This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

HAWK: Rapid Android Malware Detection Through
Heterogeneous Graph Attention Networks

Yiming Hei™, Renyu Yang™, Member, IEEE, Hao Peng
, Jie Xu, Member, IEEE, and Lichao Sun

Hong Liu

Abstract— Android is undergoing unprecedented malicious
threats daily, but the existing methods for malware detec-
tion often fail to cope with evolving camouflage in malware.
To address this issue, we present HAWK, a new malware detection
framework for evolutionary Android applications. We model
Android entities and behavioral relationships as a heteroge-
neous information network (HIN), exploiting its rich semantic
meta-structures for specifying implicit higher order relationships.
An incremental learning model is created to handle the appli-
cations that manifest dynamically, without the need for recon-
structing the whole HIN and the subsequent embedding model.
The model can pinpoint rapidly the proximity between a new
application and existing in-sample applications and aggregate
their numerical embeddings under various semantics. Our exper-
iments examine more than 80860 malicious and 100375 benign
applications developed over a period of seven years, showing that
HAWK achieves the highest detection accuracy against baselines
and takes only 3.5 ms on average to detect an out-of-sample
application, with the accelerated training time of 50x faster than
the existing approach.

Index Terms— Android, graph representation learning,
heterogeneous information network (HIN), malware detection.

I. INTRODUCTION

ITH the highest market share worldwide on mobile
devices, Android 1is experiencing unprecedented

Manuscript received March 15, 2021; revised June 13, 2021; accepted
August 13, 2021. This work was supported in part by NSFC under
Grant 62002007, Grant U20B2053, Grant 62073012, and Grant 62072184,
in part by the S&T Program of Hebei Province under Grant 20310101D; in
part by the Fundamental Research Funds for the Central Universities; in part
by the Project of Science and Technology Commitment of Shanghai under
Grant 20511106002; in part by U.K. Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/T01461X/1; in part by U.K. White
Rose University Consortium; and in part by the Opening Project of Shanghai
Trusted Industrial Control Platform. (Renyu Yang and Yiming Hei are co-first
authors.) (Corresponding author: Hao Peng.)

Yiming Hei, Hao Peng, and Jianwei Liu are with the School of Cyber
Science and Technology, Beihang University, Beijing 100083, China (e-mail:
penghao @buaa.edu.cn; liujianwei @buaa.edu.cn).

Renyu Yang and Jie Xu are with the School of Computing, University of
Leeds, Leeds LS2 9JT, U.K. (e-mail: r.yangl @leeds.ac.uk; j.xu@leeds.ac.uk).

Lihong Wang and Xiaolin Xu are with the National Computer Net-
work Emergency Response Technical Team/Coordination Center of China,
Beijing 100029, China (e-mail: wlh@isc.org.cn; xxl@isc.org.cn).

Hong Liu is with the School of Computer Science and Software
Engineering, East China Normal University, Shanghai 200241, China, and
also with Shanghai Trusted Industrial Control Platform Company Ltd.,
Shanghai 200062, China (e-mail: liuhong@ticpsh.com).

Lichao Sun is with the Department of Computer Science and
Engineering, Lehigh University, Bethlehem, PA 18015 USA (e-mail:
james.lichao.sun@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3105617.

Digital Object Identifier 10.1109/TNNLS.2021.3105617

, Lihong Wang, Xiaolin Xu, Jianwei Liu™,

dependability issues. Due to Android’s extensibility and
openness of development, users are put at high risk of a variety
of threats and illegal operations from malicious software,
i.e., malware including privacy violations, data leakage,
and advertisement spams. Common vulnerabilities and
exposures (CVEs) reveal 414 Android vulnerabilities that can
be easily attacked in realistic environments. This phenomenon
calls for more reliable and accessible detection techniques.

Conventionally, Android Applications (Apps) are ana-
lyzed by either static analysis through predetermined signa-
tures/semantic artifacts or dynamic analysis through multilevel
instrumentation [1]. However, static analysis could become
invalid by simple obfuscation, whereas dynamic analysis heav-
ily depends on OS versions and the Android runtime, which is
inherently cost-expensive and time-consuming. To tackle this,
numerous machine learning-based detection techniques [2]—[8]
typically leverage feature engineering to extract key malware
features and apply classification algorithms—each app is rep-
resented as a vector—to distinguish benign software from
malicious software. Nevertheless, these approaches often fail
to capture emerging malware that either conducts evolv-
ing camouflage and attack type or hides certain features
deliberately.! Hence, it is imperative to build an inductive
and rapid mechanism for constantly capturing software evo-
Iution and detecting malware without heavily relying on
domain-specific feature selection.

Graph neural network (GNN), which is used to model the
relationship between entities, is developing rapidly in both
theoretical [9]-[12] and applied fields [13], [14]. Heteroge-
neous information network (HIN) [15], [16], as a special case
of GNN, has been widely adopted in many areas such as
operating systems, the Internet of Things, and cybersecurity by
exploiting the abundant node and relational semantic informa-
tion before embedding into representation vectors [17]-[20].
More specifically, in the context of malware detection, if App;
and App, share permission SEND_SMS, while App, and
Apps share permission READ_SMS, HIN is able to capture
the implicit semantic relationship between App; and Apps
that can be hardly achieved by feature engineering-based
approaches. HIN-based modeling is even more meaningful
because malware developers are extremely difficult to hide
such implicit relationships [18]. While promising, HIN is
inherently concerned about static networks/graphs [21]. The
complication is, however, how to efficiently embed the out-
of-sample nodes (i.e., incoming nodes out of the estab-
lished HIN). Considering the continuous software updates
and the huge volume of Apps, it is impossible to involve
all Apps in the stage of HIN construction and inefficient

Uhttps://www.mcafee.com/blogs/other-blogs/mcafee-labs

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0794-9932
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0003-2965-3518
https://orcid.org/0000-0003-3389-2765

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to reconstruct the entire embedding model when new Apps
are seen emerging. This drawback impedes the practicality
and the scale this native technique can perform. Although
AiDroid [21] attempts to tackle this problem and represents
each out-of-sample App with convolutional neural network
(CNN) [22], it requires heavily multiple convolution opera-
tions resulting in nonnegligible time inefficiency.

In this article, we present HAWK, a novel Android mal-
ware detection framework with the aid of network repre-
sentation learning model and HIN to explore abundant but
hidden semantic information among different Apps. In par-
ticular, we extract seven types of Android entities—including
App, permission, permission type, Application Programming
Interface (API), class, interface, and .so file—from the
decompiled Android application package (APK) files and
establish an HIN mainly through transforming entities
and their relationships into nodes and edges, respectively.
We exploit rich semantic meta-structures as the templates
to define relation sequence between two entity types. This
includes both meta-path [23] and meta-graph [24] that can
specify the implicit relationships among heterogeneous enti-
ties. A certain meta-structure corresponds to an adjacency
matrix associated with a homogeneous graph. The graph only
contains App nodes and is the target in the procedure of
malware detection.

The numerical embedding of all App entities is at the core
of HAWK, which can be then fed into a binary classifier.
In particular, HAWK involves two distinct learning models for
in-sample and out-of-sample nodes, respectively. To embed an
in-sample App, we propose MSGAT, a meta-structure guided
graph attention network (GAT) mechanism [25] that incorpo-
rates its neighbors’ embedding within any meta-structure and
integrates the embedding results of different meta-structures
into the final node embedding. This design considers not
only the informative connectivity of neighbor nodes but also
the diverse semantic implications over different entity rela-
tionships. In addition, to efficiently embed an out-of-sample
App, we present MSGAT++, a new incremental learning
model upon MSGAT to make good use of the embedding
of certain existing nodes. Given a specific meta-structure and
its corresponding graph, our model first pinpoints a specific
set of in-sample App nodes that are most similar to the
target new node, before aggregating their embedding vectors to
form the node embedding under this meta-structure. Likewise,
we entitle particular weights to individual embedding vector
of each meta-structure and aggregate them to obtain the final
embedding. This incremental design can quickly calculate the
embedding based on the established HIN structures with-
out relearning the holistic embedding for all nodes, thereby
significantly improving the training efficiency and model
scalability.

We demonstrate the effectiveness and efficiency of HAWK
based on 80860 malicious and 100375 benign Apps collected
and decompiled across VirusShare, CICAndMal, and Google
AppStore. Experiments show that HAWK outperforms all
baselines in terms of accuracy and F1 score, indicating its
effectiveness and suitability for malware detection at scale.
It takes merely 3.5 ms on average to detect an out-of-sample
App with accelerated training time of 50x against the native
approach that rebuilds the HIN and reruns the MSGAT.
To enable replication and foster research, we make HAWK
publicly available at github.com/RingBDStack/HAWK.
This article makes the following contributions.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

1) It examines more than 200000 Android Apps and
decompiled more than 180000 APKs, spanning over
seven years across multiple open repositories. This dis-
closes abundant data source to establish the HIN and
uncovers the hidden high-order semantic relationships
among Apps (Section III).

2) It presents a meta-structure guided attention mechanism
based on HIN for node embedding, by fully exploit-
ing neighbor nodes within and across meta-structures
(Section IV-A). Experiments show that the capture of
semantics can support excellent forward and backward
compatible detection capabilities.

3) It proposes an incremental aggregation mechanism for
rapidly learning the embedding of out-of-sample Apps,
without compromising the quality of numerical embed-
ding and detection effectiveness (Section IV-B).

Organization: Section II shows the motivation and

outlines the system overview. Section III discusses the pro-
cedure of feature engineering and data reshaping by leverag-
ing HIN, while Section IV details the core techniques to tackle
in-sample and out-of-sample malware detection. Experimental
setup and results are presented in Sections V and VI. Related
work is discussed in Section VIII before we conclude this
article and discuss the future work.

II. BACKGROUND AND OVERVIEW
A. Motivation and Problem Scope

The Android platform is increasingly exposed to vari-
ous malicious threats and attacks. As malware detection
for Android systems is a response-sensitive task, our work
addresses two primary research challenges—inductive capa-
bility and detection rapidness. Anomaly identification should
allow for forecasting new applications that we have not seen
(the so-called out-of-sample Apps) and rapidly catch up the
up-to-date malicious attacks and threats, particularly consider-
ing the vast diversity and rapid growth of emerging malicious
software.

The detection procedure is typically regarded as a
binary classification. Formally, we aim to take as input
features A of Android Apps and their previous labels
(malicious/benign) 7 to predict the type ¢ of any target
App either old or new. Unfortunately, the existing approaches
for malware detection are inadequate in tackling inductive
problems where new application is arbitrary and unseen
beforehand. Most of the prior works on network embed-
ding [23], [24], [26], [27] are transductive, i.e., if a new data
point is added to the testing dataset, one has to thoroughly
retrain the learning model. Hence, malware detection is in
great need of a generic inductive learning model where any
new data would be predicted, based on an observed set of
training set, without the need to rerun the whole learning
algorithm from scratch.

B. Our Approach of HAWK

1) Key Idea: We consider this problem as a semisupervised
learning based on graph embedding. The first innovation of
our approach, as a departure from prior work, is to encode
the information as a structured HIN [15], [16] in which nodes
depict entities and their characteristics. An HIN is a graph
G =(0,¢&,A R) with an entity-type mapping ¢ : ¥V — A
and a relationship-type mapping v : €& — R, where
YV and & represent node and edge set, respectively.

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

Data Modeller

Feature Relationship | | HIN
Engineering Extractor Constructor
Graph Constructor
Malware Detector l
MsGAT Node Similarity MsGAT++
Model Analyzer Model
\ embedding results /
| Malware Classifier |

Fig. 1. HAWK architecture overview.

A and R denote the type set of nodes and edge, respectively,
where |A| + |R| > 2. Edges represent the relationships
between a pair of entities (e.g., an App owns a specific per-
mission or a permission belongs to a permission type). Since
the detection problem is App entity oriented, it is effective to
deduce the information from a self-contained HIN to homo-
geneous relational subgraphs that can be directly absorbed
by GNN. As the fundamental requirement of graph embedding
is to obtain the graph structure, we need to calculate the
adjacency matrix from the constructed HIN—the best option
to reflect the proximity and the node connectivity in the graph.
GNN models can be subsequently carried out to learn the
numerical embedding for in-sample App nodes. To underpin
the continuous embedding learning for out-of-sample nodes,
the learning model is desired to make the best use of the
embedding result of the existing in-sample App nodes, in an
incremental manner.

2) Architecture Overview: Fig. 1 shows the HAWK’s archi-
tecture, encompassing data modeler and malware detector
components. Specifically, relationship extractor in data mod-
eler first offers an extraction of Android entities based
on feature engineering—massive Android Apps are com-
piled and investigated. There are seven types of nodes
(“App” together with six characteristics) and six types of
edges. HIN constructor then builds up the HIN by organizing
entities and the extracted relationships into nodes and edges
of HIN (Section III-B). App graph constructor is responsible
for generating homogeneous relational subgraphs from HIN
that only contains App entities. This is enabled by employing
meta-structures, including both meta-path [23] and meta-
graph [24] (Section III-C).

Malware detector then involves two distinct representation
learning models to numerically embed in-sample and out-
of-sample nodes. It is in great need of fully exploiting node
affinities within a given meta-structure and aggregates the
embeddings of the same node under different meta-structures.
Specifically, we design separate strategies to learn the
embedding.

1) To represent in-sample App nodes, the proposed
MSGAT, a meta-structure enabled GAT solution, first
aggregates intra-meta-structure attention aggregation
mechanism for accumulating the embedding of a target
node among its neighbor nodes within the graph pertain-
ing to a certain meta-structure. In the second inter-meta-
structure phase, we further fuse the obtained embedding
among different meta-structures so that their semantic

meanings can be represented in the final embedding
(Section IV-A).

2) To efficiently tackle the out-of-sample node embedding,
we generate the embedding, incrementally, for a new
node through reusing and aggregating the embedding
result of selective in-sample App nodes in close prox-
imity to the target node. This requires the model to
ascertain the similarity between the existing in-sample
App nodes and the target node. Similarly, the embed-
ding is first gathered at neighbor node level under a
given meta-structure before conducting the inter-meta-
structure aggregation (Section IV-B).

Malware classifier digests the learned vector embeddings
to learn a classification model to determine whether a given
App is malicious or benign and then validates its effective-
ness. General-purpose techniques, such as random forest (RF),
logistic regression (LR), and support vector machine (SVM),
can be adopted as the classifier implementation. We select
the training set from in-sample Apps to train our classifier
while using the testing set from in-sample Apps and all out-
of-sampling Apps to test the models.

IIT. HIN-BASED DATA MODELING

A. Feature Engineering

An Android application needs to be packaged in the APK
format and installed on Android system. An APK file con-
tains code files, the configuration AndroidManifest.xml file,
the signature and verification information, the lib (the directory
containing platform-dependent compiled codes), and other
resource files. To better analyze Android Apps, reverse tools
(e.g., APKTool?) are widely leveraged to decompile the APK
files so that the .dex source file can be decompiled into
a .smali file. To describe the key characteristics of an App,
we extracted the following six types of entities.

1) Permission (P): The permission determines specific

operations that an App can perform. For example, only
Apps with READ_SMS permission can access the user’s
email information.

2) Permission Type (PT): The permission type’ describes
the category of a given permission. Table I outlines the
permission types and representative permissions.

3) Class (C): Class is an abstract module in Android codes,
where APIs and variables can be directly accessed.
HAWK uses the class name in .smali codes to rep-
resent a class.

4) API: 1t provisions the callable function in the Android
development environment.

5) Interface (I): The interface refers to an abstract data
structure in Java. We extract the name from .samli
files.

6) .so file (S): .so file is Android’s dynamic link library,
which can be extracted from the decompiled lib folder.

Following this methodology, we downloaded over
200000 APKs from open repositories and after de-duplication
and decompilation, and 181235 APKSs are finally filtered and
extracted; 63902 entities are then selected according to [3].
This provisions abundant data sources for establishing the
HIN and mining intrinsic semantics.

Zhttps://ibotpeaches. github.io/Apktool
3https://developer.android.google.cn/guide/topics/permissions

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

belongs

Fig. 2. (a) Meta-schema. (b) Meta-structure.

TABLE I
CATEGORIES OF REPRESENTATIVE PERMISSIONS

Type Representative Permissions

NORMAI ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE

CONTACTS WRITE_CONTACTS, GET_ACCOUNTS

PHONE READ_CALL_LOG, READ_PHONE_STATE,

CALENDAR READ_CALENDAR, WRITE_CALENDAR

LOCATION ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION

STORAGE READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

SMS READ_SMS, RECEIVE_MMS, RECEIVE_SMS

B. Constructing HIN

1) Extracting Entity Relationships Into an HIN: Meta-
schema is a meta-level template that defines the relationship
and type constraints of nodes and edges in the HIN. As shown
in Fig. 2(a), we figure out a meta-schema that can encode
necessary relationships between Android entities. Based on
the domain knowledge, we elaborately examine the following
inherent semantic relationships.

1) [R1] App-API: Tt indicates that an App has a spe-
cific APL. Using the relationship between App and API
is effective to dig out and represent the link between
two Apps [18].

2) [R2] App-Permission: It specifies that an App owns
a specific permission. Apps with permissions, such
as READ_SMS, SEND_SMS, and WRITE_SMS, are
strongly correlative [3]. If SEND_ SMS is shared between
App, and App, and READ_SMS is shared between
App> and Apps, an implicit association between App;
and Apps is highly likely to manifest.

3) [R3] Permission-PermissionType: It describes that the
permission belongs to a specific permission type. Nor-
mally, permissions can be categorized into different
types.*

4) [R4] App-Class: It means that the App includes a
specific class in the external SDK. A malware tends to
generate instances by using classes in a vicious SDK.’

5) [R5] App-Interface: 1t indicates that the App includes
the specific interface in the external SDK.

6) [R6] App-.so: It denotes that the App has a specific
.so file. Fan et al. [17] demonstrated the effectiveness
of associating dynamic link libraries with software in
Windows system.

“https://developer.android.google.cn/guide/topics/permissions
Shttps://research.checkpoint.com/2019/simbad-a-rogue-adware-campaign-
on-google-play

p w2 (A)——(C)——) mrs(D)—CF—® "
mp3 (Ay—————) mrs(A)—(P)—F1)—(P)—(A)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(b)

® T

READ_SMS SMs

Ljava/lang/annotation/
@ Annotation
SEND_SMS Lcom/print

Interface

- -3
! app2

Lcom/facebook/ads/internal

Permission

r- -9
| [

m ;\ ’ \ .
Ljava/net/URL/openConnection() Ljavafio/PrintStream \) / ‘
m m \ armeabi/ armeabi-v7a/
m libcrypt_sign.so libvinit.so
AN Ljava/io/File/mkdirs() / Nk /
h < “Ljavalio/WriteStream /
API N So

Class

Interface .so file

=
| I'l App @ Permission | T Permisson Type m API m Class

Fig. 3. Example of Android HIN that contains two Android Apps.

Fig. 3 shows an HIN that contains two Apps and
their semantic relationships. For instance, App; has API
Ljava/net/URL/openConnection. Both App; and
Appz own the Class Ljava/io/PrintStream.” The per-
mission READ_SMS belongs to the permission type SMS” and
SO on.

2) Storing Entity Relationships: We use a relation matrix
to store each relationship individually. For instance, we gen-
erate an matrix A where the element A; ; denotes if App;
contains API;. Intuitively, the transpose of a matrix depicts the
backward relationship, e.g., API; belongs to App;. As sum-
marized in Table II, six matrices are used to represent and
store the relationships [R1]-[R6]. Nevertheless, it is necessary
to obtain the connectivity between two Apps if there are
sophisticated semantic links, i.e., higher order relationships.

C. Constructing App Graph From HIN

To form a homogeneous graph that only contains
App nodes, the key step is to incorporate the relationship
between App entity and other entities into the combined
connectivity between Apps. To ascertain the hidden higher
order semantic, we mainly calculate Apps’ proximity via
exploiting a meta-path or meta-graph within a given HIN and
then obtain the node adjacency matrix for the graph. In other
words, given a meta-structure, the HIN can be converted to an
exclusive homogeneous graph in which each node has meta-
structure-specific neighbor nodes.

In fact, a meta-path connects a pair of nodes with a seman-
tically meaningful relationship. We enrich the meta-structures
further to involve the meta-graph—in the form of directed
acyclic graph (DAG)—that can be used as an extended
template to capture arbitrary but meaningful combination of
existing relationships between a pair of nodes. In effect, a
meta-structure provides a filter view to extract a homogeneous

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

TABLE 11
DESCRIPTIONS OF RELATION MATRICES

Relation Matrix Description

R1 A if App @ contains the API j, a; ; is 1; otherwise 0.
R2 P if App ¢ has the permission j, P; ; is 1; otherwise 0.
R3 T if the type of permission i is j, T; ; is 1; otherwise 0.
R4 C if App ¢ owns the Class j, C; ; is 1; otherwise 0.

RS I if App 7 uses the interface j, I; ; is 1; otherwise 0
R6 S if App i calls the so file j, S; ; is 1; otherwise 0.

node graph, in which all nodes satisfy particular compli-
cated semantics. Arguably, depending upon different meta-
structures, nodes will be organized distinctly within different
graphs. To some extent, each graph can be regarded as a
subgraph of the holistic HIN under a certain view—each
subgraph satisfies the semantic constraints given by the meta-
structure.

1) Meta-Structures: We leverage domain knowledge from
system security expertise to elaborately pick up meta-
structures for covering the inherent relationships. We first
combine all possible meaningful semantic meta-structures
and then carefully select those meta-structures with sufficient
precision through numerous experiments. The detailed proce-
dure is discussed in Section VI-C. As shown in Fig. 2(b),
we eventually present six meta-paths and three meta-graphs
that can effectively outline the structural semantics and capture
rich relationships between two Android Apps in the HIN. For
example, A-P-A describes the relationship where two Apps
have the same permission (MPs) and A-P-PT-P-A indicates
two Apps co-own the same type of permission (M7Py).
MG, simultaneously combines A-API-A with A-S-A.
Accordingly, the semantic constraints will be tightened,
i.e., the selected nodes have to satisfy all predefined con-
straints. Nevertheless, models [28], [29] without the manual
design of original meta-structures could also be applied into
our scheme.

2) Homogeneous App Graph for Each Meta-Structure:
Performing a sequence of matrix operations over the modeled
relationship matrices, we can precisely calculate the adja-
cency of nodes within a graph. For a given meta-path MP,

(A, ..., A,), the adjacency matrix can be calculated by
YMP = Ry a, - Rayas - Ra, i, (€))
where Ry, 4,,, is the relation matrix between entity A; and

Aj41 (one instance of [R1] to [R6] in Table II). For example,
the adjacency matrix for the graph under MP; A-API-A is
YMPr = A AT, W, ; > 0 indicates that App; and App;
are associated with each other, i.e., they are neighbors based
on the meta-path MP;. Specifically, the value represents the
count of meta-path instances, i.e., the number of pathways,
between nodes i and j. Likewise, for a given meta-graph MG,

a combination of several meta-paths, i.e., (MP1, ..., MP,),
the node adjacency matrix is
\PMQ — \IJM'Pl Q-0 \PM'Pm)

where © is the operation of Hadamard product. For instance,
MG,, the adjacency matrix can be calculated by ¥M9> =
(A - AT) © (S - ST). By conducting graph modeling for
each meta-structure, the original HIN is converted to multiple

/7 Intra-ms Aggregation | Inter-ms Aggregation \\\
1
MsGAT
!
T 1 PN
/ . | LN
MsGAT ++ / L | .._
| v
- L
v | {
Iﬁl |
| e,
Node ay'.. ay | ‘.o
Similarity |
| "
o e
| &
L : o |
|
|
|

o Intra-ms Aggregation Inter-ms Aggregation.- /

-y Py
+'| In-Sample App (1ffi) Out-of-Sample App <> App Vectors (1 Addition (X) Multiplicatior‘l

Fig. 4. MSGAT and MSGAT++ models for node embedding.

App homogeneous graphs, each of which pertains to an adja-
cency matrix. Given K meta-structures, we have a collection
of K adjacency matrices, i.e., {¥M, ..., ¥Mx},

IV. NOoDE EMBEDDING MODELS
A. MSGAT: In-Sample Node Embedding

We introduce a series of innovative GAT optimizations
enhanced by meta-structures—we employ the attention mecha-
nism [25] among neighbor nodes within a given meta-structure
(intra-ms) and coordinate the attention among different
meta-structures (inter-ms). Fig. 4 shows the flowchart of our
models and important notations used in the models are outlined
in Table III.

1) Intra-ms Aggregation: Intra-ms aggregation learns how
a node pays different attention to its neighbor nodes in a
graph pertaining to a meta-structure. Formally, it aggregates
the neighbors’ representation vectors with weights considering
the feature information of entities and the edge information
between entities. To do so, we initially encode the vector of
each in-sample App in the form of one-hot and concatenate
them into a matrix H. H,., the ith row of H, represents the
embedding vector of the ith App node. Thereafter, we design
an edge weight-aware GAT (EGAT) model to combine H and
the adjacency matrix pertaining to a given meta-structure Mjy.
To implement the EGAT model, feature information and edge
weight information are fully utilized to aggregate features from
neighbors. More specifically, we first construct the adjacency
matrix Y™ with a normalization operation

WM = Normalize(H - HT © ¥M¥) 3

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
SYMBOL NOTATIONS

Symbol Definition
My, MP, MG kth meta-structure, a meta-path or meta-graph
Ry, Aj Relation matrix between two entities in the HIN

The similarity value between node v; and node v; under
meta-structure M,

Simam,, (vi,vj)

XMy, Similarity matrix under meta-structure M

UM Adjacency matrix under M, that can depicts node connec-
tivity in a homo graph

TMek incremental segment of the adjacency matrix, connecting in-
sample nodes to new nodes

Mk Embedding matrix under My; each single row <I>1M’C rep-
resents the vector embedding for ith node

Mk Embedding matrix under M, for new nodes

and elements in W™’ that are lower than a predefined
threshold 7z (7 is set to be 0.1 in our model) will be set to
zero. Thereafter, we update ®Mx with the GAT model [10]

oM = GAT(H; ¥™MW). 4)

Eventually, the low-dimensional vector embedding for all
in-sample App nodes, in a form of matrix ®M* with a
collection of row vectors, can be obtained in this stage.

We then repeatedly calculate the vector matrix for all pre-
defined meta-structures and obtain a collection of embedding
vectors, i.e., [@M1, ..., OMx], where K is the totality of
meta-structures. Concretely, the embedding matrix ®* is of
shape L x D, where L denotes the number of in-sample Apps
in the HIN and D denotes the dimension of each App vector.
As a result, the embeddlng of App; node can be identified as
the ith row, i.e., CD

2) Inter-ms Aggregatwn: Since each meta-structure pro-
visions an individual semantic view, we propose an
inter-ms attention aggregation to integrate embedding
(@M1 ..., ®M«] under different semantics and thus enhance
the quality of node embedding. Specifically, we exploit a
multilayer perceptron (MLP) procedure for learning the weight
pM« of each meta-structure M in the fusion

M, .., pMF) = softmax(NN(OM), ..., NN(@Mr))
(5)

where NN is a native neural network that maps a given matrix
to a numerical value. Consequently, the final embedding for
all in-sample App nodes can be obtained through adding up
the weighted representation matrices

K
DO = ZIB/\/U X (DMk. 6)

We then pass @ on to another neural network so
that the loss function between the neural network’s out-
puts and ground-truth labels can be calibrated via iterative
backpropagation.

B. MSGAT++: Incremental Embedding

To best embed unknown Apps not included in the training
procedure, we present MSGAT++, an increment learning
mechanism for utilizing the in-sample embedding already

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

learned from MSGAT to rapidly represent those out-of-sample
Apps. To make clear, we use vy to generally stand for any
out-of-sample node out of the HIN.

1) Exploring Node Similarity: Pinpointing the underlying
connections between new nodes and existing nodes in the
HIN plays a pivotal role in providing rapid numerical rep-
resentation and cost-effective malware detection. To do so,
it is imperative to calculate and accumulate the similarity
between vy, and existing nodes. Following similar method-
ology presented in [30], the node similarity between node v;
and node v; under a given meta-path is defined as
2% PMP
Sim™MP (v;,0;) = WU‘PMP (N
where ‘I—‘M73 implies the number of meta-structures between
two connected nodes and, thus, a higher similarity indi-
cates a tighter association between these two nodes. Accord-
ingly, the node similarity between nodes v; and »; under a
meta-graph MG is

Sim™9 (v;, vj) = Sim™M7P 0i,0;)©--- O Sim™MP» (i, v}).

®)

2) Incremental Aggregation for Embedding Learning: The
initial task is to catch the incremental relationships and con-
struct the graph information. Within a given meta-structure,
we aim to only update an adjacency matrix that quantifies
the connectivity between the out-of-sample nodes and existing
in-sample App nodes. This should be done in an incremental
manner to reduce the training cost. In practice, we first
repeat the steps aforementioned in Section III-B to calculate
all relation matrices in Table II merely for out-of-sample
App nodes. Second, we concatenate the relation matrices of
new App nodes and those of existing App nodes to form an
incremental segment of the node adjacency PMi_g pathway
from an in-sample App node to a new node. Take MP; as an
example; we first obtain the relation matrix Ay, for all new
nodes and then generate the matrix by PM = Ay AL
This design ensures that the incremental adjacency matrix
PM: can function independently of the established adjacency
matrix ¥« while they together serve as the holistic abstract
of connectivity among all nodes.

We propose MSGAT+H+ to entitle numerical embedding
to new nodes while calibrating the existing node’s repre-
sentation. Similar to MSGAT, the model consists of two
steps: intra-ms and inter-ms aggregation. Given a semantic
meta-structure My, we substitute M ingo (7) or (8) to
calculate Sim”™* (v}, Vour), the similarity between a new node
Uout and any in-sample App node v ;. Repeating this for all out-
of-sampling nodes and all in-sample App nodes forms a sim-
ilarity matrix X where a larger value inherently indicates
a closer proximity between two nodes. Accordingly, we can
obtain a collection of similarity matrix for all meta-structures
(XM XMy,

Arguably, to better represent the new node in a numerical
vector, we should fully aggregate existing embedding results of
existing nodes in close proximity to the new node. To this end,
we select top-o in-sample App nodes (v,1, . . ., 0ss), based on
the similarity matrix X-'*, and aggregate their vectors for the
embedding of the new node

Zaum QM)

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

Algorithm 1 Incremental

MSGATH+

Input: An out-of-sample App vpu

Output: v,,,’s vector embedding @, and the updated embedding
matrix @ for existing in-sample App nodes

1: for ke {1,..., K} do

2. // select o in-sample App nodes with the highest similarity

3: {0ul, ..., 0n} < DescendSort(XM).topK(o)

4: // Calculate the weights

5:

6:

7:

embedding algorithm in

o', ... a} < Eq.10
{(Calculate the embedding of vy, under M;
OMr « Eq.9.

Vout
8: end for
9: // Embedding fusion from all meta structures
10: @, < Eq. 11
11: return © 0]

Dour »

where alf;"k denotes the weight of the node v; (v; €
(Unts ..., 0n)) under M; and @ implies the incremental
embedding information for the out-of-sample node exclusively.
The weight can be easily calculated by
oM — Sim” (Vout> Ons) (10)
o 227:1 Sim M« (Dout» Ons)
Eventually, we recalibrate the embedding by conducting
inter-ms aggregation over K individual representations under
all meta-structures

K
~ M, SM
Oy, =D pM D)
k=1

Y

where ™M can be obtained from (5) (in fact, to improve the
performance of our model, we need to fine-tune these weights).
Algorithm 1 outlines the whole procedure of our rapid incre-
mental embedding learning in the malware detection.

3) Time Complexity: Algorithm 1 demonstrates a simple
but efficient approach with an acceptable complexity. The
overall complexity is O(K LNlogN), where K and L are the
number of meta-structures and the number of out-of-sample
Apps, respectively, and N represents the number of in-sample

Apps.

V. EXPERIMENT SETUP
A. Methodology

1) Environment: HAWK is evaluated on a 16-node GPU
cluster, where each node has a 64-core Intel Xeon CPU
E5-2680 v4@2.40 GHz with 512 GB RAM and 8 NVIDIA
Tesla P100 GPUs, Ubuntu 20.04 LTS with Linux
kernel v.5.4.0. HAWK depends upon tensorflow-gpu v1.12.0
and scikit-learn v0.21.3. ApkTool and aapt.exe are used for
parsing Apps.

2) Datasets: According to the aforementioned discussion
of feature engineering in Section III-A, we overall decompiled
181235 APKs (i.e., 80 860 malicious Apps and 100375 benign
Apps) from 2013 to 2019. With the help of AndroZoo,’
benign Apps are primarily collected from Google Play store
while malicious Apps are obtained from VirusShare and
CICAndMal. To validate the compatibility, both forward and
backward, of the proposed model in HAWK, we train our

Shttps://androzoo.uni.lu

TABLE IV
DESCRIPTIONS OF EVALUATION METRICS

Metrics Description
TP The number of malicious Apps that are correctly identified
TN The number of benign Apps that are correctly identified
FP The number of benign Apps that are mistakenly identified
TN The number of malicious Apps that are mistakenly identified
Precision TP/(TP+ FP)
Recall TP/(TP+ FN)
FP-Rate FP/(FP+TN)
F1 2 % Precision*Recall /(Precision + Recall)
Acc (TP+FN)/(TP+TN + FP+FN)

model based on Apps released in 2017 (amid the seven
time spans) and then utilize it to detect Apps published from
2013 to 2019.

Specifically, we extracted 14 000 benign and 9865 malicious
Apps released in 2017, as in-sample Apps, to construct
the HIN and train the detection model. For generating
the out-of-sample sample data, we collected seven mal-
ware subsets (v2013-v2019), each of which contains roughly
10000 samples, from VirusShare over consecutive seven years,
together with another two subsets from CICAndMal, includ-
ing 242 scarewares/adwares samples in 2017 (c2017) and
253 samples in 2019 (c2019). Meanwhile, we extracted benign
Apps to match the same number of benign Apps in each subset
above.

3) Methodology and Metrics: The experiments are three-
fold. We first evaluate the effectiveness of HAWK against
traditional feature-based ML approaches and numerous base-
lines in terms of in-sample and out-of-sample scenarios
(Section VI-A). Afterward, we demonstrate the efficiency of
HAWK by comparing the training time consumption with other
approaches (Section VI-B). We further conduct several micro-
benchmarkings, including an ablation analysis of performance
gains, an evaluation of meta-structure’s importance, and the
impact of the sampled neighbor number on detection precision
(Section VI-C).

We use metrics precision, recall, false positive (FP) rate, F1,
and accurate to measure the effectiveness (see Table IV) and
use time consumption to measure the efficiency. The execution
time includes the process of generating embedding vectors and
detecting Apps while excluding the process of extracting Apps
relation matrix. We use fivefold cross validation and calculate
the average accuracy to provide an assurance of unbiased and
accurate evaluation.

B. Baselines

To evaluate the performance of MSGAT in HAWK,
the baselines encompass generic models and specific models
used by some well-known malware detection systems.

1) Generic Models: We first implement the following
generic models as comparative approaches.

1) Node2Vec [31]: 1t is a typical model generalized from

DeepWalk [32] based on homogeneous graph network.
2) GCN [9]: Tt is a semisupervised homogeneous graph

convolutional network model that retains feature infor-

mation and structure information of the graph nodes.

3) RS-GCN: Tt represents the approach to converting the

HIN into homogeneous graphs, applying native GCN to

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

each graph and reporting the best performance among
different graphs.

4) GAT [10]: It is a semisupervised homogeneous graph
model that utilizes attention mechanism for aggregating
neighborhood information of graph nodes.

5) RS-GAT: It denotes the approach to converting the HIN
into homogeneous graphs based on rich semantic meta-
structures, applying native GAT to each homogeneous
graph and reporting the best performance among differ-
ent graphs.

6) Metapath2Vec [23]: It is a heterogeneous graph repre-
sentation learning model that leverages meta-path-based
random walk to find neighborhood and uses skip-gram
with negative sampling to learn node vectors.

7) Metagraph2Vec [24]: Tt is an alternative model to Meta-
path2Vec; both meta-paths and meta-graphs are applied
to the random walk.

8) HAN [26]: 1t is a heterogeneous graph representation
learning model that utilizes predefined meta-paths and
hierarchical attentions for node vector embedding.

For Node2Vec, GCN, and GAT, we treat all the nodes in
HIN as the same type to obtain the homogeneous graph. Since
all these models are toward static graphs, we compare the
capability of out-of-sample detection between MSGAT++
and three generic strategies that can be easily adopted in any
comparative models.

1) Neighbor Averaging (NA): It directly averages the vector
embedding of the in-sample neighbors pertaining to a
given new App as the targeted embedding.

2) Sampled Neighbor Averaging (SNA): It further filters the
neighbor range by sampling a fixed number of in-sample
neighbors based on the sorted node similarity and simply
averaging their embedding as the targeted embedding.

3) Rerunning (RR): It primarily merges the out-of-sample
Apps with in-sample Apps and rebuilds the entire HIN
and the malware detection model.

2) Specific Models Deriving From Specialized Systems:
Second, we compare our models in HAWK against the follow-
ing models used by the existing malware detection systems.

1) Drebin [33]: It is a framework that inspects a given
App by extracting a wide range of features sets from the
manifest and dex code and adopts the SVM model
in the classifier.

2) DroidEvolver [34]: Tt is a self-evolving detection system
to maintain and rely on a model pool of different
detection models that are initialized with a set of labeled
Apps using various online learning algorithms. It is
worth noting that we do not directly compare against
MamaDroid [35] because it has been demonstrated less
effective than DroidEvolver.

3) HinDroid [18]: It constructs a heterogeneous graph with
entities such as App and API and the rich in-between
relationships. It aggregates information from different
semantic meta-paths and uses multikernel learning to
calculate the representations of Apps.

4) MatchGNet [19]: Tt is a graph-based malware detection
model that regards each software as a heterogeneous
graph and learns its representation. It determines the
threat of unknown software primarily through matching
the graph representation of the unknown software and
that of benign software.

5) Aidroid [21]: It is among the first attempts to tackle out-
of-sample malware representations with heterogeneous

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
F1 VALUE AND ACCURACY OF IN-SAMPLE APPS DETECTION

Metrics Approaches 20% 40% 60% 80%
Node2Vec 0.8355 0.8378 0.8542 0.8601
GCN 0.8653 0.8677 0.8721 0.8763

GAT 0.8435 0.8633 0.8752 0.8801
Metapath2Vec 0.9231 09321 0.9328 0.9395
RS-GCN 09212 09510 09515 0.9560
RS-GAT 0.9507 0.9631 0.9653 0.9664
— HAN 09511 09617 0.9671 0.9705
~ Metagraph2Vec 0.9750 09766 09764 0.9771
SVM (Drebin) 09312 0.9387 0.9446 0.9477
DroidEvolver 0.9412 09517 0.9566 0.9605
HinDroid 09643 0.9669 09684 0.9746
MatchGNet 0.9395 09511 0.9604 0.9753
Aidroid 0.9321 09399 09414 0.9455
MSGAT (HAWK) 0.9857 0.9859 0.9871 0.9878
Node2Vec 0.8254 0.8388 0.8405 0.8593
GCN 0.8558 0.8663 0.8630 0.8692
GAT 0.8461 0.8645 0.8758 0.8833
Metapath2 Vec 0.9259 09321 0.9335 0.9388
RS-GCN 0.9199 0.9494 0.9527 0.9544
RS-GAT 0.9486 0.9620 0.9652 0.9664
8 HAN 0.9521 0.9657 0.9675 0.9699
< Metagraph2Vec 0.9686 0.9698 09748 0.9762
SVM (Drebin) 0.9295 09356 0.9407 0.9455
DroidEvolver 0.9329 0.9506 0.9557 0.9623
HinDroid 0.9688 0.9698 0.9722 0.9764
MatchGNet 09302 0.9508 0.9536 0.9689
Aidroid 0.9227 0.9356 0.9367 0.9437
MSGAT (HAWK) 0.9843 0.9855 0.9867 0.9854

graph model and CNN network. Following the detailed
description in this article, we utilize one- and two-hop
neighbors to best function its model performance.

3) Model Parameters: For Node2Vec and Metapath2Vec,
we set the number of walks per node, the max walk length,
and the window size to be 10, 100, and 8, respectively. For
GCN, GAT, and HAN, we set up the parameters suggested
by their original papers. For the fairness of comparison, each
model will be trained 200 times. The length of embedding
vectors delivered by these models is set to be 128.

VI. EXPERIMENT RESULTS
A. Detection Effectiveness

1) In-Sample Malware Detection Against DL Models: We
choose 20%, 40%, 60%, and 80% of the in-sample Apps
to train the LR model and the residual for testing. Table V
shows the F1 and Acc scores of each model. In general,
MSGAT can achieve competitive classification accuracy when
compared the popular malware detectors such as Drebin,
DroidEvolver, MatchGNet, HinDroid, and AiDroid. Compared
with F1 and Acc scores, similar observations can be found
in Table VI when measuring FP rate. This is because our
graph-based representation learning models can fully integrate
the feature information of Apps and the implied semantic
information between Apps, which improves the expression
ability. In addition, the accuracy of RS-GCN and RS-GAT can
be improved by over 5% compared with native GCN and GAT.
Such approaches convert the original HIN into homogeneous
graph and the improvement derives from preserving the

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

TABLE VI
FP RATE OF IN-SAMPLE APPS DETECTION

Metrics Approaches 20% 40% 60% 80%
Node2Vec 0.0425 0.0393 0.0388 0.0342
GCN 0.0350 0.0323 0.0333 0.0318
GAT 0.0343 0.0334 0.0299 0.0268
Metapath2Vec 0.0177 0.0175 0.0169 0.0165
RS-GCN 0.0184 0.0118 0.0109 0.0107
§ RS-GAT 0.0115 0.0088 0.0079 0.0075
< HAN 0.0108 0.0098 0.0085 0.0087
EL Metagraph2Vec 0.0071 0.0068 0.0059 0.0057
= SVM (Drebin) 0.0163 0.0155 0.0135 0.0139
DroidEvolver 0.0154 0.0116 0.0101 0.0108
HinDroid 0.0075 0.0078 0.0071 0.0068
MatchGNet 0.0193 0.0129 0.0122 0.0081
Aidroid 0.0184 0.0171 0.0150 0.0139
MSGAT (HAwWK) 0.0038 0.0034 0.0032 0.0035

semantic information in the heterogeneous networks through
our proposed semantic meta-structures.

It is worth noting that Metagraph2Vec and MSGAT achieve
the highest precision, particularly compared against Meta-
path2Vec and HAN that only involve meta-paths. The accuracy
gain, obviously, stems from introducing meta-graphs that bring
rich semantics to mine more complex semantic associations.
In addition, MSGAT outperforms Metagraph2Vec as our
models adopt the aggregation mechanisms for both inter-
meta-structure and intra-meta-structure, thereby aggregating
semantic information from far more comprehensive views.

2) Out-of-Sample Malware Detection Against DL Models:
Tables VII and VIII show the F1 score and FP rate, respec-
tively, when we adopt different in-sample models and out-
of-sample policies. Overall, the NA and SNA policies have the
lowest detection accuracy under all cases due to the substantial
loss of semantic information. Obviously, direct averaging
operation ignores the discrepancies among neighbors, thereby
reducing the precision of node embedding and the resultant
detection effectiveness. It is also observable that NA and SNA
have very similar precision in almost all cases. This indicates
that sampling a certain number of neighbor nodes is able to
achieve approximate information in comparison to averaging
all neighbor nodes.

Intuitively, the RR policy will deliver the best performance
of detection over all datasets since all data either new or
old will involve in embedding retraining. Metagraph2Vec,
RS-GAT, and RS-GCN outperform Metapath2Vec, GAT, and
GCN due to the benefit from abundant meta-structures, respec-
tively. This performance improvement again demonstrates that
applying abundant semantic meta-structures into embedding
models can bring a stronger generalization capacity.

As shown in Table VII, MSGAT, together with the
rerunning policy, achieves the best detection effectiveness
on 2/3 datasets. This can be attributed to the highly rich
meta-structures used to include all possible contributions from
both intra- and inter- meta-structure aspects. Nevertheless,
rerunning has nonnegligible overheads particularly in terms
of long training time (we will demonstrate the time con-
sumption later). By contrast, MSGAT++ is proven to be
a compromising but competitive solution; the precision of
MSGAT++ is in close proximity to the rerunning baselines
over all datasets. To demonstrate the generalization, we also

implement our MSGAT++ mechanism upon the HAN model.
Similarly, the incremental learning scheme makes far better
improvements when compared against native NA and SNA,
only with neglectable margin from the rerunning baseline.

Hindroid, MatchGNet, HG2Img, and Drebin observably
deliver unstable outcomes across different datasets, indicating
a limited generalization ability. This is probably because
Hin2Img and Hindroid are more dependent upon large train-
ing samples and thus has lower precision on some specific
datasets. MatchGNet may have limited its performance by
neglecting the correlation information between Apps during
the construction of the graph. In Drebin, SVM is leveraged
as the feature-based machine learning technique, making it
difficult to deal with malware with rapidly changing features.
DroidEvolver is also based on feature engineering and updates
its model in an online manner according to out-of-sample
Apps, leading to a competitive classification accuracy. Nev-
ertheless, purely relying on explicit features is intrinsically
deficient compared with semantic-rich approaches.

3) Comparison Against Traditional Feature-Based ML
Models: We mainly use RF, LR, decision tree (DT), gradient
boosting decision tree (GBDT), and AdaBoost as comparative
baselines. In this experiment, we particularly use v2017 as the
train set to build the HIN while leveraging the out-of-sample
Apps with various released times or various sources as the test
set. Following the method in [3], we extract information from
permission, API, class name, interface name, and . so file to
construct the feature vector with 63902 dimensions, which are
reduced to 128 dimensions via principal component analysis
(PCA).

Fig. 5 shows the F1 score and accuracy score produced by
different models over different test sets. Observably, HAWK
stably outperforms all traditional baselines in all cases when
carrying out the App classification. Traditional ML approaches
are competitive (with Acc or F1 score around 0.95) only when
the testing set is aligned with the training set (v2017), while
HAWK can constantly deliver precise results. Interestingly,
the performance of traditional approaches is constantly poor
over the dataset of some specific years, e.g., v2014 and c2019.
After examining the features involved in the PCA, we infer
that the root cause for this phenomenon is because some
features are preferably used by malicious Apps in those
years but have yet been captured in the training set. For
example, “Ljava/lang/Cloneable” and the .so file
“libshunpayarmeabi” manifest in v2014 as the domi-
nating features in the PCA, but they are less important in the
principle components in v2017. Similar observations can also
be found for the c2019. This is an interesting research finding,
while the further in-depth study is currently beyond the scope
of this article and will be left for future work.

To sum up, the disparity of precision implies the difficulty
in applying traditional ML models—merely relying on explicit
feature extraction—into reliable malware detection consider-
ing the explosively growing types and numbers of Apps in the
market. In comparison, HAWK is able to mine the high-order
relations between Apps, with the help of HIN, and thus has
strong generalization, i.e., high effectiveness regardless of the
type and size of datasets.

B. Detection Efficiency

1) Time Consumption: In this experiment, we compare
the time efficiency of our incremental detection design
MSGAT++ against those comparative approaches with an

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII
F1 VALUE OF OUT-OF-SAMPLE APPS DETECTION

Metrics In-sample Out-of-sample v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019
Approaches Approaches

NA 0.5888 0.6746 0.6965 0.6740 0.6811 0.6744 0.6680 0.6533 0.6995

Node2Vec SNA 0.6541 0.6732 0.6965 0.6935 0.6851 0.6665 0.6685 0.6638 0.6845

Rerunning 0.7564 0.8102 0.7956 0.8124 0.8236 0.7549 0.7968 0.7765 0.7945

GCN Rerunning 0.8637 0.8705 0.8459 0.8496 0.8697 0.8743 0.8637 0.8567 0.8537

NA 0.7364 0.7423 0.7153 0.7155 0.7545 0.6225 0.7203 0.6352 0.6442

GAT SNA 0.7433 0.7521 0.7056 0.6962 0.6842 0.7121 0.6831 0.6720 0.6318

Rerunning 0.8242 0.8448 0.8531 0.8474 0.8731 0.8595 0.8457 0.8511 0.8476

NA 0.7414 0.8424 0.7835 0.7784 0.7537 0.8243 0.8473 0.8160 0.8183

Metapath2 Vec SNA 0.7564 0.8531 0.7765 0.7496 0.7365 0.8359 0.8363 0.8242 0.8156

Rerunning 0.9240 0.9321 09195 09214 0.9342 09326 0.9285 0.9094 0.9052

NA 0.7455 0.7405 0.6361 0.7433 0.7292 0.7443 0.7245 0.7101 0.7253

HAN SNA 0.7593 0.7635 0.7793 0.7723 0.8046 0.7803 0.7566 ~ 0.7543 0.7768

Rerunning 09155 0.9626 09678 09588 0.9758 0.9522 0.9677 0.9482 0.9574

MSGAT++ 0.8896 0.9611 09512 09462 0.9466 09655 0.9583 0.9358 0.9386

— RS-GCN Rerunning 09532 0.9549 0.9487 09499 0.9656 0.9651 0.9745 0.9539 0.9471

~ NA 0.7564 0.9400 0.8104 0.6755 0.7345 0.6423 0.7520 0.6152 0.5931

RS-GAT SNA 0.7564 0.9400 0.8601 0.6744 0.5290 0.7253 0.7323 0.5807 0.7707

Rerunning 0.9260 0.9321 09428 09582 0.9498 09392 09372 0.9485 0.9593

NA 0.7658 0.9763 0.8041 0.7955 0.7693 0.8665 0.7614 0.8267 0.8084

Metagraph2Vec SNA 0.7672 0.7769 0.8155 0.7996 0.7805 0.8665 0.7628 0.8239 0.8084

Rerunning 0.9533 0.9688 0.9255 09382 0.9201 09667 0.9718 0.9234 0.9040

Drebin 0.7442 0.7723 0.7856 0.8277 0.9432 0.7761 0.7891 0.7559 0.7413

DroidEvolver 07972 0.8469 0.8519 0.8996 0.9605 09265 0.9028 0.8539 0.8584

HinDroid 0.8946 0.9232 09298 09277 09712 09159 09466 0.9396 0.9245

MatchGNet 0.8981 0.8965 0.9323 0.8833 0.9675 09265 0.9053 0.9123 09137

HGINE (AiDroid) HG2Img 0.8842 09723 09556 09272 0.9455 0.8761 0.8991 0.8959 0.9013

NA 0.7693 0.7601 0.6465 0.7725 0.7693 0.7741 0.7741 0.7401 0.7454

MSGAT SNA 0.7795 0.7845 0.7996 0.8058 0.8241 0.7955 0.7832 0.7791 0.8071

Rerunning 09569 0.9824 09876 0.9720 0.9769 0.9808 0.9805 0.9621 0.9693

MSGAT++ 0.9007 0.9804 0.9736 0.9687 0.9695 09665 0.9658 0.9461 0.9393

RF

DT AdaBoost

GBDT

Hawk

(2)

RF

DT AdaBoost

GBDT

0.9783 0.9865

Hawk

v2014 v2018 0.66

(b)

Fig. 5. Comparisons with traditional machine learning methods. (a) F1 Score. (b) Acc Score.

acceptable detection accuracy (demonstrated in Section VI-A),
i.e., rerunning HAN, rerunning Metagraph2Vec, Drebin,
DroidEvolve, and HG2Img. It is worth mentioning that we
exclude the extraction time from calculating the overall
execution time for the sake of simplicity because all

approaches in our experiment share the same procedure of fea-
ture extraction. In fact, it approximately takes 6.9 s per App to
extract the feature information from its original APK file.

As observed in Fig. 6, the execution time of MSGAT++
is much shorter than other approaches. MSGAT++ takes

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

11

TABLE VIII
FP RATE OF OUT-OF-SAMPLE APPS DETECTION

Metrics In-sample Out-of-sample v2013 v2014 v2015 v2016 v2017 v2018 v2019 c2017 c2019
Approaches Approaches
NA 0.1052 0.0846 0.0819 0.0782 0.0776 0.0846 0.0763 0.0971 0.0819
Node2Vec SNA 0.0968 0.0831 0.0758 0.0811 0.0862 0.0883 0.0852 0.0806 0.0789
Rerunning 0.0682 0.0531 0.0576 0.0534 0.0508 0.0698 0.0579 0.0643 0.0569
GCN Rerunning 0.0377 0.0359 0.0428 0.0412 0.0366 0.0356 0.0374 0.0394 0.0406
NA 0.0711 0.0708 0.0754 0.0736 0.0648 0.0981 0.0727 0.0963 0.0911
GAT SNA 0.0675 0.0655 0.0779 0.0804 0.0836 0.0754 0.0830 0.0859 0.0966
Rerunning 0.0461 0.0408 0.0387 0.0403 0.0334 0.0370 0.0406 0.0394 0.0403
NA 0.0690 0.0419 0.0575 0.0593 0.0655 0.0460 0.0398 0.0474 0.0459
Metapath2Vec SNA 0.0616 0.0371 0.0565 0.0634 0.0667 0.0416 0.0415 0.0455 0.0467
Rerunning 0.0192 0.0173 0.0205 0.0201 0.0167 0.0171 0.0182 0.0230 0.0241
NA 0.0644 0.0657 0.0921 0.0650 0.0686 0.0647 0.0701 0.0737 0.0701
HAN SNA 0.0614 0.0603 0.0563 0.0581 0.0496 0.0559 0.7566 0.0625 0.0568
Rerunning 0.0215 0.0094 0.0091 0.0104 0.0061 0.0121 0.0081 0.0131 0.0108
2 MSGAT++ 0.0279 0.0098 0.0123 0.0136 0.0135 0.0087 0.0105 0.0162 0.0165
~ RS-GCN Rerunning 0.0119 0.0115 0.0131 0.0127 0.0087 0.0088 0.0065 0.0117 0.0134
QL NA 0.0619 0.0153 0.0484 0.0822 0.0672 0.0906 0.0628 0.0975 0.1039
~ RS-GAT SNA 0.0622 0.0153 0.0358 0.0835 0.1203 0.0702 0.0683 0.1071 0.0585
Rerunning 0.0189 0.0172 00145 00106 00127 00154 0.1586 0.0130 0.0106
NA 0.0591 0.0059 0.0494 0.0521 0.0586 0.0339 0.0607 0.0441 0.0485
Metagraph2Vec SNA 0.0591 0.0565 0.0467 0.0507 0.0556 0.0338 0.0599 0.0444 0.0483
Rerunning 0.0117 0.0079 0.0188 0.0156 0.0202 0.0084 0.0071 0.0196 0.0242
Drebin 0.0653 0.0583 0.0547 0.0440 0.0145 00572 0.0538 0.0623 0.0653
DroidEvolver 0.0517 0.0391 0.0376 0.0255 0.0101 0.0187 0.0248 0.0372 0.0365
HinDroid 0.0241 0.0177 0.0253 0.0157 0.0061 0.0201 0.0149 0.0153 0.0162
MatchGNet 0.0257 0.0218 0.0137 0.0236 0.0065 0.0156 0.0201 0.0185 0.0173
HGiNE (AiDroid) HG2Img 0.0295 0.0071 00113 00185 0.0139 0.0316 0.0257 0.0265 0.0252
NA 0.0589 0.0608 0.0895 0.0576 0.0584 0.0572 0.0577 0.0659 0.0648
MSGAT SNA 0.0561 0.0549 0.0510 0.0494 0.0448 0.0521 0.0552 0.0563 0.0491
Rerunning 0.0109 0.0044 0.0032 0.0071 0.0058 0.0049 0.0049 0.0097 0.0078
MSGAT++ 0.0232 0.0049 0.0067 0.0079 0.0077 0.0085 0.0086 0.0136 0.0154
- MSGATH+ . HG2mg MW Rerun MsGAT the entire model. In addition, MSGAT++ merely selects a
2001 e T FeTnAN K Ren Metagraph2vec fixed number of neighbor nodes to recalibrate the embedding
so that the time consumption only increases linearly with the
@ 150 increment of out-of-sample number.
8 By contrast, other rerunning HIN-based baselines are pre-
if:z’100’ dominantly dependent on updating embedding for all nodes
based on the starting relation matrix. This leads to discrepan-
501 cies between MSGAT-++ and others with the rerunning policy
-] when tackling out-of-sample Apps. HG2Img relies on a certain
0 200 R 300 amount of update operations to learn new features, resulting
The number of out-of-sample Apps in a nonnegligible time consumption.
i .)) 2) System Overhead: Overall, the overheads are gener-
Fig. 6. Efficiency comparison of detecting out-of-sample Apps.

only 3.5 ms on average to detect a single out-of-sample
App. This millisecond-level detection by HAWK illustrates its
suitability in the real-time malware detection scenario at scale.
In particular, MSGAT++ can accelerate the training time by
50x against the native approach that rebuilds the HIN and
reruns the MSGAT. The acceleration primarily derives from
our incremental learning design that can make full use of
previously learned information without the need of rerunning

ally low, mainly generated from loading model data and
carrying out the multitiered aggregation operations. Runtime
memory consumption is typically determined by the number
of nodes and features involved in the model training. The
total memory consumption of HAWK is roughly 330 MB on
average, far lower than the consumption of RR-based baselines
(20.88 GB on average). This is because all in-sample and out-
of-samples have to fully loaded into memory and involved in
the embedding calculation, while our incremental design sig-
nificantly reduces such costs. Correspondingly, HAWK merely

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE IX
ABLATION ANALYSIS

Model Ace F1 AvgDetectionTime
Hawk 0.9695 0.9689 3.5ms
HAWK-I (w/o MSGAT) 0.8731 0.8725 1.8ms
HAWK-R (w/o MSGAT++) 0.9769 0.9769 205ms
0.97
VP, mEm MP, mmm MP, Il MG, BEE MG, mEN MG,
096 - P, MP, EEE MP

0.95

0.94

0.93

0.92
Recall F1 Acc

Precision

Fig. 7. Model performance under different path combinations.

uses 3.1% additional CPU utilization on average, mainly for
sorting out top-o samples. By contrast, the CPU utilization is
up to 76% in rerunning baselines, in which CPU-intensive
matrix operations have to be performed. The low system
cost also indicates the suitability of applying HAWK into
massive-scale malware detection.

C. Microbenchmarking

1) Ablation Analysis: To investigate the impact of each
component, we remove one component at a time from our
model and study the individual impact on the effectiveness
of detecting the out-of-sample Apps. We identify two tailored
subsystems: 1) projtitle-I by only retaining native GAT model
and removing the hierarchical GAT structure from HAWK and
2) projtitle-R by excluding the incremental design. Table IX
reports their accuracy and average time to detect a single
App on v2017.

Without multistep and hierarchical aggregation within
a meta-structure and across meta-structures, projtitle-I can
reduce the average detection time to 1.8 ms. However,
both accuracy and F1 score are reduced by 9.9% compared
with HAWK. This phenomenon demonstrates the accuracy
gain stemming from fusing embedding results under different
meta-structures. projtitle-R takes far longer time to detect a
malware App, simply because no incremental model is loaded
and everything needs to be retrained from scratch. Inherently,
although the accuracy experiences a negligible increase due to
the full data involved in the model training, the detection effi-
ciency of projtitle-R is still unacceptable considering the long
execution time. Hence, it is necessary to adopt the incremental
MSGAT++ to ensure a reliable and rapid malware detection.

2) Importance of Meta-Structures: In our model design,
a group of meta-paths and meta-graphs are adopted to repre-
sent different semantic information. To ascertain the individual
contribution to the detection effectiveness, we select a single
meta-structure at a time in this experiment. Fig. 7 shows
the metric disparities among different meta-structures. More
specifically, among all meta-paths, MP; and MP, have the
highest and lowest contributions to the detection precision.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

0.96

o
©
®

F1 Score
Acc Score

14
Q
R

14
©
S

- V2013 —¥- v2016
W V2014 —e— V2017
V2015 —4— v2018

- V2019
—— c2017
—e— c2019

—o- V2013 —¥- v2016
- V2014 8- v2017
V2015 —4— v2018

- v2019
—— c2017
—e— c2019

1 6 1 6

2 3) 5 2 3 P 5
The number of sampling neighbors The number of sampling neighbors

Fig. 8. Impact of sampling neighbor number.

In fact, when analyzing the decompiled codes, we are able
to extract far more API information than .so files so that
the relation matrix A is denser than S and thus contains more
connection information for node embedding.

Observably, using meta-graphs can achieve higher detection
precision when compared to purely using meta-paths, for a
combination of meta-paths that can find neighbors with closer
affinity. Likewise, if comparing with the results in Table V,
MSGAT that involves the full set of semantic meta-structures
unsurprisingly outperforms any situation where only a sin-
gle semantic meta-structure is adopted. This implicates that
introducing sophisticated semantics is significantly meaningful
to precisely uncover hidden association between entities for
better classification.

3) Impact of the Sampling Neighbor Number: As shown
in Fig. 8, the precision will first pick up within a certain
range but descend once the number of sampling neighbors
becomes larger (surpassing four in our experiment setting).
In effect, increasing neighbors can provide more relevant
and informative embedding for the reference of the new
nodes. However, as the neighbors begin to accumulate, noises
generated by more irrelevant neighbors will, in turn, nega-
tively impact the embedding aggregation, i.e., diminishing the
representation learning effectiveness. This implication reveals
that gauging an appropriate number of neighbors is very
critical to the holistic performance of embedding incoming
Apps and identifying their types. We choose 3—4 neighbors
to generate a good enough effectiveness, but one can tune
the number either manually according to specific datasets or
automatically empowered by reinforcement learning. This is
currently beyond the scope of this article and will be left for
future work.

4) Case Study of True Negative Detection: The exper-
iments also reveal that the true negative result man-
ifests occasionally. In other words, a small minority
of malicious Apps may not be correctly identified by
our model. For example, VirusShare_ecc4c2e7 and
VirusShare_f21£ff00cf in v2013 bypass our detection.
An in-depth investigation ascertains that the embedding of
such malicious apps will be assimilated by its benign neighbor
nodes that are overwhelming in the process of MSGAT++.
In fact, since these malicious Apps have far fewer entities
(no more than 30 entities) than others (normally with more
than 200 entities) used in the training, the neighbors of
these malicious apps obtained by HAWK are sparser and
tend to be benign Apps, resulting in inaccurate classification.
To address this problem, we plan to employ a label-aware
neighbor similarity measure based on node attributes to better
navigate the neighbor selection and distinguish the malware

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

more efficiently in the future. Nevertheless, HAWK can achieve
better detection accuracy against the up-to-date baselines, with
far lower time consumption, particularly when detecting the
out-of-sample Apps.

VII. DISCUSSION

A. Interpretablity

HAWK is a data-driven modeling and detecting mechanism
based on HIN and network representation model empowered
by GATs. The model’s interpretability can be significantly
enhanced due to the inherent nature of rich semantics, stem-
ming from the combinations of meta-paths and meta-graphs,
in the HIN and the multitiered aggregation of attention from
different semantics. Such an approach intrinsically outper-
forms the SVM-based approaches such as Drebin [33] and
RF-based approaches such as MaMaDroid [35] which has
inadequate interpretability.

B. Scalability

The current HIN-based data modeling is scalable and can
be easily extended, to any arbitrary entities and relationships,
as long as the semantics can be demonstrated beneficial to
the process of detection, either by domain knowledge or
experimental assessment. In addition, since our design does
not require any model rerun, the scalability can be inherently
guaranteed when coping with sizable samples.

C. Robustness to Obfuscation

The semantic meta-structures based on multiple entities—
including permission, permission types, classes, and
interfaces—can overcome the inefficiency of API-alone
detection approaches and provide a robust and accurate
mechanism for detecting potential malware, in the face of
API obfuscation, packing, or dataset skew (e.g., samples with
less visible features such as.so files in the dataset v2013).
In particular, the multitiered attention aggregation can
automatically set the weight of different meta-paths or
meta-graphs, thereby substantially reducing the impact of
a single factor, e.g., the API obfuscation, on the numerical
embedding and increasing the capability of generalization
over different datasets and scenarios.

D. Model Aging and Decays

Concept drift (also known as model aging and model
decays) usually makes trained models fail to function on
new testing samples, primarily due to the changed statistical
properties of samples over time. The existing work [36]—[38]
measured how a model performs over time facing the concept
drift, underpinned the root causes for such drift, and proposed
enhanced approaches to improve the model sustainability.
However, active learning typically involves massive labeling
for tens of thousands of malware samples, usually at a sig-
nificant cost of human efforts. By far, this issue is not the
focus and objective of HAWK. In contrast, MSGAT++ in
HAWK aims to rapidly embed and detect the out-of-sample
Apps, based upon the existing embedding results, assuming a
relatively stable statistical characteristics of the existing Apps.
At present, model evolving will be carried out through rerun-
ning of MSGAT, which is demonstrated acceptable in terms
of accuracy and time consumption (detailed in Section VI-B).
More advanced mechanism for improving the model evolution
will be left for future work.

13

VIII. RELATED WORK

A. Malware Detection Based on Traditional Feature
Engineering

Feature engineering and machine learning-based malware
detection methods are twofold: static/dynamic feature analysis.
Static features analysis approaches [2]-[4], [33]-[35] typically
include features including permissions, signatures, and API
sequences, and directly employ such machine learning models
as RF, SVM, or CNN for malware detection. However, they
inevitably overassume that all behaviors reflected by features
should be involved within the model training, thereby having
inadequate capability of tackling unknown out-of-sample cases
and causing much higher FP [3]. Meanwhile, cunning develop-
ers can also use obfuscation techniques to hide the malicious
codes [7] or perform repackaging attacks [39] to bypass
detection. Xu et al. [34] can automatically and continually
update itself when detecting malware without any human
involvement. Nevertheless, this scheme only proves that it has
the ability to adapt to updates but does not show its compati-
bility with previous datasets. In comparison, dynamic feature
analysis relies on behavior detection at runtime. Specifically,
DimjaSevic et al. [5] and Hou et al. [6] extracted Linux kernel
system calls from Apps executed in Genymotion (Android
Virtual Machine), while log analysis [7], [40] and traffic analy-
sis [8], [41] facilitate to capture Apps’ real-world behavior.
However, it is time-consuming and unrealistic to be applied
in malware detection at scale. Other models from natural
language processing and image recognition can be customized
and reused in malware detection. McLaughlin et al. [2]
used a deep CNN to analyze raw opcode sequence.
Vinayakumar et al. [42] transformed the sequences of Android
permissions into features by using the long short-term mem-
ory (LSTM) layer and uses nonlinear activation function for
classification. Xiao ef al. [43] exploited the LSTM to investi-
gate potential relationships from system call sequences before
classification. However, since Apps are constantly updated,
explicit features extraction from limited Apps is ineffective
in detecting unseen Apps.

B. Malware Detection Based on Graph Networks

Gotcha [17] builds up an HIN and utilizes a meta-
graph-based approach to depict the relevance over PE files,
which captures both content- and relation-based features of
windows malware. HinDroid [18] is primarily on the basis
of an HIN built upon relationships between APIs and Apps
and employs multikernel SVM for software classification.
MatchGNet [19] combines the HIN model with GCN [9]
to learn graph representation and node similarity based on
the invariant graph modeling of the program’s execution
behaviors. Wang et al. [20] constructed a heterogeneous
program behavior graph, particularly for I'T/OT systems, and
then introduced graph attention mechanism [25] to aggregate
information learned through GCN on different semantic paths
with weights. However, all these methods are impeded by
the static nature of the HIN, i.e., they have limited capa-
bility of tackling emerging Apps outside the constructed
graph. AiDroid [21] represents each out-of-sample App with
CNN [22]. However, the nonnegligible time inefficiency
stemming from multiple convolution operations becomes a
potential bottleneck. HAWK presents the first attempt to
bridge the HIN-based embedding model and GAT to underpin

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

incremental and rapid malware detection particularly for
out-of-sample Apps.

IX. CONCLUSION AND FUTURE WORK

Malware detection is a critical but nontrivial task partic-
ularly in the face of ubiquitous Android applications and
the increasingly intricate malware. In this article, we propose
HAWK, an Android malware detection framework to rapidly
and incrementally learn and identify new Android Apps.
HAWK presents the first attempt to marry the HIN-based
embedding model with GAT to obtain the numerical represen-
tation of Android Apps so that any classifier can easily catch
the malicious ones. In particular, we exploit both meta-path
and meta-graph to best capture the implicit higher order
relationships among entities in the HIN. Two learning models,
MSGAT and incremental MSGAT++, are devised to fuse
neighbors’ embedding within any meta-structure and across
different meta-structures and pinpoint the proximity between
a new App and existing in-sample Apps. Through the incre-
mental representation learning model, HAWK can carry out
malware detection dynamically for emerging Android Apps.
Experiments show that HAWK outperforms all baselines in
terms of accuracy and time efficiency. In the future, we plan
to integrate HAWK to smart mobile devices by devising light-
weight and efficient graph convolution models, such as [44]
and [45] to replace the existing modules. We also plan to
investigate more advanced mechanism for underpinning the
model evolving in the face of model decays, particularly in
federated learning environments.

ACKNOWLEDGMENT

Renyu Yang would also appreciate the birth of Ruisi and
numerous sleepless but encouraging nights with her when
preparing this manuscript.

REFERENCES

[11 Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Comput. Surv., vol. 50,
no. 3, pp. 140, Oct. 2017.

[2] N. McLaughlin et al., “Deep Android malware detection,” in Proc. ACM
CODASPY, 2017, pp. 301-308.

[3] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant
permission identification for machine-learning-based Android malware
detection,” IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216-3225,
Jul. 2018.

[4] S. Hou, A. Saas, Y. Ye, and L. Chen, “Droiddelver: An Android malware
detection system using deep belief network based on API call blocks,”
in Proc. WAIM, 2016, pp. 54-66.

[5] M. DimjaSevic, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of
Android malware detection based on system calls,” in Proc. CODASPY,
2016, pp. 1-8.

[6] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning
framework for Android malware detection based on Linux kernel system
call graphs,” in Proc. WIC, Oct. 2016, pp. 104-111.

[71 M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning
based Android malware detection using real devices,” Comput. Secur.,
vol. 89, Feb. 2020, Art. no. 101663.

[8] S. Wang et al., “Deep and broad URL feature mining for Android
malware detection,” Inf. Sci., vol. 513, pp. 600-613, Mar. 2020.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. SIGKDD, 2017, pp. 1-14.

[10] P. Velidkovid, G. Cucurull, A. Casanova, A. Romero, P. Lii,
and Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.
[Online]. Available: http://arxiv.org/abs/1710.10903

[11] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “GPT-GNN:
Generative pre-training of graph neural networks,” in Proc. SIGKDD,
2020, pp. 1857-1867.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[12] Y. G. Wang, M. Li, Z. Ma, G. Montufar, X. Zhuang, and Y. Fan, “Haar
graph pooling,” in Proc. ICML, 2020, pp. 9952-9962.

[13] H. Peng et al., “Streaming social event detection and evolution discovery
in heterogeneous information networks,” ACM Trans. Knowl. Discovery
Data, vol. 15, no. 5, pp. 1-33, Jun. 2021.

[14] H. Peng et al., “Hierarchical taxonomy-aware and attentional graph
capsule RCNNs for large-scale multi-label text classification,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 6, pp. 2505-2519, Jun. 2021.

[15] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta path-based
top-K similarity search in heterogeneous information networks,” Proc.
VLDB Endowment, vol. 4, no. 11, pp. 992-1003, 2011.

[16] H. Peng et al., “LIME: Low-cost incremental learning for dynamic het-
erogeneous information networks,” IEEE Trans. Comput., early access,
Feb. 11, 2021, doi: 10.1109/TC.2021.3057082.

[17] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-sly
malware!: Scorpion a metagraph2vec based malware detection system,”
in Proc. SIGKDD, 2018, pp. 253-262.

[18] S.Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent
Android malware detection system based on structured heterogeneous
information network,” in Proc. SIGKDD, 2017, pp. 1507-1515.

[19] S. Wang et al., “Heterogeneous graph matching networks for unknown
malware detection,” in Proc. 1JCAI, 2019, pp. 3762-3770.

[20] S. Wang et al., “Attentional heterogeneous graph neural network: Appli-
cation to program reidentification,” in Proc. ICDM, 2019, pp. 693-701.

[21] Y. Ye et al., “Out-of-sample node representation learning for heteroge-
neous graph in real-time Android malware detection,” in Proc. IJCAI,
2019, pp. 4150-4156.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015, pp. 1-372.

[23] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proc. SIGKDD,
2017, pp. 135-144.

[24] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Metagraph2vec: Complex
semantic path augmented heterogeneous network embedding,” in Proc.
PAKDD, 2018, pp. 196-208.

[25] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998-6008.

[26] X. Wang et al., “Heterogeneous graph attention network,” in Proc.
WWW, 2019, pp. 2022-2032.

[27] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
Proc. SIGKDD, 2017, pp. 635-644.

[28] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” in Proc. NIPS, 2019, pp. 11983-11993.

[29] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proc. WWW, 2020, pp. 2704-2710.

[30] Y. Gao, X. Li, H. Peng, B. Fang, and P. Yu, “HinCTI: A cyber threat
intelligence modeling and identification system based on heterogeneous
information network,” IEEE Trans. Knowl. Data Eng., early access,
Apr. 20, 2020, doi: 10.1109/TKDE.2020.2987019.

[31] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855-864.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 701-710.

[33] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of Android
malware in your pocket,” in Proc. NDSS, 2014, pp. 23-26.

[34] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-evolving
Android malware detection system,” in Proc. IEEE EuroS&P, Dec. 2019,
pp. 47-62.

[35] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by build-
ing Markov chains of behavioral models,” 2016, arXiv:1612.04433.
[Online]. Available: http://arxiv.org/abs/1612.04433

[36] X. Zhang et al., “Enhancing state-of-the-art classifiers with API seman-
tics to detect evolved Android malware,” in Proc. ACM CCS, 2020,
pp. 757-770.

[37] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in Proc. USENIX Secur., 2019, pp. 729-746.

[38] R. Jordaney et al., “Transcend: Detecting concept drift in malware
classification models,” in Proc. USENIX Secur., 2017, pp. 625-642.

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2021.3057082
http://dx.doi.org/10.1109/TKDE.2020.2987019

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HEI et al.: HAWK: RAPID ANDROID MALWARE DETECTION

[39]

[40]

[41]

[42]

[43]

[44]

[45]

K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged Android malware with code-heterogeneity features,” IEEE
Trans. Dependable Secure Comput., vol. 17, no. 1, pp. 64=77, Jan. 2020.
S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,”
in Proc. COMPSAC, 2016, pp. 577-582.

Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen, “Droidclassifier:
Efficient adaptive mining of application-layer header for classifying
Android malware,” in Proc. SecureComm, 2016, pp. 597-616.

R. Vinayakumar, K. Soman, and P. Poornachandran, “Deep Android
malware detection and classification,” in Proc. ICACCI, 2017,
pp. 1677-1683.

X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and LSTM,” Multi-
media Tools Appl., vol. 78, no. 4, pp. 3979-3999, 2019.

R. S Srinivasa, C. Xiao, L. Glass, J. Romberg, and J. Sun, “Fast
graph attention networks using effective resistance based graph spar-
sification,” 2020, arXiv:2006.08796. [Online]. Available: http://arxiv.
org/abs/2006.08796

M. Li, Z. Ma, Y. G. Wang, and X. Zhuang, “Fast Haar transforms for
graph neural networks,” Neural Netw., vol. 128, pp. 188-198, Aug. 2020.

Yiming Hei is currently pursuing the Ph.D. degree
with the School of Cyber Science and Technology,
Beihang University, Beijing, China.

His research interests include deep learning, infor-
mation security, and applied cryptography.

Renyu Yang (Member, IEEE) is currently an
EPSRC-funded Research Fellow with the Univer-
sity of Leeds, Leeds, U.K. He has industrial expe-
rience in building large-scale distributed systems
with machine learning and coauthored/co-led many
research grants including, U.K. EPSRC, Innovate
UK, and EU Horizon 2020. His research interests
include distributed systems, resource management,
and applied machine learning.

Hao Peng is currently an Assistant Professor at the
School of Cyber Science and Technology and the
Beijing Advanced Innovation Center for Big Data
and Brain Computing, Beihang University, Beijing,
China. His research interests include representation
learning, machine learning, and graph mining.

Lihong Wang is currently a Professor with the
National Computer Network Emergency Response
Technical Team/Coordination Center of China,
Beijing, China. Her current research interests include
information security, cloud computing, big data min-
ing and analytics, information retrieval, and data
mining.

15

Xiaolin Xu is currently a Professor with the National
Computer Network Emergency Response Technical
Team/Coordination Center of China, Beijing, China.
Her current research interests include information
security, big data mining and analytics, and network
security detection.

Jianwei Liu is currently a Professor at the School of
Cyber Science and Technology, Beihang University,
Beijing, China. His current research interests include
information security, communication network, and

cryptography.

Hong Liu is currently an Associate Professor with
East China Normal University, Shanghai, China,
and Shanghai Institute of Intelligent Science and
Technology, Tongji University, Shanghai. She is also
the Chief Technology Officer of Shanghai Trusted
Industrial Control Platform Company Ltd., Shang-
hai. She has published more than 30 SCI articles,
and Google Scholar citations are 2800 times. Her
research interests include the security and privacy
issues in vehicular edge computing, and the indus-
trial Internet of Things.

Jie Xu (Member, IEEE) is currently the Chair
Professor of computing at the University of Leeds,
Leeds, U.K., the Leader for a Research Peak of
Excellence at Leeds, the Director of U.K. EPSRC
WRG e-Science Centre, and the Chief Scientist with
BDBC, Beihang University, Beijing, China. He has
published in excess of 400 academic articles, book
chapters, and edited books. His research interests
include large-scale dependable distributed systems,
cloud systems, and big data processing.

Prof. Xu is an Executive Board Member of U.K.

Computing Research Committee (UKCRC) and a steering/executive commit-
tee member for numerous IEEE conferences and led or co-led many research
projects to the value of over $30M.

Lichao Sun received the Ph.D. degree from the
University of Illinois at Chicago, Chicago, IL, USA,
in 2020.

He is currently an Assistant Professor with Lehigh
University, Bethlehem, PA, USA. His research
interests include deep learning and data min-
ing. He mainly focuses on security and privacy,
social networks, and natural language processing
applications.

Authorized licensed use limited to: University of Leeds. Downloaded on August 29,2021 at 21:33:15 UTC from IEEE Xplore. Restrictions apply.

