on this domain knowledge, we can figure
out the complete mapping as shown in Table 1.

3.2 Microservice Security Level

In this subsection, we use the installed risk prevention
techniques of microservices to measure the security levels
of them. Table 2 shows the notations of the rest of the paper.
We assume that the security level of a microservice depends
on the quantity and quality of the application of security
techniques. For example, a type of risk can be prevented by
many security techniques, and they have a variety of per-
formance when they are applied independently. Moreover,
we assume that there is incremental effect by applying more
suitable techniques to a microservice. The following details
how to calculate the security level of a microservice.

We assume that a risk Rk can be handled by a set of
techniques and policies TechRk

. Thus, the total capacity
of Rk that can be prevented is:

∑
j∈TechRk

Vj , where Vj

represents the performance of technique j to reduce risk
Rk. Next, if a microservice s offers a set of techniques and
policies Techs, the ability of s to handle risk Rk can be

represented as Rk(s) =

∑
i∈{Techs∩TechRk

} Vi∑
j∈TechRk

Vj
. As mentioned

in Table 1, a security goal gq corresponds to a group of
risks Rgq . Therefore s’s capability of satisfying the security
goal gq can be defined as gqs =

∑
Rk∈Rgq

Rk(s). We use

set Gs = {g1s , .., g
|G|
s } to represent s’s capacity of targeting

different security goals.

3.3 Microservice Security Measurement

Take the e-banking example in Figure 1 again. We are
obliged to target security goals in essential microservices
such as payment and customer information provider, etc.
and enable secure data transmission (particularly user data
and monetary information) between microservices.

Microservice Security Satisfaction. To identify and sort
out those microservices that can best satisfy customers’
security requirements, we extend DSD (Degree of Security

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 v

TABLE 2
Notations

Symbols Descriptions
Security Metrics

gq ∈ G The qth goal where |G| = 8

Rgq ∈ R The qth goal’s risks set where |R| = 9
Rk(si) The ability of si to handle risk Rk

gq
si

si’s capabilities of targeting security goal gq

Gsi
si’s capabilities of targeting all goals

Microservice Orchestration
u A customer/user
sjh A candidate h selected by microservice component Sj

usjh u has selected sjh
dsip→sjh

The transfer of data from sip to sjh
Security Measurement

DSSD(u, sjh) Degree of sjh security deficiency, between its
capability and u’s requirements

DDSD(dsip,sjh
) Degree of data security deficiency between two

conjunct microservices sip and sjh
V DDSD(u, sjh) The security satisfactory degree of moving input data

from other conjunct microservices to sjh for user u
V SEC(u, sjh) All security-related metric value of sjh for user u
Util The utility function for selecting a microservice

Network QoS Measurement
ε(t) The reduction degree of time consumed or

transmission delays by using off-peak as the baseline
DTL Data Transmission Latency
SUR(t) Represents the possibility that a client can get the

response from a Cloud service after t
T (mrt, sjh) Customized user requirements for each service sjh.

If it meets requirements, set to 1 (available), else set
to ∞

λ Optimal solution for the given workflow
λ′ One of the solutions for the given workflow

Algorithms
S The set of all microservice candidates
Si The microservices candidate set for components i
M The total population size of each generation
L The numbers of components in a workflow
N The number of Slaves
Partition Partitions are basic units of parallelism and each

partition is responsible for an atomic logical
division of data.

Q′ The partition number used for Fitness Calculation
Q′′ The partition number used for Genetic Operation
C The number of cores on each Slave
T The number T of CPUs requested by each task
R The threshold for the number of stable iterations in

termination
iter The total number of GA iterations
Ci The ith constant value
INSj

The inputs from Sj ’s immediate predecessors
IN A set of all data dependencies in the given workflow

Algorithms Analysis
E The size of the elitism list
dCollecti The time delay for collecting the local elitism list

from ith partition
dBroadcastEi

The time delay for broadcasting the global elitism list
to ith Slave

Deficiency) [21] into DSSD (Degree of Service Security Defi-
ciency) in our model to describe the discrepancy between
desired security level and the supplied level. In this context,
DSSD(u, sjh) = 0 if the selected microservice sjh can fully
meet the demands of customer (u). DSSD can be formalized
as:

DSSD(u, sjh) =

|G|∑
q=1

wq
j ·M(gqu, g

q
sjh

)

where 0 ≤ wq
j ≤ 1,

|G|∑
q=1

wq
j = 1 and

M(gqu, g
q
sjh

) =

{
0 if gqsjh ≥ gqu
gqu − gqsjh otherwise

(1)

where wq
j is the weight of the qth security goal for com-

ponent Sj and the customer specifies the weights to reflect

their priorities among those goals. M represents the dispar-
ity between sjh security levels and u’s security demands in
terms of each security goal.

Data Transmission Security Satisfaction. For data trans-
mission between two components Si and Sj , we use DDSD
(Degree of Data Security Deficiency) to depict the satisfaction
of security of the data movement:

DDSD(dsip→sjh) =

|G|∑
q=1

wq
ij ·M(gqsip , g

q
sjh

)

where 0 ≤ wq
ij ≤ 1,

|G|∑
q=1

wq
ij = 1 and

M(gqsip , g
q
sjh

) =

{
0 if gqsjh ≥ gqsip
gqsip − gqsjh otherwise

(2)

In Eq. 2, dsip→sjh indicates the data transfer from source
sip to the destination sjh. We assume that the candidate
microservice in component Si satisfies the expected security
level of customers. Therefore, M(gqsip , g

q
sjh

) directly indi-
cates the customer’s security satisfaction from sip to sjh.
Customers can also define the priority or importance of
each security goal when transferring data from Si to Sj by
adjusting wq

ij . Thereafter, we can estimate the satisfaction of
transferring holistic data:

V DDSD(u, sjh) =
∑

{dsip→sjh
}∈INSj

DDSD(dsip→sjh) (3)

where INSj
is all input data pipelines of Sj from all its

immediate predecessors. Finally, we can calculate sjh’s sat-
isfaction of security by Eq. 4:

V SEC(u, sjh) = V DDSD(u, sjh) +DSSD(u, sjh) (4)

4 ENVIRONMENTAL UNCERTAINTY MEASURE-
MENT

To solve [P2], we leverage a data-driven and statistical mod-
eling method to capture and describe the environmental
impact on the dependable microservice orchestration.

4.1 Data Transmission Latency
Due to the network bandwidth fluctuation, the data trans-
mission latency varies between upstream and downstream
microservices. The throughput of file transfer to run in-
stances within an Amazon EC2 datacenter (US East North-
ern Virginia Region) is evaluated in [22]. The experiment
captured the network bandwidth every 30 minutes between
20th and 21st May 2013. A throughput surge can be detected
during the period 7.00-8.00 a.m. while the throughput dur-
ing other periods is much less and remains stable. Therefore,
we can take 7.00-8.00 am as the peak time and distinguish it
from other off-peak times. We define a latency factor ε,

ε(t) =

{
mean(thr(t̄))
mean(thr(t))

if t = peak time
1 if t = off-peak

(5)

where thr(t̄) indicates the throughput of time periods t̄
(time period except for t). According to real data statistics
[22], the peak throughput is approximately twice that of off-
peak throughput, resulting in ε = 1

2 . In practice, ε is config-
urable and can be adjusted according to different conditions.
Moreover, the total time and resource consumption also rely

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 vi

(a)

1000 1500 2000 2500 3000

Threshold x

0

500

1000

1500

2000

2500

3000

M
e
a
n
 E

x
c
e
s
s
 a

(x
)

Rightmost data

Pareto

(b)

0 500 1000 1500 2000 2500 3000

Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ottawa

Bumaby

Newcastle

Durham

NewYork

Chicago

Peyton

Lansing

Secaucus

LowerBound

(c)

0 500 1000 1500 2000 2500 3000

Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
 P

o
s
s
ib

il
it

y
 o

f
S
u
rv

iv
e
d

(d)

Fig. 3. Distributions; (a) RTT from different locations (b) ME of lower bound data and the fitted distribution (c) The lower bound of the end to end
network delay in Cloud datacenter (d) The survival distribution of the measured datacenter

on the amount of data. We can thus define the overall DTL
(Data Transmission Latency). DataSj and Total are the input
size of component Sj and the overall data consumed within
the entire microservice workflow respectively. The given
time tsjh represents the local time of sjh.

DTL(tsjh) = ε(tsjh) ·
DataSj

Total
(6)

Note that the size of transferred data and the execution
time of each microserivce can be taken from provenance
logs. Numerous works [23][24] describe how to estimate the
time and size based on the execution logs.

4.2 Uncertainty Modeling
4.2.1 Data-driven Benchmarking and Observations
In order to elaborate on the uncertainty model and its
impact on service provisioning efficiency and availability,
we probe the request response latencies and regard them
as a main indicator. To explore a generic distribution of
the request response time of a specific location, we deploy
the same implementation of clients that are geographically
distributed around the world, and send requests to one
central datacenter (in Dublin). The round trip timespan
(RTT) is collected, and the experiments are repeated 1,400
times for each individual client within a continuous 24-hour
period. As shown in Fig. 3(a), requests from different cities
are sent to Dublin and we display the response time with
CDF (Cumulative Distributed Function). Apparently, distance
and location have a significant impact on the distribution.
In general, a longer distance indicates a higher probability
of traffic delay. In addition to these observations, we have
to form a uniform model and find a marginal distribution to
cover all distributions of different requests comprehensively, and
satisfy the worst case for each specific datacenter. In Fig. 3(a),
the target distribution is supposed to be within the colored
area, and it is highly desirable to obtain an optimal distri-
bution that fits the marginal bound as closely as possible.
Due to space limitations, we only briefly demonstrate how
to find the required distribution.

4.2.2 Mathematical Modeling
Basically, the exponential distribution class provides a rig-
orous mathematical framework. In reality, our target distri-
bution belongs to a subclass of exponential distribution –
heavy-tailed distribution [25]. We intend to find a regularly
varying tail and determine the most appropriate distribu-
tion with the relevant properties.

Firstly assume a non-negative random variable X , the
CDF of X is F (x) = P [X ≤ x](x ≥ 0) and F̄ (x) = 1−F (x).

The data (shown in Fig. 3(a)) conforms to Eq. 7, and thus the
distribution is subexponential (i.e. F ∈ S) [26].

lim
x→∞

P [X1 + · · ·+Xn > x]

P [max(X1, . . . , Xn) > x]
= 1 for some (all) n ≥ 2, (7)

where X1, ..., Xn are independent and identically distributed
random variables (IID). [27] further substantiates the impli-
cation that such F is regularly varying-tailed (heavy-tailed).
The heavy-tail distribution will have:

lim
x→∞

F̄ (x)

e−δ·x → ∞ ∀δ > 0, F ∈ S (8)

In fact, this indicates that the tail of F decreases more
slowly than any exponential tail. Meanwhile, for a positive
measurable function f which regularly varies with index α,
if Eq. 9 is satisfied, we can write f ∈ R(α) [28]:

lim
x→∞

f(t · x)
f(x)

= tα ∀t > 0 (9)

Due to the heavy-tailed pattern, we conclude F̄ (x) ∈
R(−α) and further represent F̄ (x) = x−α·l(x) where x > 0,
α > 0, and l(x) ∈ R(0) is a slowly varying function. In gen-
eral, Pareto, Brr and Log-gamma distributions are examples
of distribution functions with such regularly varying tails.

Afterwards, we have to determine which offers the best-
fit distribution. To this end, we use the mean-excess (ME)
metric (see Eq. 10) to sort out the desired distribution from
all these candidtates [29].

ME(x) = E(X − x|X > x) =

∫∞
x F̄ (y)dy

F̄ (x)
, x > 0 (10)

We extract the data which corresponds to the lower
bound in Fig. 3(a), and calculate the ME value with different
x ranges as shown in Fig. 3(b). We examine the ME function
of each distribution, and only the Pareto Type I distribution
increases linearly [30]. Specifically, the ME of a standard
Pareto I distribution is shown in Eq. 11 (the blue line in
Fig. 3(b)).

ME(x) =
x

α− 1
, α > 1 (11)

Therefore, we choose Pareto as our approximate fitting
distribution and use Eq. 12 to calculate the cumulative
probability within a specified time window.

F (t) =

∫ ∞

t

α · xα

tα+1
dt (12)

Fig. 3(c) illustrates the effectiveness of the application
with Eq. 12. The LowerBound curve can always guarantee the
coverage of the response time boundary and all measured
request cases. In this manner, we have the survive function
(Eq. 13), which represents the possibility of a client getting

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 vii

a response from a Cloud service after t (as illustrated in
Fig. 3(d)). By leveraging the survive function, we quantita-
tively describe the uncertainty in request handling.

F̄ (t) = 1 − F (t) = 1 −
∫ ∞

t

α · xα

tα+1
dt (13)

5 FORMULATION AND SOLUTION

5.1 Orchestration Problem

Based on the model proposed in Section 3.3 and Section
4, the overall function of user u to run a microservice
candidate h in the component Sj can be expressed as:

Util(u, sjh, t) = θ · DTL(tsjh) + (1− θ) · V SEC(u, sjh) (14)

Users can customize the weight θ to manifest their re-
quired importance and tradeoff between data transmission
efficiency and the security requirements.

Single component utility function. For each component
Sj , customers have their specific requirements to avoid the
uncertainty. Based on our early experience, we assume that
the survival rate of Sj ought to be higher than 10%. In order
to apply the uncertainty factor into our model, we depict
T (mrt,sjh) as in Eq. 15 where mrt is the maximum response
time that the customer can tolerate. In this formalized def-
inition, if the survival rate is lower than 10%, we set the
output to be +∞.

T (mrt, sjh) =

{
1 if F̄ (mrt) ≥ 10%

+∞ otherwise
(15)

Thus, the utility of u selecting an sjh is:

V alue(u, sjh,mrt, t) = T (mrt, sjh) · Util(u, sjh, t) (16)

where sjh ∈ Sj and Sj ∈ S.
Multiple component orchestration. We assume that the

optimal orchestration is that each selected microservice sjh
in microservice component Sj within an application can
meet user u’s requirements. It can be defined as:

Optimal(u, λ) =
∑

sjh∈λ

V alue(u, sjh,mrt, t) = 0 (17)

where λ is one of the optimal solutions for the target orches-
tration workflow. However, it is very difficult to guarantee
the optimal solution. The optimal solution may not even
exist due to the lack of candidate services. Therefore, our
objective is to find an orchestration that minimizes the value
from all possible solutions Λ:

Minimize:
∑

sjh∈λ′,λ′∈Λ

V alue(u, sjh,mrt, t); (18)

where λ′ is one of the solutions for the target workflow.

Definition 1 (Optimal Solution). As in the statement of
optimization problem in Eq. 18, the number of selected
microservices is fixed to |λ′|. Therefore the optimal solution
can be obtained by traversing m|λ′| solutions, where each
component in the orchestration workflow has m candi-
date microservices. The given optimization problem can be
proofed an NP-hard problem.

Conjecture 1. The dynamic programming method is not suitable
for solving our problem.

We assume that a set SK = {s1, ..., sk} is the optimal
solution of composing k types of microservice, and a set
SK+1 is the optimal solution of composing k + 1 types of
microservices. If Sk ̸⊂ SK+1, the dynamic programming
method will take more time than the direct calculation of the
optimal SK+1. However, in our optimization problem, this
situation happens very frequently due to the impact of data
dependencies. Thus, a new and more efficient algorithm is
desired to solve this optimization problem.

5.2 Basic Solution Principle

With respect to optimization algorithms, [13] demonstrated
that Genetic Algorithms (GA) outperform other solutions
such as Mixed-Integer Non-linear Programming (MINLP) or
Linear Programming (MIP), etc. The high time complexity
of MIP and MINLP solvers make it infeasible to apply
those in large orchestration problems. Therefore, we present
GA-Par (Genetic Algorithm Parallelism) – a novel Parallel
Genetic Algorithm designed to optimize the microservice
orchestration in terms of the security under uncertainty.

In our Genetic Algorithm (GA), a string w = (β1, ..., βL)
with length L = |λ′| is used as a chromosomal repre-
sentation for a workflow and each βi = Si ∈ S rep-
resents a component. Each gene segment derives from a
finite set of microservices Si = {si1, ..., sim}. According
to our optimization objective, we set the fitness function
fit(λ′) =

∑
sjh∈λ′ V alue(u, sjh,mrt, t). Basically, the GA

usually includes two primary parts: Fitness Calculation (FC)
and Genetic Operations (GO) [31]. The effect value of each
chromosome (individual) is calculated in FC, and then
the elites are sorted out from all population members. In
GO, the new chromosomes are generated by operations:
Selection, Crossover and Mutation. After iterations of several
generations, a sub-optimal solution can be found.

6 GA-PAR: DESIGN AND IMPLEMENTATION

To tackle [P3], we propose a novel multi-phase parallelized
GA to accelerate the orchestration procedure. We will briefly
overview existing solutions and introduce our architecture
and detailed implementations.

6.1 Parallelized GA Overview

According to the philosophy of divide-and-conquer, GA
parallelism can be categorized into two approaches:

1) Fitness Evaluation Parallelism – The parallelism is con-
ducted merely within the calculation of fitness value by
distributing individuals to different computing nodes (i.e,
slaves). The centralized master manages all the GO opera-
tions and the generated population. This method is suitable
for cases that have a time-consuming fitness function calcu-
lation. Obviously, the GO will become extremely inefficient
with an increase in population scale due to the single point
of performance bottleneck. The computing power of the
master tends to be limited once dealing with the huge num-
ber of individuals for generating new populations. More-
over, a significant network latency might be aggravated
considering the communication of individual distribution
when computing the fitness value over different slaves.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 viii

Sub-pop

GA-Par Slave

GA-Par Master

GA-Par Slave

Partition

Master

Partition

Master
Partition

Master

Partition

Master

PopPartition

Manager

SharedElitist

Manager

Complete population (pop)

Sub-pop Sub-pop Sub-pop

Sub-population

(sub-pop)

Elite report and update

SlaveAgent SlaveAgent

Partition dynamic adjustment

... ...

Genetic Operations

...

Fig. 4. The architecture and module interactions in GA-Par

2) Population Reproduction Parallelism – This approach
allows the process of creating a new population indepen-
dently over different slaves, and each slave generates and
manages a subset of the new population. As a result, the
time consumed in the population generation can be reduced.
However, if the GO is only performed inside each isolated
computing node, the probability of duplicated individuals
will rise. Thus, it is extremely likely to fall into a local
optimum.

Recently, [32] introduced a framework for running ge-
netic algorithms with map reduce paradigm in Hadoop.
However, the design is on the basis of dumping each
generation of chromosomes onto disk, thereby dramatically
introducing huge IO costs and decreasing the operational
performance. Furthermore, a large scale workflow optimiza-
tion problem requires a very large search space in terms of
horizontal (dependencies of each components) and vertical
(different attributes of each candidate microservice). For
these reasons, in-memory data operations naturally fit in
the GA operations, especially for the crossover operation in
which the data for each individual can be efficiently shuffled
among different nodes. We therefore propose a new parallel
algorithm GA-Par based on Apache Spark and it adaptively
incorporates the parallelization of both fitness evaluation
and population reproduction.

6.2 GA-Par Framework

6.2.1 Architecture

GA-Par adopts the master-slave architecture and two-phase
parallelization management to fully explore the efficiency of
the fitness calculation and genetic operations. The parallel
degree can be dynamically adjusted in order to maximize
the calculation velocity whilst maintaining the optimization
quality. Mechanisms such as adaptive partition control,
global population shuffling and elitist sharing are proposed
to achieve these objectives.

Fig. 4 details the architecture and multiple modules
underpinning the implementation of GA-Par. The GA-Par
Master is responsible for the overall management of par-
allelization and population life-cycle (i.e. generation and
exchange). The SlaveAgent is the daemon agent that runs on
each GA-Par slave node and handles instructive messages
from the GA-Par Master. More specifically, the population
will be divided into a number of sub-populations and each
of them is firstly initiated on each partition. This procedure
is controlled by the PopPartitionManager (PPM) with the
master. Correspondingly, on each slave node, the Partition-
Manager (PM) takes charge of each sub-population and
manages the new generation through FC and GO.

Algorithm 1: : GA-Par Master
Input:
S: all candidate microservices
Q′: partition number for FC
Q′′: partition number for GO
λ′: required composition of microservices

1 Master(S, Q′, Q′′, λ′)
2 sharedElitist← Initialize(S, λ′)
3 while do not meet termination condition do
4 setPartitionNumberToSlaves(Q′)
5 // wait all PartitionMasters to finish FC
6 sync for FC
7 // collect all elites from partitions to a list in master node
8 localElitistList← collect()
9 // find the best individual

10 s← findBest(localElilistList)
11 // update the shared elitist list
12 sharedElitist← update(sharedElitist,

localElilistList)
13 // broadcast the shared elitist list to slaves
14 broadcast(sharedElitist)
15 setPartitionNumberToSlaves(Q′′)
16 // wait all PartitionMasters to produce new generation
17 sync for GO
18 end
19 return s

Also, the PPM coordinates the dynamic partition config-
urations to make partitions fully parallelized over different
slaves whilst considering the data shuffling cost (Appendix
A.1 explains the execution model). To increase the diversity
of the new generation, we merge several partitions into a
single partition for population reproduction and then re-
partition it appropriately to ensure the parallelization of
FC (detailed later). Moreover, the local elite results of each
partition will be collected and synthesized into a global
elitist list by SharedElitistManager(SEM) in GA-Par Master
before the selection phase. The manager will then broadcast
the global elitist list to the running partitions to ensure
each of them has the best chance to generate advantage
offsprings.

We adopt Spark to implement the aforementioned func-
tionalities. Compared with Hadoop, Spark can provision
a more flexible approach to manipulate data via Resilient
Distributed Datasets (RDD), which a collection of elements
that will be partitioned across different slaves [33]. More-
over, the in-memory computation on large clusters strikes
the balance between the maximized parallelism and the
diversity control.

6.2.2 Two-phase Parallelization
A candidate microservice within a workflow component
must satisfy all security and efficiency requirements, while
guaranteeing service availability. Herein, we describe the
asynchronized messaging between GA-Par Master and Par-
tition Managers and the main procedures on both sides
realize the adaptive partition operations. GA-Par Master
will finally output the optimal orchestration solution.

Alg. 1 and Alg. 2 depict the collaborative and interactive
procedure of the master and pertaining slaves. The master

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 ix

will read candidate list, configurations before initializing the
shared elitist information. Regarding the slave, after receiv-
ing the candidates from the GA-Par Master, individuals will
be initialized on Q partitions, followed by the GO within
each partition. The population size per partition is M

Q , where
M is the total population size of each generation, which
has been pre-defined. Q is the number of partitions selected
from the set {Q′′, Q′}, where Q′′ < Q′. Q can therefore
be dynamically adjusted in different execution phases to
ensure the tradeoff between parallelism and diversity. In
particular, during the FC phase, in order to rapidly finish
the FC computation and obtain the elitist list, the degree of
parallelism should be maximized to Q′. In other words, the
individuals of the whole population (M size) are distributed
to the maximal number of partitions, in order to fully utilize
the computational resources. On the other hand, in the GO
phase, individuals within the same partition are involved to
produce a new generation. Therefore, the more individuals
involved, the more diverse generations can be produced. As
a result, there are increasing chances to obtain individual
advantage. Accordingly, as shown in Alg. 1 (Lines 4 and 15)
and Alg. 2 (Lines 6 and 13), the partition number is shrunk
from Q′ to Q′′ to guarantee the offsprings’ diversity.

It is noteworthy that the elitist list is computed by the
extension method from [31] to guarantee the diversity of
each generation. The local elitist list will be sorted out,
sent within the PartitionMaster (Alg. 2 Line 10-12) and
collected in the GA-Par Master (Alg. 1 Line 8). The local
list will be aggregated into a sharedElitist by selecting the
individuals that have better fitness values. Afterwards, the
global sharedElitist will be disseminated to each Partition-
Master across different slaves (Alg. 1 Line 9-11). Compared
with conventional methods, our elitism method also benefits
from the global elitist list over the partitions, giving rise to
the fact that the outstanding individuals of each partition
can be selected and synchronized. This can significantly
minimize the fitness value and reduce the execution time.
The PartitionMaster continues the GO phase by using the
latest synchronized list. When new generations are gener-
ated and notified from the slave (Alg. 2 Line 18 to 20),
GA-Par Master will update by selecting the individuals that
have better fitness values (Alg. 1 Line 17) and repeat the
iteration loop until a certain condition emerges. Finally, GA-
Par Master outputs the best fit microservice selection for the
submitted workflow (Alg. 1 Line 19) .

6.2.3 Algorithm Termination

The GA algorithm will eventually compute the best so-
lution as the total number of iterations iter goes to ∞
[34]. However, limited by computation resources, the value
of iter should be decided in some sense of optimal. The
termination control in GA-Par assumes that the process
will be terminated if there is no further improvement in
the global fitness value for a fixed number of iterations R.
Literally, the value of R can be defined by users according
to the complexity of their problems. In our experiments, we
perform the grid search to find the optimal R within the
range of [10, 20, 30, 40]. Eventually 20 is selected since we
cannot observe any efficiency gain of reaching the optimal
when R surpasses 20.

Algorithm 2: : GA-Par Slave and PartitionMaster
Input:
shareElitist: shared elitist list
Q′: partition number for FC
Q′′: partition number for GO
pop: population
M : the population size

1 Slave(shareElitist, Q′, Q′′, M , pop)
2 // initialize a M

Q′ size population for each partition
3 pop← Initialize(M , pop)
4 while not be terminated by master do
5 // get the partition number Q′ from Master
6 PartitionNumber(Q′)
7 // compute the fitness value for each individual
8 fitpop← FC(pop)
9 // find the best N individual

10 localElitist← find(fitpop, N , pop)
11 // send localElitist to Master
12 Send(localElitist)
13 // sync latest shareElitist from Master
14 shareElitist← Sync()
15 // get the partition number Q′′ from Master
16 PartitionNumber(Q′′)
17 // generate a new generation
18 pop← GO(pop, sharedElitist)
19 // notify new generation pop to Master

20 Notify()
21 end

6.3 Time Complexity Analysis

Since our algorithm involves intensive computation while
having low I/O consumption, we simplify our analysis by
only providing the majority cost for one iteration (genera-
tion) under the case of a single core executor: 1) population
creation/reproduction: O(M |S|); 2) fitness score computa-
tion: O(M(L3)); 3) elitism list updating: O(O(Mlog(MQ′) +
EQ′log(EQ′)) where E is the size of the elitism list;
4) crossover: O(ML); and 5) mutation: O(M). The total
complexity of one iteration for the single core executor is
O(M(|S|+ L3 + log(MQ′))).

In contrast, under the parallel cluster environment, the
time complexity of GA-Par computation can be reduced to
O(T

NC × [M(|S| + L3 + log(MQ′)) + EQ′log(EQ′)]) where
T is the requested CPU cores of each task, and C and N
represent the number of CPU cores on each node and node
number respectively. The analysis has been omitted and
details are in Appendix A.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

Platform. We perform all experiments on a 20-node cluster
hosted on Google Cloud Platform. Each node is hosted as
a n1-standard-8 instance with 8 vCPU (single hardware
hyper-thread and chosen from 2.5 GHz Intel Xeon E5 v2,
30GB RAM, and 100GB storage.
Dataset. The used datasets consist of: 1) a list of 4, 532
web services’ response-times distributed in 150 computing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 x

nodes across over 20 countries [35]1; 2) one week through-
put records that are derived from Dublin Microsoft Cloud
servers [22]; 3) 51 collected techniques and policies for
security improvements of Cloud-based services2.
Workloads. In the following experiments, we assume that
the customers prefer the highest security that Cloud-based
microservices can provide, given by gqcj = 1, q ∈ {1, .., 8}.
To evaluate our algorithm, we firstly assign a number from
0 to 24 to each microservice, representing the local time
period. Next, we randomly select n techniques out of total
51 techniques to each microservice and n is also randomly
generated. In addition, we randomly generate four types of
DAGs as workflows: The number of vertices in the DAG
#w is selected from (50, 100, 150 or 200) and dependencies
between vertices are randomly generated to simulate the
workflow (e.g., the example in Figure 1). For each vertex
within a workflow, we then randomly select #s = (100, 300,
500, 1000 or 1500) microservices as the candidates. We use
different mappings of workflow and service configurations
for the application (marked as App(w, s)) in our experiments.
We deploy App(w, s) and set up the same initial population.
Methodology. We firstly evaluate the security enhancement
by comparing GA-Par with the SU (a generalized security-
unaware method) and SA-Greedy (a greedy-based security-
aware approach). Afterwards, the overall orchestration ef-
fectiveness and efficiency of our GA-Par (multiple slaves
with two-phase parallelization) will be evaluated against
other schemes: SGA (a standalone GA, running GA in a
single machine) and HGA (a Hadoop-based Parallelized
GA, following the elephant56 [32]). Since the setting-up of
mapper and reducer in [32] is equivalent to our partition
setting during the two-phase parallelization, we evaluate
GA-Par and HGA under completely the same configura-
tions for fairness considerations. Furthermore, we conduct
the analysis of impact on the GA-Par efficiency by varying
parameters such as diverse application scale, parallelization
setting, etc. The scalability of the proposed method is also
assessed by varying the number of machines.
Metrics. In particular, we use three complementary metrics:
• Security Discrepancy. The discrepancy between the re-

quirement and the targeted security level that the given
approach can achieve.

• Consumed Time. The time consumption of the orchestra-
tion by different methods.

• Utility Value. The generated utility value of Eq. 18
by applying different algorithms. The value implies the
reachable distance to the theoretically optimal solution.

7.2 Effect of Using Security-Aware Approach

In this section, we investigate the security improvement
introduced by the security-aware mechanism by running
the App(100, 100). Basically, we evaluate 1) the presented
security discrepancy between the user requirements and the
actual provision by the selected service and 2) the achievable
utility value by using different schemes.

As shown in Figure 5, the resultant discrepancy can
be significantly reduced by 67.34% and 42.34% against

1. The original dataset is not available now, we therefore publish the
dataset used in our experiments in [36]

2. The list of the techniques and policies is available in [36].

(a) Security Discrepancy (b) Utility Value

Fig. 5. Security Enhancement Effects by Different Methods

TABLE 3
Overall Evaluation by Submitting App(100, 100)

Exp Group Time Ratio Value Ratio
SGA/GA-Par 5.85 1.85
HGA/GA-Par 2.54 1.39

SU and SA-Greedy respectively. This substantial decrease
within GA-Par is because the proposed algorithm is aware
of the security satisfaction in both services themselves and
the data transmission. Additionally, an approximately 63%
and 40% reduction of utility value can be observed com-
pared with SU and SA-Greedy respectively. This is because
only the network uncertainty (Eq. 6) is considered in the
utility function when adopting SU, while our approach
takes both uncertainty and security into account as shown
in Equation 14. Although the uncertainty and security are
included in SA-Greedy, the greedy algorithm only has one
shot to compute the optimal solution, which makes it very
hard to have a correct design to find the optimal solution.
Moreover, this type of algorithm is limited in generalization
in that each single optimization requires a new and carefully
designed algorithm. The results indicate that holistically
GA-Par can minimize the utility values and effectively find
a more reasonable solution from the candidate space.

7.3 Overall Effect Evaluation
In this experiment, we firstly deploy an application App(100,
100) by using the SGA, HGA and GA-Par. The initial popu-
lation size in all cases is uniformly set to be 5, 000.

SGA vs GA-Par. It is observable from Table 3 that GA-
Par obtains a better solution for the optimization problem
in terms of fitness(utility) values, compared to SGA (i.e. the
ratio between them is 1.85). Moreover, the time consumption
of SGA is approximately 5.85 times more than that of
GA-Par which is far beyond the range of tolerance. The
reason is that the stage of reproduction requires a great

TABLE 4
Time and Value Ratio of HGA/GA-Par under Different App(w,s)

Time Ratio Comparison
w \s 100 300 500 1000 1500 avg

50 3.901 2.844 3.407 4.789 4.132 3.815
100 2.182 2.535 2.670 2.684 2.691 2.553
150 2.415 4.065 2.391 2.571 3.775 3.043
200 3.277 3.965 4.544 3.720 4.416 3.985
avg 2.944 3.352 3.253 3.441 3.754 3.349

Value Ratio Comparison
50 1.648 2.114 2.118 1.726 1.745 1.870
100 1.506 1.389 1.326 1.347 1.374 1.388
150 1.345 1.240 1.348 1.317 1.385 1.327
200 1.361 1.197 1.253 1.260 1.249 1.264
avg 1.465 1.485 1.511 1.413 1.438 1.462

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xi

(a) Time of GAPar (b) Value of GAPar

Fig. 6. Time and Value of GAPar.

number of computing resources and the capacity of a single
computation node typically cannot satisfy this vast demand.
In contrast, by using two-phase parallelization, GA-Par can
accelerate the procedures of both fitness value calculation
and generation reproduction. Considering the intolerable
time inefficiency, we will not take SGA into account in the
following experiments.

HGA vs GA-Par. Table 3 demonstrates the ratios of
time and value are roughly 2.54 and 1.39 for App(100, 100),
indicating that GA-Par outperforms HGA with respects to
both time efficiency and the fitness calculation. Table 4
shows more detailed comparison results when deploying
applications with different configurations of w and s. It is
observable that the average time and value ratio are 3.349
and 1.462 respectively. There is a stable behavioral ratio
between HGA and GA-Par in spite of some marginal fluctu-
ations. Although the value ratio slightly decreases with the
increment of workflow size, there still exists a guaranteed
improvement of utility value by GA-Par. The improvements
are predominately caused by the in-memory processing and
communication and the efficient parallelization level within
GA-Par. In effect, GA-Par obtains a trade-off for efficiency
between fitness and time, as elite list sharing and syn-
chronization guarantee the fitness efficiency and population
division ensures the time efficiency. Furthermore, we will
illustrate the significant reduction of consumed time and the
improvement of effectiveness by varying parameters (such
as Q, Q′′) in GA-Par in following subsections.

7.4 Impact of Different Application Scales

Figure 6 demonstrates the experimental results under differ-
ent workflow size and candidate number of microservices
by using GA-Par. We can observe that with the increment of
workflow size, the time consumption increases accordingly.
The linear increase demonstrates that the growth of task
numbers in the workflow will increase the search range to
find optimal solution, thereby taking longer time to finish
the overall computation. In Figure 6(a), the number of ser-
vice candidates is not an obvious factor that influences the
time consumption. The consumed time slightly fluctuates
when the topology and size of the workflow is determined.
Apparently, given the workflow size w and each component
in the orchestrated workflow has s candidates, the search
space is sw. Thus, the impact of s on the consumed time
will not be as significant as that of w.

Likewise, a similar phenomenon can be observed in
terms of the fitness calculation. In particular, the increased
workflow size will naturally degrade the optimization ef-
fectiveness given the fixed setting of the total population.

(a) Consumed Time (b) Fitness Value
Fig. 7. The impact of population size setting

(a) Consumed Time Comparison (b) Fitness Value Comparison
Fig. 8. Impact analysis of partition configuration

Compared with a smaller-scale workflow, larger workflows
with soaring component numbers are less likely to converge
and obtain the optimal result once the population is set up.

7.5 Impact of Parallelization Parameters

Herein, we discuss the impact of some parallelization pa-
rameters on the execution performance. We will evaluate
the impact on the fitness value and execution time under
different population size and partition numbers during the
two-phase parallelization depicted in Section 6.2.2.

Firstly, we fix App(50, 100) and change the initial pop-
ulation size ranging from 1000 to 5, 000 and 10, 000; and it
is observable from Fig. 7(a) that the consumed time will
dramatically increase with the population size going up
while the fitness value reduced when the population size
soars, as illustrated in Fig. 7(b). This is because the expanded
population will increase the opportunities of emerged elitist
since more individuals are involved in the genetic opera-
tions. Undoubtedly, it leads to increased effectiveness to-
wards the optimal result, but with an expected extension of
time consumption. Therefore, within the orchestration we
need to strike the balance between the time consumption
and orchestration quality.

Secondly, we fix App(100, 100) with the 5, 000 popula-
tion and dynamically adjust Q′ and Q′′. Q′ ranges from 40
to 160 with an equal interval while Q′′ is initially set to
the same as Q′ and will shrink to 1/2, 1/4 or 1/8 of Q′.
Figure 8(a) illustrates that with the decrement of Q′, the
time consumption grows accordingly. It is obvious that the
increase of parallelization will accelerate the procedure of
fitness calculation, where the computation time difference
becomes more significant when Q′ is large, while for small
Q′, the benefit of parallelism is trivial and can even be
governed by the randomness introduced by our holistic
algorithm. Additionally, given Q′ is fixed, the execution
time reaches the bottom when the partition number in the
GO phase reduces by 50%. In fact, the resource capacity
in our Spark-based computation model will determine the
maximal number of co-locating executors within the same
slave node, and the resultant merge scheme considering IO

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xii

(a) Time (b) Value
Fig. 9. Fixed number of partitions per node

(a) Time (b) Value
Fig. 10. Fixed number of total partitions
consumption and messaging communications. Specifically,
if three vcores are requested per executor and the phys-
ical capacity is eight vcores per slave node, at most two
executors can be simultaneously launched within a node
during the fitness calculation phase. Equivalently, when
Q′′ = 1/2Q′, the partitions can be merged locally for GO
phase without any global shuffles across nodes, thereby
minimizing the execution time. Afterwards, the reduced
number of Q′′ will increase the network communication
overheads, and thus slow down the holistic computing. This
is identical to our theoretical discussion in Section 6.3 and
Appendix A. The trade-off between the scale of parallelism
Q′ and the communication overhead of Q′′/Q′ further mo-
tivates us to better configure our algorithm based on the
hardware characteristics.

However, the corresponding fitness value for different
Q′ and Q′′/Q′, as in Fig. 8(b), indicates the enlarged par-
tition number during the fitness calculation phase has an
indirect impact on the quality of the optimization solution.
In fact, the overall effectiveness is merely relevant to the
quality of generated individuals, thus the fitness value is
predominantly influenced by the proportion of elites in the
GO phase. This will result in weak correlation between the
utility value and the Q′. Assuming the total population size
and Q′ is fixed, the decreased Q′′ indicates the growth of
sub-population per partition in the subsequent GO phase.
In this case, the proportion of elite individuals in the popu-
lation descends. From Fig 8(b), we observe a slight decrease
of fitness value at the beginning followed by an increase
with the decrease of Q′′. Therefore, GA-Par trades off the
population diversity through controlling Q′′ to find suitable
parameters.

7.6 Scalability Evaluation
We evaluate how the machine number involved in GA-Par
affects the execution performance. We fix the application
type as App(100, 100) and the total population is initialized
as 5000. Because of the relationship between Q′ and Q′′

found in Section 7.5, we only conduct the experiments under
the pre-assumption of Q′′ = Q′/2 with fixed Q′ = 160.

Figure 9 demonstrates the scalability of our algorithm if
the machine number is scaled from 5 to 20 nodes, where

each node maintains the same number of partitions. In this
manner, the total partition number will be proportional to
the number of nodes. Due to the increased number of parti-
tions, it leads to less computation workload involved within
a partition. As a result, the increased level of parallelization
can be achieved, substantially reducing the consumed time
as shown in Fig. 9(a). Regarding the achievable optimal
level, as demonstrated in Fig. 9(b), there is no direct cor-
relation between the machine number and the fitness value.
Despite the fact taht increased machines will result in the
increment of partition number Q′, the varying partition
number Q′′ will not directly impact on the fitness value
(similar to the explanation for Fig. 8(b)).

Figure 10 describes another case where we fix the num-
ber of total partitions in different experiments. We can ob-
serve a consistent time reduction with the increment of the
cluster size. Apparently, the increased computation capabil-
ity from adding more machines will considerably accelerate
the computation over a fixed population and partition num-
ber, in spite of increased communication overheads among
partitions. Furthermore, for the aforementioned reason, the
number of machines will not affect the fitness value.

8 RELATED WORK

To deal with load spikes and vendor locks-in issue whilst
fully exploiting the cloud diversities with reduced cost
and guaranteed QoS, geo-distributed cloud techniques and
architectures are proposed recently such as SuperCloud
[37][38], MultiCloud[39], JointCloud [1]. In many cases, the
use of sound security engineering techniques can reduce
risks. An alternative approach is to directly utilize the
reliable platform-as-a-service (PaaS) components provided
by different Cloud providers, instead of designing and
building applications from scratch. [11] [10] introduced a
set of algorithms to orchestrate applications over federated
Clouds. However, the security level of each microservice
is randomly assigned. [12] assigned the security level by
the performance of a specific security technique such as
encryption algorithm applied in a Cloud-based service.
However, it is extremely difficult to handle the Cloud di-
versities. Additionally, the complexity of large-scale geo-
distributed Cloud environments results in a great number
of uncertainties which cannot be modeled by the availability
in conventional information security approaches [40][19]. In
this paper, we propose a generic method to quantitatively
measure the security level and its availability aspects under
uncertainties of Cloud-based service components. Further-
more, how to optimize the service selection or component
placement to meet different requirements has become a
research hotspot in the last few years. [41] [42] [43] focused
on QoS-aware service composition and its implementation
in middleware. The QoS attributes typically include the
response time, availability, reliability, price, and reputation,
etc., without quantitatively depicting the secure objectives
with risks and solving them in real Cloud environments.
Meanwhile, the above reviewed works have not yet con-
sidered the uncertainties within federated Clouds and the
corresponding impacts of massive-scale microservices on
the security aspects. These motivate us to combine them in
the emerging microservice orchestration to realize a reliable
service-oriented system.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xiii

As for the optimization solution, solvers such as Mixed-
Integer Non-linear Programming (MINLP) or Linear Pro-
gramming (MIP) etc. are infeasible in the proposed large
orchestration scenario due to the high time complexity [13].
Genetic Algorithm has been widely used to optimize
resource management and task placement [44][45], and
parallel Genetic Algorithms also have been explored for
decades [14]. However, there is no general and easily-used
framework that allows for implementing the GA over large-
scale clusters. [46] first proposed how to implement GA
over Hadoop and conducted detailed studies on the fac-
tors that would affect the algorithms’ scalability. Similarly,
this paper also studies the scalability factors of GA-Par
within in-memory computing scenarios. The most recent
works [32] [47] introduced a general framework using a
map reduce paradigm, but neglected the linked data among
interdependent or interactive Cloud services and their non-
functional requirements. By contrast, GA-Par can be easily
adapted into distributed models to accelerate the orchestra-
tion. [48] proposed an architecture to deploy and execute
parallel GAs based on the available resources over Clouds.
This architecture can be considered as an effective supple-
ment to GA-Par.

9 CONCLUSION

In this paper, we describe a new microservice orchestration
framework by considering both internal security threats and
environmental uncertainties. The internal security satisfac-
tion levels stem from application’s topology and diverse
provisioning capability of microservice candidates. The un-
certainties are captured by black-boxed modelling in terms
of response time and transmission rates over Clouds. We
adopt a novel paralleled GA-Par on Spark to accelerate
the solving of the proposed orchestration. Some important
findings and conclusions can be drawn as follows:

• Improving dependability of massive scale orchestration is
becoming of increasing importance. Quantitatively for-
malized modeling and measurement throughout both
internal and external factors can comprehensively em-
power maximized achievability of dependability.

• Standing on the security viewpoint reveals an effective means
to measure the system dependability. Although we focus on
the security-aware modeling and problem formulation,
the presented methodology can be easily applied into
other dimensions for depicting dependability such as
reliability, availability and safety, etc.

• Relying on real dataset and data-driven approach is criti-
cal to understanding the real-world problems and formu-
lating assumptions under realistic circumstances. Statistic
approaches can be exploited to deal with the long-
standing environmental uncertainty issues and it is also
an effective means to capture the long-tail response
characteristics of Cloud-based services.

• Integrating GA-Par with IoT and Fog eco-system to facilitate
the service orchestration. Within the coming decades, the
concept of the exascale system will become increasingly
commonplace, interconnecting billions of different sen-
sors, things and other data sources across a vast number
of industries which will likely co-exist in some form
of Fog and smart mobility eco-system [49][50]. The
challenges of orchestration pertaining to security and

uncertainties will continue to play a critical concern for
designing these systems.

More practical validations are underway to demon-
strate the industrialized process into production-level clus-
ter scheduling and container orchestration systems based on
collaborative works with Alibaba such as [51][52][53]. Tech-
nically, we will further consider data partition to achieve
individual reduction of GA incurred by partitioning the data
to different Slaves. Finally, studies are also needed to de-
velop partition algorithms to make GA-Par more efficient.

APPENDIX A
PERFORMANCE ANALYSIS

A.1 Spark-based Execution Model

Apache Spark is built upon the concept of Re-
silient Distributed Datasets (RDD) and provides ac-
tions/transformations on top of RDD. More precisely, Spark
applications include three steps: creating new RDDs, trans-
forming existing RDDs, and calling operations/actions on
RDDs to compute the results.

A Spark application consists of a driver process and a
set of executor processes scattered across nodes on a clus-
ter. A driver is a process that controls the high-level data
flow, while executor processes are responsible for executing
tasks. Batches of tasks run concurrently on each executor
throughout the application’s lifetime. In other words, these
tasks are distributed to RDD partitions in a bijective way
and are executed concurrently. As a result, the parallelism
of Spark is highly dependent upon the partition number
as well as the executor’s capability. Using Spark command
line flags is a flexible approach for tuning the utilization
of computational resources to available CPU cores. For
example, the “executor-core” flag can specify the number
of CPU cores bound to each executor, controls which the
number of concurrent tasks. Suppose a cluster has N slaves
and each has C CPU cores. If we parallelize the execution of
NC tasks over the cluster, the average utility is NC

T .
The performance of GA-Par is evaluated with respect to

the following three factors: computation complexity, network
communication, and disk reads/writes. For ease of exposition,
we simplify the time complexity analysis by first consider-
ing one iteration of the algorithm.

A.2 Computation Complexity

The computation is the main constituent of the overall time
complexity. For sequential GA computation, the time com-
plexity of each iteration can be divided into the following:

Population Creation/Reproduction. According to our
definition in Spark preliminary, Q′ partitions correspond to
Q′ tasks to be executed. Each partition involves M

Q′

∑L
i=1 |Si|

computations. Therefore we have:

T1 = Q′ × (
M

Q′ ×
L∑

i=1

|Si|) ≊ O(M |S|)

Fitness Score Computation. The computation of each
partition can be summarized as M

Q′ × t1, where t1 is the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xiv

time complexity of workflow evaluation. More details are
as follows:

t1 =
∑

sjh∈λ′

V alue(ci, sjh,mrt, t)

=
∑

sjh∈λ′

T (mrt, sjh) · {θ · ε(tsjh) ·
DataSj

Total

+ (1− θ) · [V DDSD(ci, sjh) +DSSD(ci, sjh)]}

Thus, the time complexity t1 can be written as

t1 =
∑

sjh∈λ′

T (mrt, sjh) · {θ · [ε(tsjh) ·
DataSj

Total
]+

(1− θ) · [
∑

{dsip→sjh
}∈INsj

|G|∑
q=1

wq
ij ·M(gqsip , g

q
sjh

)+

|G|∑
q=1

wq
j ·M(gqci , g

q
sjh

)]} (19)

and approximated as follows:

t1 ≊
L∑

i=1

(C1 +

|INSj
|∑

j=1

C2 + C2) ≊ C1L+ C2|IN |L+ C2L

≊ (C1 + C2)L+ C2|IN |L

where C1 and C2 are constants. As a result, INSj
represents

the input data from Sj ’s immediate predecessors, and IN
is the set of all data dependencies. In the best case, we
have |IN | = L − 1, while in the worst case the number
of data dependencies is |IN | = L(L− 1). Consequently, for
Q′ partitions, the time complexity T2 is:

T2 ≊ Q′ × (
M

Q′ × t1) ≊ O(ML3)

Updating the Elitism List. The time complexity of find-
ing the elitism list on a single host is O(Mlog(M)). How-
ever, the time complexity can be reduced by first generating
the local elitism list for each partition. A local elitism list is
obtained by running the top E nearest neighbors on each
partition. The global elitism list with size E can then be
generated by sorting EQ′ individuals.

Since each partition has M
Q′ individuals, the time used to

sort the fitness value in each partition can be approximated
to O(MQ′ log(

M
Q′)), and finding the global elitism list requires

O(EQ′log(EQ′)). Thus, the time complexity of updating
the global elitism list is:

T3 ≊ O(Q′ × (
M

Q′ log(
M

Q′)) + EQ′log(EQ′))

≊ O(Mlog(
M

Q′) + EQ′log(EQ′))

Crossover. Since Genetic Operations (GO) works on a
smaller number of partitions Q′′ to ensure the diversity of
the next generation, the time complexity of both Crossover
and Mutation should be considered under this case. The

population size of each partition is M
Q′′ , which reduces the

time complexity of Crossover to:

T4 ≊ Q′′ × (
M

2Q′′ · L)s ≊ O(ML)

Mutation. Since it involves the rate of Mutation, the time
complexity can be approximated as:

T5 ≊ O(M)

In summary, the time complexity for each iteration is:

Time(Computation) = T1 + T2 + T3 + T4 + T5

≊ O(M |S|) +O(ML3)) +O(Mlog(
M

Q′) + EQ′log(EQ′))

+O(ML) +O(M)

≊ O(M(|S|+ L3 + log(
M

Q′)) + EQ′log(EQ′))

Based on the above analysis, we prove that the over-
all GA-Par computation can be reduced to O(T

NC ×
Time(Computation)), which clearly demonstrates the scal-
ability of the algorithm.

Proof. Assume we have a N -slaves Cluster, each slave has C
cores, and each task needs T cores of CPU. Then, there are
NC
T execution slots that can run in parallel, i.e. the speed-

up is T
NC . Since Time(Computation) represents the total

workload of a single machine with one single-core CPU, the
time complexity of our algorithm can reduce to O(T

NC ×
Time(Computation)).

A.3 Network Communication
Shuffling also affects execution time, so data transmission
and partition operations should be carefully considered. We
simplify our evaluation model by assuming that our ideal
Spark implementation will not block the Spark program and
only the observable and countable network communication
delay is considered:

Shuffling Cost of Updating the Elitism List. This
procedure includes collection of the local elitism lists and
broadcast of the global elitism list. During collection of
the local elitism lists, we primarily consider the maximal
network delay maxi∈[1,Q′](dCollecti), where dCollecti is
the time delay for collecting the local elitism list from the
ith partition. Similarly, for broadcasting, the time delay
should be maxj∈[1,N](dBroadcastj), where dBroadcastj is
the time delay for broadcasting the global elitism list to the
jth slave. As a reminder, either the size of local elitism list
or global elitism list is E. Thus, we can evaluate the cost as
T6 where C4, C5 and C6 are constants:

T6 = C4 max
i∈[1,Q′]

(dCollecti) + C5 max
j∈[1,N]

(dBroadcastj) + C6

≊ O(E)

Shuffling Cost of Partition Adjustment. The perfor-
mance depends on the value of Q′ and Q′′, where

Q′ = ⌊Q
′

N
⌋ × a1 + b1;Q

′′ = ⌊Q
′′

N
⌋ × a2 + b2

Based on the scheme mentioned above, at most ⌊ Q
′

Q′′ ⌋ par-
titions can be merged into a single partition. Also, this
merging process is not limited to the same slave and might

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xv

occur among the partitions in different slaves. This will
cause the data shuffling. In particular:

• If ⌊Q
′

N ⌋ = i × ⌊ Q
′

Q′′ ⌋ (i ∈ Z), no additional shuffling
occurs because the merging process operates within the
same slave.

• Otherwise, the partitions will cross over slaves. Assume
⌊Q

′

N ⌋ = i × ⌊ Q
′

Q′′ ⌋ + r, where i, r ∈ Z. The worst
case scenario of partition adjustment would be Q′

partitions each containing M
Q′ individuals, participating

in the shuffling procedure. The communication cost is
C7 ·Q′ ·MQ′×θ, i.e., C7Mθ where θ is the bit transmission
rate for an individual. The worst case scenario rarely
happens under the control of the optimized Spark
shuffling schema, but in the best case, each Slave only
involves the remaining r partitions. The ideal shuffling
cost would be C8N × (⌊Q

′

N ⌋ mod ⌊ Q
′

Q′′ ⌋).
In summary, the shuffling cost T7 for partition adjust-

ment would fall within the following:

C8N × (⌊Q
′

N
⌋ mod ⌊Q

′

Q′′ ⌋) ≤ T7 ≤ C7Mθ

A.4 Disk Reads/Writes
Our system involves intensive computations but the pro-
cessed data can easily fit into memory. As a result, we
can ignore the cost of I/O in the initialization phase. The
shuffling process will involve some unavoidable I/O costs,
which can follow the partial schema of A.3. Specifically, the
analysis includes:

Updating the Elitism List. We first collect the local
elitism lists from each partition and read them on the Master
node. the I/O cost is 2EQ′. Similarly, the I/O cost for
broadcasting the global elitism list is 1 + Q′′. As a result,
the total I/O cost in this phase is 2EQ′ +Q′′ + 1.

Partition Adjustment. Based on the analysis in A.3, the
I/O cost is approximately between 2N(⌊Q

′

N ⌋ mod ⌊ Q
′

Q′′ ⌋)
and 2M .

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program (2016YFB1000103) and the National
Natural Science Foundation of China (61421003). This work
is also supported by Beijing Advanced Innovation Center
for Big Data and Brain Computing (BDBC). For any cor-
respondences, please contact corresponding author Renyu
Yang.

REFERENCES

[1] H. Wang, P. Shi, and Y. Zhang, “Jointcloud: A cross-cloud coop-
eration architecture for integrated internet service customization,”
in IEEE ICDCS, 2017.

[2] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
“Fog orchestration for internet of things services,” IEEE Internet
Computing, vol. 21, no. 2, pp. 16–24, 2017.

[3] A. C. Zhou, Y. Gong, B. He, and J. Zhai, “Efficient process map-
ping in geo-distributed cloud data centers,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2017, p. 16.

[4] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data
transfer for graph processing in geo-distributed datacenters,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on. IEEE, 2017, pp. 1397–1407.

[5] M. Natu, R. K. Ghosh, R. K. Shyamsundar, and R. Ranjan, “Holis-
tic performance monitoring of hybrid clouds: Complexities and
future directions,” IEEE Cloud Computing, vol. 3, no. 1, pp. 72–81,
2016.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE TDSC, vol. 1, no. 1, pp. 11–33, 2004.

[7] A. Dusia, Y. Yang, and M. Taufer, “Network quality of service in
docker containers,” in 2015 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2015, pp. 527–528.

[8] Y. Chen, A. Gorbenko, V. Kharchenko, and A. Romanovsky, Mea-
suring and Dealing with the Uncertainty of SOA Solutions. IGI
Global, 2012.

[9] A. Gorbenko and A. Romanovsky, “Time-outing internet ser-
vices,” IEEE Security & Privacy, 2013.

[10] P. Watson, “A multi-level security model for partitioning work-
flows over federated clouds,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 1, no. 1, p. 15, 2012.

[11] Z. Wen, J. Cala, P. Watson, and A. Romanovsky, “Cost effective,
reliable and secure workflow deployment over federated clouds,”
IEEE TSC, 2016.

[12] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, “Security-
aware intermediate data placement strategy in scientific cloud
workflows,” Knowl. Inf. Syst., 2014.

[13] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An extensible
framework for improving a distributed software system’s deploy-
ment architecture,” IEEE TSE 2012.

[14] E. Cantú-Paz, “A summary of research on parallel genetic algo-
rithms,” 1995.

[15] Y. Gan, Y. Zhang, D. Cheng et al., “An open-source benchmark
suite for microservices and their hardware-software implications
for cloud and edge systems,” in ACM ASPLOS 2019.

[16] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “A
study of the energy consumption characteristics of cryptographic
algorithms and security protocols,” IEEE Transactions on mobile
computing, vol. 5, no. 2, pp. 128–143, 2006.

[17] S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah, “Secgraph: A uniform
and open-source evaluation system for graph data anonymization
and de-anonymization,” in USENIX Security, 2015.

[18] D. Catteddu and G. Hogben, “Cloud computing: Benefits, risks
and recommendations for information security,” enisa:European
Network and Information Security Agency, Tech. Rep., 2009.

[19] M. E. Whitman and H. J. Mattord, Principles of Information Security,
2004.

[20] D. Trihinas, A. Tryfonos, M. D. Dikaiakos, and G. Pallis, “Devops
as a service: Pushing the boundaries of microservice adoption,”
IEEE Internet Computing, vol. 22, no. 3, pp. 65–71, 2018.

[21] T. Xie and X. Qin, “Performance evaluation of a new scheduling
algorithm for distributed systems with security heterogeneity,”
Journal of Parallel and Distributed Computing, 2007.

[22] M. Forshaw, “Operating policies for energy efficient large scale
computing,” Ph.D. dissertation, Newcastle University, UK, 2015.

[23] M. Dobber, R. van der Mei, and G. Koole, “Effective prediction of
job processing times in a large-scale grid environment,” in High
Performance Distributed Computing, 2006 15th IEEE International
Symposium on. IEEE, 2006, pp. 359–360.

[24] T. Miu and P. Missier, “Predicting the execution time of workflow
activities based on their input features,” in High Performance Com-
puting, Networking, Storage and Analysis (SCC), 2012 SC Companion:.
IEEE, 2012, pp. 64–72.

[25] R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical Guide
to Heavy Tails: Statistical Techniques and Applications, 1998.

[26] A. B. Downey, “Evidence for long-tailed distributions in the inter-
net,” in SIGCOMM, 2001.

[27] V. P. Chistyakov, “A theorem on sums of independent positive
random variables and its applications to branching random pro-
cesses,” Theory of Probability & Its Applications, 1964.

[28] E. Seneta, Ed., Regularly Varying Functions. Springer, 1976.
[29] P. Embrechts, T. Mikosch, and C. Klüppelberg, Modelling Extremal

Events: For Insurance and Finance, 1997.
[30] P. Cirillo, “Are your data really pareto distributed?” Physica A:

Statistical Mechanics and its Applications.
[31] D. Bhandari, C. Murthy, and S. K. Pal, “Genetic algorithm with

elitist model and its convergence,” IJPRAI, 1996.
[32] P. Salza, F. Ferrucci, and F. Sarro, “elephant56: Design and imple-

mentation of a parallel genetic algorithms framework on hadoop

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xvi

mapreduce,” in Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion. ACM, 2016, pp. 1315–1322.

[33] M. Zaharia, M. Chowdhury, T. Das, and et al., “Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory clus-
ter computing,” in NSDI, 2012.

[34] C. Murthy, D. Bhandari, and S. K. Pal, “ε-optimal stopping time
for genetic algorithms,” Fundamenta Informaticae, vol. 35, no. 1-4,
pp. 91–111, 1998.

[35] Y. Zhang, Z. Zheng, and M. R. Lyu, “Wspred: A time-aware per-
sonalized qos prediction framework for web services,” in ISSRE,
2011.

[36] “Dataset used for the experiments,”
https://github.com/lukewen427/GA-Par-data, accessed: 2019-
04-25.

[37] Z. Shen, Q. Jia, G.-E. Sela, W. Song, H. Weatherspoon, and
R. Van Renesse, “Supercloud: A library cloud for exploiting cloud
diversity,” ACM TOCS, 2017.

[38] Q. Jia, Z. Shen, W. Song, R. Van Renesse, and H. Weatherspoon,
“Supercloud: Opportunities and challenges,” ACM SIGOPS Oper-
ating Systems Review, 2015.

[39] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, “A
federated multi-cloud paas infrastructure,” in IEEE Cloud. IEEE,
2012.

[40] D. B. Parker, Fighting Computer Crime: A New Framework for Protect-
ing Information, 1998.

[41] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web
services selection with end-to-end qos constraints,” ACM Trans.
Web, 2007.

[42] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for
qos-based web service composition,” in Proceedings ACM WWW.
ACM, 2010, pp. 11–20.

[43] S. Rosario, A. Benveniste, S. Haar, and C. Jard, “Probabilistic qos
and soft contracts for transaction-based web services orchestra-
tions,” IEEE TSC, 2008.

[44] C. Guerrero, I. Lera, B. Bermejo, and C. Juiz, “Multi-objective
optimization for virtual machine allocation and replica placement
in virtualized hadoop,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 11, pp. 2568–2581, 2018.

[45] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Transactions on parallel and
distributed Systems, vol. 27, no. 5, pp. 1344–1357, 2016.

[46] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell, “Scaling
genetic algorithms using mapreduce,” in Intelligent Systems Design
and Applications, 2009. ISDA’09. Ninth International Conference On.
IEEE, 2009, pp. 13–18.

[47] F. Ferrucci, P. Salza, and F. Sarro, “Using hadoop mapreduce for
parallel genetic algorithms: A comparison of the global, grid and
island models,” Evolutionary computation, no. Early Access, pp. 1–
33, 2017.

[48] P. Salza, F. Ferrucci, and F. Sarro, “Develop, deploy and execute
parallel genetic algorithms in the cloud,” in Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion.
ACM, 2016, pp. 121–122.

[49] A. Longo, M. Zappatore, M. Bochicchio, and S. B. Navathe,
“Crowd-sourced data collection for urban monitoring via mobile
sensors,” ACM Transactions on Internet Technology (TOIT), 2017.

[50] A. Longo, M. Zappatore, and S. B. Navathe, “The unified chart
of mobility services: Towards a systemic approach to analyze
service quality in smart mobility ecosystem,” Journal of Parallel and
Distributed Computing, 2019.

[51] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a
fault-tolerant resource management and job scheduling system at
internet scale,” Proceedings of the VLDB Endowment, 2014.

[52] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu,
Z. Zhang, and C. Li, “Reliable computing service in massive-scale
systems through rapid low-cost failover,” IEEE TSC, 2016.

[53] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and
C. Li, “Rose: Cluster resource scheduling via speculative over-
subscription,” in IEEE ICDCS, 2018.

Zhenyu Wen is currently a postdoc researcher
with the School of Computing, Newcastle Uni-
versity, UK. He received M.S and Ph.D. degrees
in computer science from Newcastle University,
Newcastle Upon Tyne, UK in 2011 and 2015
respectively. His current research interests in-
clude Multi-objects optimisation, Crowdsources,
AI and Cloud computing.

Tao Lin is currently a Ph.D. student at EPFL,
Switzerland. Prior to that, he received his M.sc
and B.E. from EPFL and Zhejiang University. His
research interests include distributed machine
learning, optimization etc.

Renyu Yang is a Research Fellow with Univer-
sity of Leeds, UK. He is also an adjunct research
scientist with BDBC, Beihang University, China.
He received his Ph.D. degree from Beihang Uni-
versity. He was previously with Alibaba Group
and had industrial experience in building large-
scale systems. His research interests include
reliable resource management, distributed sys-
tems, data processing, etc. He is a member of
IEEE.

Shouling Ji is a Professor at Zhejiang Univer-
sity and a Research Faculty in the School of
Electrical and Computer Engineering at Georgia
Institute of Technology (Georgia Tech). He re-
ceived two Ph.D. degrees from Georgia Institute
of Technology and Georgia State University, and
B.S. (with Honors) and M.S. degrees from Hei-
longjiang University. His current research inter-
ests include data-driven security and privacy, AI
security and big data analytics. He is a member
of IEEE.

Rajiv Ranjan is a Professor in Computing Sci-
ence at Newcastle University, UK. Before mov-
ing to Newcastle University, he was Julius Fel-
low (2013-2015), Senior Research Scientist and
Project Leader in the Digital Productivity and
Services Flagship of Commonwealth Scientific
and Industrial Research Organization. Prior to
that he was a Senior Research Associate (Lec-
turer level B) in the School of Computer Sci-
ence and Engineering, University of New South
Wales. He has a Ph.D. from the department of

Computer Science and Software Engineering, the University of Mel-
bourne.

Alexander Romanovsky Alexander
Romanovsky is a Professor in Computing
Science at Newcastle University, UK. He is
the investigator of the EPSRC platform grant
on Layers for Structuring Trustworthy Ambient
Systems (STARTA) and a co-investigator
of the EPSRC PRiME programme grant on
Power-efficient, Reliable, Many-core Embedded
systems. Before this, he coordinated the major
EU FP7 DEPLOY IP that developed the Rodin
tooling environment for formal stepwise design

of complex dependable systems using Event-B. His main research
areas are system dependability, fault tolerance, safety, modelling and
verification.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 xvii

Changting Lin is currently a Ph.D. candidate at
Zhejiang University. He received B.E. and M.S.
degrees from Zhejiang Gongshang University in
2009 and 2012. His research interests include
Software Defined Network, reconfigurable and
network security.

Jie Xu is Chair Professor of Computing at Uni-
versity of Leeds, Director of UK EPSRC WRG
e-Science Centre, Chief Scientist of BDBC, Bei-
hang University, China. He has industrial ex-
perience in building large-scale networked sys-
tems and has worked in the field of depend-
able distributed computing for over 30 years. He
is a Steering/Executive Committee member for
numerous IEEE conferences including SRDS,
ISORC, HASE, SOSE and is a co-founder for
IEEE IC2E. He has led or co-led many research

projects to the value of over $30M, and published in excess of 300
academic papers, book chapters and edited books. He is a member
of IEEE.

