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Abstract—We present LUCE, the first life-long predictive model for automated property valuation. LUCE addresses two critical issues
of property valuation: the lack of recent sold prices and the sparsity of house data. It is designed to operate on a limited volume of
recent house transaction data. As a departure from prior work, LUCE organizes the house data in a heterogeneous information network
(HIN) where graph nodes are house entities and attributes that are important for house price valuation. We employ a Graph
Convolutional Network (GCN) to extract the spatial information from the HIN for house-related data like geographical locations, and
then use a Long Short Term Memory (LSTM) network to model the temporal dependencies for house transaction data over time. Unlike
prior work, LUCE can make effective use of the limited house transactions data in the past few months to update valuation information
for all house entities within the HIN. By providing a complete and up-to-date house valuation dataset, LUCE thus massively simplifies
the downstream valuation task for the targeting properties. We demonstrate the benefit of LUCE by applying it to large, real-life datasets
obtained from the Toronto real estate market. Extensive experimental results show that LUCE not only significantly outperforms prior
property valuation methods but also often reaches and sometimes exceeds the valuation accuracy given by independent experts when
using the actual realization price as the ground truth.
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1 INTRODUCTION

For many families, a house is their most valuable asset.
Accurate and up-to-date house1 valuation is vital for var-
ious real-estate stakeholders such as homeowners, buyers,
mortgage lenders, agents, etc. House price estimation is
traditionally performed by a real estate appraisal based on
expert knowledge of target property, surrounding areas and
historical data [1], though at a very coarse granularity. Sub-
stantial efforts – most notably regression-based methods [2],
[3], [4], [5] – have been devoted to automate the house
valuation by primarily examining the relationship between
the house price and a range of quantified features like the
property size, interior decoration, the number of bedrooms
and facilities, the distance to a school catchment, etc.

Unfortunately, existing approaches for property valu-
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1. In this work, a house is referred to as different types of residential
properties, including the traditional house and apartments (or flats).

ation are inadequate in tackling two fundamental issues
manifested by real-life property markets: data freshness and
sparsity. The key challenge here is that house transaction
data are rarely up-to-date and inherently sparse - there
is typically a gap of years between two transactions of a
property and only a small number of houses are on the
market for any given time. For example, our analysis on
the residential property transaction data of the Toronto
Region in Canada between 2000 and 20192 shows that two
consecutive transactions of a house typically spans over
decades and only 0.1% to 0.5% of the residential properties
within an administrative district (known as a neighbor-
hood or community)3 were traded within 12-month time
frame. Moreover, the small number of freshly traded houses
spread across a large demographical area across thousands
of households, making it difficult to effectively model and
reason about the relationships between traded houses. On
top of that, transaction data before 2000 were often not
in a digital form, which further reduces the availability of
house transaction data. The lack of current house transaction
data implicates much of the pricing information that prior
approaches rely upon cannot accurately reflect the market
values of the target houses. Given a complex and dynamic
real estate market, the discontinuity and sparsity of house
transactions make it extremely intricate to build an accurate
predictor for house valuation.

To address the above limitations, we present LUCE4, a
novel learning framework for lifelong house price predic-

2. http://trreb.ca/
3. We consider 140 neighbourhoods (also often referred to as commu-

nities in the Canadian real estate market) officially recognized by the
City of Toronto.

4. LUCE = Lifelong house price prediction.
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tion. LUCE is designed to work on a limited set of current
house transaction data. Our key insight is to use the most
recent house transactions to estimate the value of all other
properties of the target region (e.g., a metropolitan city). By
periodically updating and estimating the house information,
LUCE offers a life-long learning framework to estimate the
current values for all houses with a metropolitan area. By
so doing, LUCE enables the downstream house valuation
model to utilize a significantly more substantial amount of
house transaction data across many properties than what
are available to prior methods. The completeness and up-
to-date house information provided by LUCE thus enables
one to build an accurate downstream valuation model using
standard machine learning techniques.

Translating our high-level idea to build a practical sys-
tem is, however, non-trivial. Since LUCE has to rely on a
small number (i.e., data sparsity) of recent house transaction
data across properties spreading across a large geograph-
ical area, it is important to make best use of all available
data. However, doing so is challenging because houses are
distributed over a large geographical region with many
attributes that can affect the house valuation. To this end,
we adopt the heterogeneous information network (HIN)
to model the relationships - such as the location, facility,
or floorplan - between houses entities. We then employ a
Graph Convolutional Network (GCN) to learn the house
data representation, which is fed into a property valuation
model built upon a standard multilayer perceptron (MLP)
model. Instead of directly performing learning on the entire,
large HIN - which would be hard to generalize - we break
down transactions into slices according to the geographical
region of the traded house and when the transaction was
taken place (on a monthly scale in this work). This allows
us to partition a large HIN into smaller sub-graphs so that
the learning of house data representation can be performed
on smaller graphs in parallel. We go further by feeding the
graph embeddings to a Long Short Term Memory (LSTM)
network to improve the learned house representation by
learning the temporal dependence of house data over time.

To address the discontinuity in house transaction data,
we use the GCN-LSTM unit to perform house valuation of
all house entities in the HIN over the last few months and
then use the prediction and transaction history to estimate
the price of the target house for the current month. We show
that this lifelong learning framework can be achieved by
simply stacking up a sequence of GCN-LSTM learning units.
To overcome the gradient vanishing issue when performing
learning over a long sequence of network layers, we intro-
duce a sliding recursive parameter updating strategy to nav-
igate the depth of gradient back-propagation and employ
reinforcement learning to automate the parameter settings
in the loss function calibration. Our evaluation shows that
this approach is simple to implement but yields good pre-
diction performance. We evaluate LUCE by applying it to
a real-world dataset collected from the Toronto real estate
market. We compare LUCE against 4 state-of-the-art auto-
mated house valuation methods and the valuation given by
independent experts. When using the realization price as
the ground truth, LUCE outperforms all prior methods and
often expert valuations.

This paper makes the following contributions. It is the

first to:

• adopt an HIN to model the house transaction data
(§2);

• propose a novel lifelong learning framework to per-
form property valuation (§4 and §5);

• outperform prior automated house valuation meth-
ods and even expert property valuation on real-life
datasets (§6).

To enable replication and foster research we make
our LUCE publicly available at: https://github.com/
RingBDStack/LUCE.

2 BACKGROUND AND MOTIVATION

In this section, we mainly outline the problem scope and
motivation, followed by a detailed description of the data.

2.1 Problem Scope and Motivation

Problem definition. This work focuses on residential prop-
erty valuation (price prediction). The prediction employs
property specific information and transaction records to
automatically estimate future property prices. Our work
addresses two primary research challenges facing the house
valuation – data sparsity and data freshness issues that man-
ifest spatially and temporally. This is because only a small
portion of houses is traded annually, while owner changing
does not frequently manifest for most houses, resulting in
a lack of up-to-date house transaction information tempo-
rally. Another challenge derives from the long-term learn-
ing wherein the vanishing gradients [6] and catastrophic
forgetting [7] effects of neural networks inevitably exhibit.
Therefore, the learning model continuously learns on short-
term dependencies but be lifelong so that we can replace
the missing transaction information in the property network
with the estimated values. Formally, we aim to learn a model
that takes as input house features X and its previous sold
price Y , and house-related properties to predict the current
valuation, yt, of the target house h at time t.

Motivation. Our work is motivated by the observation that
prior regression-based work is insufficient to tackle data
sparsity over time and stale transaction data cannot reflect
realistic property prices. To illustrate this point, consider
Table 1 that gives the precision of different prediction ap-
proaches, Decision Tree Regression (DT), Support Vector
Regression (SVR), and LSTM against the realization price for
the residential property transaction data of Toronto between
2000 and 2019. Regressors like SVR have a much higher Root
Mean Square Error (RMSE) than the valuation given by hu-
man experts. Due to the intrinsic affinity among houses with
similar terms of geographic location and floorplan design,
we consider the price prediction as a regression problem
based on nodes (houses) in a graph, where labels (i.e., house
price) are only available for a small subset of nodes. We
consider this problem as a life-long semi-supervised learning
based on graph embeddings.

https://github.com/RingBDStack/LUCE
https://github.com/RingBDStack/LUCE
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Table 1: RMSE Comparison.
#House Trans. SVR DT LSTM-D Appraiser-based

10,000 0.2677 0.2616 0.3055 0.1417
30,000 0.2792 0.2722 0.3047 0.1339
50,000 0.2885 0.2889 0.3076 0.1331
70,000 0.2987 0.2902 0.3021 0.1431
90,000 0.3011 0.2994 0.3015 0.1378

Table 2: Facility features and their types.
Category Type Abbr. Type Abbr.

Townhouse TH Detach DE
Semi-detach SDE Duplex DU
Triplex TR Fourplex FO
Cottage CO Link LI

Building type

RuralResid RR Other OT
Backsplit BA Bungalow BU
OneNHalfStorey ONS TwoNHalfStorey TNS
TwoStorey TWS ThreeStorey THSLayout structure

Sidesplit SS Other OT
Attach A Builtin BGarage type Carpor C Detach D
AlumSliding AS Brick BR
Concrete CO MetalNSide MS
Shingle SH Stone STExterior wall

VinylSling VS Wood WO
AboveGround AG Indoor IDPool type Inground IG None NO
Electricity EL Gas GAHeat source Oil OI Other OT
Baseboard BB FanCoil FC
ForcedAir FA HeatPump HPHeat equipment
Radiant RA Water WA
Crawl Space CS Step Entrance SE
Full FU Half HA
Finished FI Unfinished UFBasement

Part Finished PF None NO

2.2 Data Landscape
While generally applicable, to have a realistic use case, our
approach uses the house transaction data of the Region of
Toronto between 2000 and 2019. This dataset is owned by
the Toronto Real Estate Board, an online information portal
for real estate listings and services in the Greater Toronto
area. The dataset consists of over a million transaction
records of residential properties. Assumably, we can access
the limited up-to-date information including the property
size and floorplan because such information is often re-
quired to be supplied by the vendor to a real estate agent
or lender. More information on the dataset can be found at
§6.1. As depicted in Fig. 1, we categorize the features into
four distinct aspects:

i) Geographical information: In our case study, we break
down a valid house location by a series of address elements.
These elements can be formatted as a top-down hierarchical
tree that encompasses different levels of geographical units.
As depicted in Fig 1, the top of the tree is the largest and root
geographical unit – city-scale municipality (M) area. Further
down the tree, we sequentially define the geographical units
as: the community (C) (i.e., neighbour in the Canadian
system), the forward (F) sortation area (FSA)5, and the
postal (P). Herein, the edge in the tree denotes the belongs-to
relationship between layers. The geographical unit allows
us to capture information like school catchments which are
typically allocated through the geographical unit.

ii) Facilities information (enumerated): Key indicators of the
property valuation typically encompass supporting facilities

5. A forward sortation area (FSA) is a geographical unit based on
the first three characters in a Canadian postcode. All postcodes that
start with the same three characters - for example, M4B - are together
considered an FSA.

House 1 House 2
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F

Geographical information

Facilities information

Garage Type
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Exterior

TH DE

SDE

Building Type
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Financial information

Property Tax
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LotDepth

Familyroom

TotalParking

Floorplan information

Figure 1: House data and its HIN representation.

(e.g., the type of garage, layout structure, etc.). Their types
are enumerated and summarized in Table 2.

iii) Floorplan information (numerical): The number of var-
ious rooms (bedroom, washroom, family room, kitchen,
basement), the house area, width and depth of house land,
and the number of stove, air conditioning and parking slots.

iv) Financial information (numerical): the property tax, and
other financial information (excluding the property price to
be predicted) associated with the geographical information,
including the average up-to-date property price of the com-
munity and the FSA, and the average price of properties of
the same type within the community and the FSA.

3 OUR APPROACH OF LUCE

3.1 Overview
The first innovation of our approach, as a departure from
prior work, is to encode the information of house data as
a structured, heterogeneous information network (HIN)6

wherein HIN nodes are different types of entities of houses
and their characteristics, while edges represent different
relationships between a pair of entities (e.g., a house belongs-
to a community/neighborhood, or a house has detached
garage). HIN has several advantages compared against the
native approaches that only use raw features – (1) higher
accuracy: By using HIN that contains abundant node and
relationship information, the meta paths can provide rich
semantics and indicate higher-order relationships. One can
exploit such semantic information between nodes to em-
bed the nodes into representation vectors, far more accu-
rately than directly adopting house raw features. (2) bet-
ter interpretability: Meaningful meta-paths and meta-graphs
can indicate semantic-explainable similarities between two
houses. (3) Coherent connection with graph convolutions: Since
the problem of property price prediction is house entity
oriented only, it is also effective enough to deduce the infor-
mation from a self-contained HIN to a homogeneous graph
that can be directly absorbed by the graph convolutions.

In this context, the fundamental requirements of graph
embedding for the HIN consists of three crucial elements –

6. We refer to the same concept and definition about Heterogeneous
Information Networks in previous work [8], [9], [10].
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Figure 2: Overview of LUCE.

obtaining graph structure and retaining node attributes (nu-
merical features) and node labels. In fact, the graph structure
reflects the structural connectivity between two house enti-
ties, based on the affinity in terms of geographic proximity
and pertaining facilities. Meanwhile, numerical features of
an individual house regarding the detailed floorplan infor-
mation and financial information should be maintained as
the initial node attribute while property price is regarded as
node label. To simplify the lifelong house price prediction
problem, especially at the metropolitan level, we did not
discretize real values into buckets and transform them as
graph nodes. In fact, transforming all numerical values
into enumerated values would result in the degradation of
prediction accuracy due to the loss of accuracy. Additionally,
the financial information is more dynamic compared with
other features such as layout structure, building type, etc.,
and thus more suitable to be numerical.

At the core of LUCE is a deep neural network that builds
upon the GCN and LSTM. The network learns the most
appropriate embedding for the structural and numerical
features captured by the HIN and uses the learned repre-
sentation and known labels to perform the price regression.
Most notably, the semi-supervised GCN allows for feature
learning for all houses through a limited number of avail-
able transaction sourcing from the sparse houses. Herein,
we use the native GCN as the representative instance – due
to its simplicity and general purpose use cases – while any
other latest semi-supervised graph neural network mod-
els [11], [12] can be easily used as a substitute for the GCN
in our scenario of house feature learning. Similarly, we also
employ the widely-used recurrent neural network model
LSTM, due to its general purpose use cases. Other recurrent
neural feature learning models such as [13] can replace the
LSTM and be integrated with the current framework for an
improved prediction.

It is worth noting that, unlike prior work that directly
operates on the discrete and sparse time-series data across
years, LUCE splits available transactions into monthly slices
and uses data within each month slice to train the GCN-
LSTM continuum, the basic feature learning unit. This is
because the house price is observably stable between two
consecutive months and we can constantly update the pre-
diction model on a monthly basis. Accordingly, the trained
network manages to predict all house prices in the coming
months. In addition, the contribution of different meta-

Table 3: Notations.
Symbol Definition
G; V ; E HIN and its node sets and edge sets

X House features set
Y Node label (house sold price) set

t; T Time step number; Total time steps (months)
Sim(vi, vj) The similarity of house vi and house vj

A Adjacency matrix based on house similarity
~ω The weight of meta-path or meta-graph
M′ The total number of meta-paths and meta-graphs
Lt Loss function of at time step t
yt The sold-price set of house at time step t

H(i,t) The house embedding generated by i-th GCN at time step t
Ht The house embedding at time step t
Yt The predicted prices of all houses at time step t

W(l)

(i,t)
The parameter matrix of l-th layer of i-th GCN at time step t

θ(i,t) The parameter of LSTM of i-th subgraph at time step t

paths and meta-graphs in the HIN can be learned. To
avoid out-of-memory, we can naturally divide the graph of
houses into subgraphs, jointly connected by houses within
the overlapping areas. Correspondingly, we break down
the basic GCN-LSTM training unit into independent and
parallel GCN-LSTM instances, each of which is exploited for
feature embedding in each subgraph. Such parallelism will
finally form an array of GCN-LSTM, thereby significantly
speeding up the procedure of feature learning.

3.2 Architecture and Pipeline

Fig. 2 depicts the overall architecture of LUCE. From the
constructed HIN, we firstly calculate the adjacency matrix
– the best option to reflect the proximity and the node
connectivity in the graph – and the attribute matrix to retain
the residual numerical features of nodes. Due to the intrinsic
fact that GCNs merely operate on homogeneous graph and
induce embedding vectors for nodes based on the properties
of their neighborhoods, we compute the similarity between
every pair of houses and store it with adjacency matrix, to
underpin the heterogeneous graph convolution (§4.1).

We feed adjacency matrix A – generated by both meta-
paths instances and meta-graphs instances based similarity
measurement – together with the house (or node) into a
GCN and a graph LSTM. The learned embedding vectors
delivered by the GCN-LSTM continuum are therefore con-
catenated to form the holistic representation of the original
HIN at time t (§4.2).

To build a lifelong prediction framework capable of es-
timating house price monthly, we design a multitask learn-
ing scheme where GCN-LSTM units are unfolded multiple
times in a pipeline. A network obtained at month t can be
inherited for predicting the house prices Yt in the coming
month t + 1. Meanwhile, the prediction will also update
the embedding of houses Ht+1 at time t + 1, which is
used to train the follow-up GCN-LSTM units. We iterate
this process until targeting the valuation of all houses at
a certain month, t + n. To deal with the gradient vanish-
ing problem, we introduce a sliding recursive strategy for
parameter updating – limiting the depth the gradient can
back-propagate and recognizing the different impact of the
embedding within each time on the loss function calibration.
We use reinforcement learning to auto-learn the parameters
involved in the calibration (§5). To aid discussion, Table 3
depicts the notations used throughout the paper.
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Figure 3: (a) Meta-schema denotes basic relationships among entities in HIN; (b) a meta-path encodes a common
relationship/feature shared by two entities; (c) a meta-graph encodes multiple relationships shared by a pair of entities.

4 TEMPORAL-AWARE NETWORK

In this section, we first give the detailed construction process
of the graph-of-house and then introduce the temporal-
aware feature learning for the house price prediction.

4.1 Graph-of-house Construction from HIN

Calculating meta-path and meta-graph. Meta-schema is a
meta-level template that defines the relationship and type
constraints of nodes and edges in the HIN. As shown in
Fig. 3a, we obtain a meta-schema that encodes all possible
relationships between the house entity and other types of
entities. Meta-path is a path that connects a pair of network
nodes with a semantically meaningful relationship between
nodes (exemplified in Fig. 3b). We can enumerate all existing
relationships among each pair of house entities as the pre-
defined meta-paths. In fact, a meta-path can be used to
encode common features shared by two houses, e.g., two
houses belong to the same community. As a pair of houses
could have an arbitrary number of meta-paths, meta-graph,
in the form of directed acyclic graph (DAG), can be used as
a template to capture the arbitrary but meaningful combina-
tion of existing meta relationships between a pair of nodes.
For instance, the meta-graphs described in Fig. 3c define
two templates – houses have the same layout and garage
type (above) and houses located in the same area have the
same building type (below).
Retrieving structural information. Meta-paths and meta-
graphs over types and structures indicate semantic-
explainable similarities between two houses – houses have
more meta-path instances and meta-graph instances tend
to have closer valuation. In addition, different meta-graphs
should be arguably differentiated when computing the sim-
ilarity according to the differed semantic implications in
meta-paths. For example, a house within the same postal
area with the same layout structure as house x is far more
likely to have similar valuation compared against another
house that has the same building and pool style as house x
but in a different community.

Following similar methodology presented in [14], [15],
we compute the similarity of house valuation between two
houses hi and hj as follows:

S(hi, hj) =

M′∑
m=1

ωm
2× CountCm (hi, hj)

CountCm (hi, hi) + CountCm (hj , hj)
, (1)

where C denotes the collection of meta-paths and meta-
graphs, and CountCm(hi, hj) counts the number of m-th

element (path/graph) Cm between two house instances hi
and hj . Similarly, CountCm(hi, hi) and CountCm(hj , hj)
compute the number of meta-paths and meta-graphs in-
stances between hi and hi, and between hj and hj , respec-
tively. Intuitively, the more houses are connected via the
meta-paths or meta-graphs, the higher the similarity. The
number of meta-graph instances is counted by the Hadamard
product between matrixes counted by sub-string meta-paths.
At the core of the similarity function, S(hi, hj), is to nor-
malize the importance of meta-paths and meta-graphs be-
tween hi and hj by applying different weights to different
structural relationships. 2 × CountCm(hi, hj), counts the
number of shared meta-path instances and meta-graph in-
stances between house instances hi and hj for computing
the semantically overlapped information. We multiply the
number by two because the meta-paths and meta-graphs are
bi-directional. CountCm(hi, hi) + CountCm(hj , hj) counts
the total number of meta-paths and meta-graphs among the
two house instances themselves. Notably, we use a learnable
parameter vector ~ω = [ω1, ω2, . . . , ωM ′ ] to denote weights
of all meta-paths and meta-graphs.

We can then use the calculated similarity to indicate the
connectivity between any pair of house instances. Accord-
ingly, we construct an N × N weighted adjacency matrix
A to store the semantic similarity among N houses. The
adjacency matrix A is also referred to as the graph-of-house.
The weighted mechanism can ensure that the aggregation of
GCN is not susceptible to the skewed distribution of entity
links, as the weights are learnable and hence adaptive to
changes in the graph.
Retrieving house attribute matrix through PCA. There are
several house-related numerical attributes. We use one-hot
representation to encode each of these numerical attributes,
after which we concatenate them as a single vector of
numerical values. An attribute vector is therefore associated
with a house entity in the HIN. We further apply principal
component analysis (PCA) to reduce the dimensionality of
the vector to D (e.g., to 100 elements). In this manner, we
eventually form the house attribute matrix X , which is of
shape N ×D.

4.2 Temporal-Aware Feature Learning
Fig. 4 illustrates the flowchart of LUCE learning framework.
The trunk of LUCE is to take as input the weighted adjacency
matrix A and the house attribute matrix X , and constantly
update the house embedding Ht at the t-th month. The
house price Yt can be then predicted based on the embed-
ded features with known price label.
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At the core of the graph embedding is learning the repre-
sentation of house features. We leverage GCN to aggregate
the neighborhood information in A when measuring the
relationship between an entity pair. Primarily exploiting the
weighted adjacency matrix and attribute matrix, GCN learns
and feeds the feature representation to a LSTM to involve
temporal dependency within the HIN and further calibrate
the effectiveness of the graph embedding. We introduce
parallelism to accelerate the model training and reduce
the memory overhead when processing a large graph. As
houses have been intrinsically divided into adjacent geo-
graphic areas, we split the holistic graph into several over-
lapping subgraphs, and conduct feature learning for each
subgraph in parallel. Specifically, we divide the weighted
adjacency matrix A into several overlapping subgraphs (see
Fig. 4) and it can be formalized as:

A = A1 ∪A2 · · · ∪Aj , (2)

where j is the total number of divided subgraphs.
Feature learning. For the i-th subgraph Ai, we employ a
GCN model [16] to learn the numerical feature embedding
on a monthly basis, by formalizing a layer-wise propagation
rule at the t-th month:

H
(l)
(i,t) = GCN(Ai, H

(0)
(i,t),W

(l)
(i,t)), (3)

where H(0)
(i,t) is the afferent feature matrix of the i-th sub-

graph, and W
(l)
(i,t) is the parameter matrix of the i-th sub-

graph at l-th layer. H(0)
(i,1) is set to be the initial house

attribute of the i-th sub-graphs from X . After training,
we record the l-th layer embedding of the i-th subgraph
at t-th month as H(i,t) = H

(l)
(i,t). In fact, the adjacency

matrix Ai contains the parameter ~ω pertaining to each meta
path/graph in the similarity measurement. Notably, the
parameter will be continuously and globally updated in the
training procedure.

This semi-supervised GCN technology allows for learn-
ing embedded features of all houses using a limited number
of available house transactions. Meanwhile, it enables us
to learn the contribution of different meta-paths and meta-
graphs, which can facilitate to divide house instances into
independent and parallel GCNs. Still, it is intractable how to
leverage house transactions at different time (e.g., different
months) to calibrate the house embedding more precisely.
To tackle this, we will work on the temporal features at
different time periods.

Temporal dependency. House embedding obtained from
the GCN cannot guarantee an up-to-date price information
due to the ignorance of time difference in the price label.
We therefore add an additional LSTM layer to learn and
update the valuation for each house. Specifically, we feed
the learned house embedding H(i,t) of the i-th subgraph at
t-th month as the input of LSTM units. The output of the
LSTM can be formalized as:

H(i,t) = LSTM(H(i,t), θ(i,t)), H
(0)
(i,t+1) = H(i,t) (4)

where θ(i,t) means parameters in LSTM unit and the output
of LSTM unit will be passed to next GCN unit as the initial
house attribute. Consequently, the feature embedding of
houses are transformed into time series according to the
transaction times, significantly alleviating the discontinuity
of house transactions in the short run. We then concatenate
all individual embeddings H(i,t) into H(t) before making
fine-grained calibration. Hence, for the month t, by using
the transaction prices of houses in the HIN, we can train
evolving house embeddings, which integrate both spatial
and temporal features. Eventually, we add a multi-layer
perceptron (MLP) between the delivered embedding by
LSTM and the price label to decode and thus predict any
house prices Y(t), at t: Yt = MLP (H(t)).
Calibration through distance regulation. We instantiate
an independent GCN for each subgraph to obtain its own
feature embedding in parallel. To coordinate those embed-
ding results and form a holistic picture, we use distance
regulation to calibrate the embedding, ensuring the house
across different subgraphs has close embedding scheme in
different GCNs:

ε(Pt) =
L∑
α=1

||H(1,t)(pα)−
g(pα)∑
β=2

1

g(pα)− 1
H(β,t)(pα)||, (5)

where P denotes the set of those overlapping houses, i.e.,
P = {pα, α = 1, . . . , L}. g(pα) means the number of
subgraphs that contain the pα house, and H(β,t)(pα) refers
to the embedding of the pα house in the β-th GCN at the
t-th month.
Loss Function. We use the following loss function to opti-
mize model parameters:

Lt = Rt + ε(Pt). (6)

The loss function Lt comprises two parts – the accuracy of
prediction – the Root Mean Square Error (RMSE) Rt – and
the unified embedding of overlapping houses among GCNs.
The widely-used stochastic gradient descent (SGD) method
is used to update all parameters including Wt, θt, ~ω, etc.

However, the proposed feature embedding is effective in
case of short term transactions but is extremely susceptible
to longer series spanning many years. In addition, the model
training would become very slow and difficult to achieve
convergence, resulting in the failure of feature embedding.

5 LIFELONG LEARNING NETWORK

In this section, we first present the loss function of the life-
long learning model and then how reinforcement learning
is used for optimizing the loss function.
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Figure 5: An instance of the structure of LUCE.

5.1 Basic Model

Unlike previous mainstream models of time series predic-
tion that calculate the loss function and update parameters
until last time step, our proposed lifetime learning approach
will update parameters at each month. Therefore, we divide
house price set according to monthly-based subsets. yt is the
t-th set corresponding to embedded representation Ht of the
house, and the overall time series is Y = ∪Tt=1yt. We record
the number of traded houses with price labels each month
as Nt. The RMSE can be formalized as:

Rt =

√√√√ 1

Nt

Nt∑
j=1

(ŷt(j)− yt(j))2, (7)

where ŷt(j) and yt(j) refer to the predicted price and sold
price of j-th house, respectively.

In the lifelong learning network, we introduce a sliding
recursive parameter updating strategy to navigate the depth
of gradient back-propagation, thereby mitigating the gradi-
ent vanishing problem. We take the evolving embedding
Ht of the house learned every month as the initial house
attribute of the next month’s GCN-LSTM unit. As shown
in Fig. 5, we use ”task” to describe the training goal at
various time steps in the lifelong model. At time step t,
task t indicates the training procedure based on the n-
months ahead of t for the price label prediction at time step
t+ 1, to confine the parameter updating for at most n back-
propagation depths. For example, if n is 3, within Task 4,
the gradients generated by the objective function R4 will
not only affect W4 and θ4, but back-propagate and affect the
parameters W3, θ3 and W2, θ2.

Loss Function Calibration. We differentiate the impacts
of tasks on the effectiveness of feature learning. Within
each task, the loss function comprises the original loss
function with the accumulation stemming from the back-
propagation:

Lt =
1

n

(
Lt +

n−1∑
i=1

λiΘt−i

)
, (8)

where λi denotes the penalty coefficient to depict the impact
of prior tasks to the task t − 1 while Θt−i indicates the
individual propagating loss. To further accelerate the model

training, we adopt parameter inheritance in sequential GCN-
LSTM units, which ensure the previously delivered house
embedding can be initialized in the follow-up task.

As only a small fraction of houses are traded every
month and have price labels, when we calculate the monthly
RMSE in Eq. 7, only a part of the house is calculated,
meaning ŷt(j) ∈ Yt, j = 1, 2, . . . , Nt. Nevertheless, it is
enough to train the proposed lifelong learning model.

5.2 Reinforcement Learning Based Optimization
Since the lifelong framework involves multi-tasks in the
training procedure, it is indispensable to fine-tune the rel-
evant coefficients as reasonably as possible. By following
works [17], [18], we also employ the reinforcement learning
(RL) technique to facilitate the model optimization.

In Eq. 8, we collect the penalty coefficients as ~λ =
[λ1, λ2 . . . λn−1]. As instinctively transactions long time ago
tend to have a decayed impact on the up-to-date price
prediction, we believe the λi should become smaller when
task t− i moves away from the current task t. We therefore
use RL wherein the process of finding the minimum training
loss is formalized as a Markov Decision Process (MDP)
problem, i.e.,M(S,A, P, r), where S ,A, and P are the state
space, action space and state transition model, respectively.
r represents the reward function:
• State space: The state s ∈ S is directly defined as the

element in ~λ: s = {λ0, λ1, · · · , λm}, and λi ∈ [0, 1].
• Action space: The action a ∈ A is used to update the

value of ~λ. Since λi ∈ [0, 1], the action a = (m, ε) is to
increase or decrease a small value ε for the m-th dimension
in ~λ, i.e., ε ∈ {−0.01, 0.01}.
• Reward: We determine whether ~λ is good enough by

examining if the training loss calculated by the current ~λ
can make the model achieve a smaller error on the test set,
leading to a large delay in calculating reward r according
to the action a. To this end, we design it as a piece-wise
function of discrete values, and directly use the discrete
reward to update ~λ to simplify the RL process. In particular,
we formalize the reward r(s, a) as follows:

r(s, a) =

{
+ 0.01, if RMSE(ŷ, y|s) > RMSE(ŷ′, y|s′)
− 0.01, if RMSE(ŷ, y|s) < RMSE(ŷ′, y|s′)

(9)

where RMSE(ŷ, y|s) represents the predicted price error
of the model trained based on state s on the test set, and s′

indicates the state after s is updated according to action a.
• State transition: we determine the next state according

to the reward r(s, a) and the current action a(m, ε). If r is
positive, then the state will be transitted from state s to s′

according to a; otherwise, state s will remain the same.
• Termination: We make action a randomly select the

dimension m to be updated, then |A| = 2m. If reward
pertaining to each action is constantly negative within a
range of certain steps, the loss coefficients are considered
to be optimal.

To facilitate the training of optimal loss coefficients, we,
in practice, obtain the predicted price first through train-
ing on a small-scale dataset with fixed loss weight, before
launching the RL. Once the model turns stable after repeated
training iterations, we apply the loss weights directly to a
larger dataset.
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Figure 6: The number of house transactions.
Table 4: Statistics of the three datasets.

Dataset TorC-H TorC-A Tor-H
#House 31,000 37,500 618,339
#Nodes in HIN 155,834 127,955 3,093,180
Time span (months) 31 75 246

6 EVALUATION

6.1 Experiment Setup

Platforms. Evaluation is conducted on a multi-core server
with a 64-core Intel Xeon CPU @2.40GHz with 512GB RAM
and 8x NVIDIA Tesla P100 GPUs. The server runs Ubuntu
20.04 LTS with Linux kernel 5.4.0. Our model is imple-
mented using Python 3.5.2.
Model parameters. We set the house embedding dimension
to d = 100. The numbers of enumerated meta-paths and
meta-graphs participating in the calculation of house sim-
ilarity are 30 and 80. We use month as the basic length
of time steps to construct the time series. We use Pytorch
to implement the networks of the lifelong framework in
LUCE. We set 2 layers in GCN unit and we use ReLU as
the activation function. The size of hidden layers of LSTM
is 128. We adopt Adam optimizer in the back propagation
of the network, and the learning rate is set to be 0.001 by
default.
Dataset. We sample houses in Toronto Region and con-
struct multiple datasets. We mainly use the following three
datasets to evaluate our model:
• TorC-H: Sampled house transactions, spanning over 31

months, in a district in Toronto city.
• TorC-A: Sampled apartment transactions, spanning

over 75 months, in a district in Toronto city. Apartment data
has fewer features against houses.
• Tor-H: Sampled house transactions in the entire

Toronto Region, which cover a wider area and larger-scale
data spanning over 63 months compared to the above two
datasets. Fig. 6 depicts transaction numbers at different time
intervals from November 2019.

Note that our sampling will make each house only have
1 transaction record. Table 4 shows the statistic information
of the three datasets. Since TorC-H and TorC-A are relatively
small-scale datasets, we mainly use them to learn penalty
coefficients ~λ, the weights of meta-paths and meta-graphs
ωm, and evaluate the effectiveness of LUCE, particularly
comparing the predicted price and actual transaction price
from 2019-06 to 2019-11. We use the larger Tor-H to evaluate
its capability of processing large-scale data.

Evaluation metrics and baselines. We mainly use the fol-
lowing two metrics in the experiments: (i) we use RMSE
and MAE to evaluate the error between the predicted price
and the actual sold price of the house; (ii) we define General
Error Rate (GER) Rpre as Rpre = ŷ−y

y , where ŷ is the
predicted price and y is the actual transaction price. In fact,
the GER can better satisfy homeowners, buyers, agents and
bank valuation agencies to understand the predicted prices
more intuitively.

To evaluate the performance of the proposed LUCE, we
consider various of baseline methods as follows:
• Support vector regression (SVR): A classic machine

learning algorithm that uses support vector machine (SVM)
to fit the dataset for regression analysis. We set the input
of the SVR as the initial feature of the houses, and utilize
different SVR models to train the houses in different areas.
• Decision tree (DT): A supervised machine learning

method. Decision tree has a tree structure wherein each
node represents the judgment of the attributes, and each
branch represents the output of the judgment result. This is
a non-time-series model.
• Ensemble method (ENS) [3]: A typical ensemble

machine learning method that uses C4.5, RIPPER, Naı̈ve
Bayesian, and AdaBoost methods. We set the input of the
ENS as the initial feature of the houses.
• Regression-Particle Swarm Optimization (Reg-

PSO) [5]: A hybrid linear regression prediction model. PSO
is used for selection of affected variables and regression
analysis is used to determine the optimal coefficient in
prediction. We set the input of the Reg-PSO as the initial
feature of the houses.
• Discrete time series based LSTM (LSTM-D):

LSTM [19] is a time-recurrent neural network model, which
is widely used in temporal prediction. Since our housing
transactions are not continuous in time, we organize the
discrete housing initial features into time series and use
them as input to the LSTM.
• HIN based temporal GCN (HT-GCN): An adaptive

version from T-GCN [20] where is a spatio-temporal pre-
diction model combining GCN and GRU to extract spatial-
temporal features. In our experiment, we use the adjacency
matrix A generated by HIN and the initial house attribute
matrix X as the inputs to T-GCN.
• Heterogeneous GCN (H-GCN): H-GCN is consistent

with the popular GCN unit [16], but only the spatial features
of houses in HIN are considered. This is a model of static
semi-supervised learning on the constructed HIN.
• LSTM with H-GCN (HG-LSTM): HG-LSTM, consis-

tent with the spatio-temporal feature learning unit men-
tioned in § 4.2, is used for mining spatio-temporal features
based on the constructed HIN. It uses LSTM to explore
temporal features of house prices without any lifelong
framework. H-CGN provision input features for LSTM.
• Independent expert valuation (Appraiser): We give

the estimated price based on the expertise of professional
appraisers listed on the Toronto Real Estate Board.
Methodology. We mainly evaluate LUCE in terms of the
overall effectiveness and its breakdown stemming from
system components and training optimizations.

We firstly evaluate the effectiveness of LUCE on house
price prediction by examining the general error rate and the
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Figure 7: The general error Rpre distribution of house predicted price in TorC-H (2019-06 to 2019-11).

average RMSE and MAE of different comparative methods
against LUCE (§6.2). We further validate the effectiveness
gained from our lifelong learning framework (§6.3). After-
wards, we conduct in-depth investigations into the perfor-
mance gain harvested from our design optimization and im-
pact of parameters used in the lifelong learning component
(§6.4). In addition to these overall evaluation on effective-
ness, we evaluate how regularization of training loss and
parameter inheritance can boost the training effectiveness
and accelerate the model training (§6.5). We also outline our
findings of digging and differentiating the importance in
various meta-paths and meta-graphs and how they funda-
mentally underpin the effective feature embedding in GCNs
(§6.6). Finally, we evaluate the time consumption of LUCE on
three datasets (§6.7).

As some baselines are difficult to deal with large-scale
data, we split the large-scale dataset and train multiple
identical models on the sub-datasets before merging their
prediction results. For LUCE, we make each GCN unit in
the model process about 10,000 houses, an empirical node
number normally allowed by most GCNs. One can tune the
number depending upon the memory capacity on the test
server. When utilizing the above baseline methods to predict
the transaction price of a month, all transaction prices of
its previous months are used as training set to ensure the
holistic test fairness.

6.2 Prediction Effectiveness

General error rate. To illustrate the prediction effectiveness
using transactions across multiple months, we firstly plot
the frequency distribution histogram of GER over a 6-
months range from 2019-06 to 2019-11 in dataset TorC-H
(containing a total of 6000 house transaction records) under
different representative methods7 in Fig. 7. We set the bin
size to 0.01. Obviously, the shape with a left tendency indi-
cates a lower error rate and better prediction effectiveness.

It is observable that time series based approaches in-
cluding HG-LSTM and LUCE have much lower general
error rate against other non-time-series approaches, e.g., H-
GCN. Although HG-LSTM takes heterogeneous graph mod-
eling and temporal features into account, its effectiveness
is still inferior to LUCE. This is because we merely update
parameters that have a more apparent and direct impact
in limited depth, while other methods simply update all
their parameters. LUCE is also efficient in dealing with the
prediction problem in case of long-term sparse transactions.
To more precisely, we count the number of houses with GER

7. Since the techniques of some baseline methods used are similar,
and the different between their prediction results is small, we select
SVR, LSTM-D, H-GCN, HG-LSTM, and LUCE as the representatives.

Table 5: General Error Rate (Rpre) Cumulative Probability
in Different Methods (2019-11).

Methods GER Value
< 5% < 10% < 15% < 20%

To
rC

-H

SVR 23.72 46.47 66.75 78.50
DT 29.71 55.60 72.84 83.34
ENS 26.84 50.61 70.38 80.11
Reg-PSO 27.91 52.59 71.55 83.56
LSTM-D 22.95 44.18 61.32 75.89
Appraiser 46.84 68.61 83.78 91.56
H-GCN 33.28 60.00 76.48 86.90
HT-GCN 43.17 73.34 87.20 92.73
HG-LSTM 47.93 75.28 88.38 94.13
LUCE 60.44 88.28 95.44 98.06

To
rC

-A

SVR 23.47 44.29 61.89 77.18
DT 25.83 48.47 66.10 77.67
ENS 23.67 49.01 63.75 78.90
Reg-PSO 25.72 50.92 64.61 79.24
LSTM-D 22.95 43.27 61.64 75.58
Appraiser 37.80 54.41 70.60 83.66
H-GCN 31.61 51.20 68.60 84.46
HT-GCN 42.40 61.83 79.74 93.25
HG-LSTM 45.62 66.42 84.22 95.47
LUCE 52.84 70.45 90.81 97.69

To
r-

H

SVR 19.60 38.36 54.91 67.05
DT 24.42 44.05 62.48 74.36
ENS 20.58 39.52 58.71 73.45
Reg-PSO 23.17 42.46 60.05 75.62
LSTM-D 27.85 48.58 64.83 76.87
Appraiser 48.56 67.27 87.13 96.60
H-GCN 27.21 51.16 62.34 75.58
HT-GCN 41.83 68.92 84.48 93.10
HG-LSTM 36.04 65.75 83.09 93.01
LUCE 47.16 68.07 91.62 97.38

lower than 10% under various approaches. LUCE has the
highest number – 47.13% and 14.73% more than H-GCN
and HG-LSTM, respectively.

To have an in-depth understanding of the effectiveness,
we dive into the experiment result of month 2019-11 and
Table 5 illustrates the corresponding cumulative proportion
of houses with good prediction (e.g., with less than 10% GER)
in all houses – an important indicator of prediction precision
used in real estate field. The specific number indicates the
percentage of houses that have GER less than a given thresh-
old. For instance, by using LUCE on TorC-H dataset, 88.28%
houses can be perfectly predicted the price with less than 10%
error rate. The number is far better than conventional SVR
regressor (46.47%) and appraiser-based estimation (68.61%).

RMSE and MAE. Fig. 8 shows the RMSE and MAE in
representative baseline methods, i.e., SVR, H-GCN and HG-
LSTM against LUCE on the TorC-H dataset. As shown in
Fig. 8, LUCE has much lower RMSE and MAE for house
prediction in every month, with the lowest error fluctua-
tion compared with other methods. Specifically, compared
with H-GCN and HG-LSTM, the average RMSE in LUCE
has decreased by up to 84.84% and 38.11%, respectively.
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Figure 8: The RMSE and MAE of the prediction results on
TorC-H in the last 6 continuous months (2019-06 to 2019-11).

Table 6: RMSE and MAE comparison (2019-11).
Methods RMSE MAE

To
rC

-H

SVR 0.2852 0.1881
DT 0.2794 0.1694
ENS 0.2805 0.1814
Reg-PSO 0.2744 0.1738
LSTM-D 0.3051 0.2031
Appraiser 0.1158 0.0409
H-GCN 0.1580 0.0958
HT-GCN 0.2018 0.1349
HG-LSTM 0.1333 0.0504
LUCE 0.0950 0.0297

To
rC

-A

SVR 0.3012 0.1964
DT 0.3604 0.2230
ENS 0.2979 0.1905
Reg-PSO 0.2866 0.1901
LSTM-D 0.3223 0.2255
Appraiser 0.1459 0.0941
H-GCN 0.1984 0.1456
HT-GCN 0.2575 0.1799
HG-LSTM 0.1627 0.1068
LUCE 0.1336 0.0742

To
r-

H

SVR 0.3185 0.2185
DT 0.3001 0.1967
ENS 0.3045 0.1942
Reg-PSO 0.2946 0.1841
LSTM-D 0.2893 0.1847
Appraiser 0.1677 0.1014
H-GCN 0.2105 0.1322
HT-GCN 0.1735 0.1081
HG-LSTM 0.1812 0.1104
LUCE 0.1581 0.0982

Similarly, the MAE of monthly house prices predicted by
LUCE has decreased to only 0.029. Table 6 demonstrates the
detailed comparison if we only extract the data of 2019-11,
also revealing the fact that LUCE significantly outperforms
other baseline methods.

This is because simple machine learning methods such
as SVR, DT, ENS and Reg-PSO, only utilize the original

features of houses, without employing heterogeneous infor-
mation modeling to capture the intrinsic relationship and
connections among houses. Due to the non-time-series tech-
niques used in transactions modeling, their prediction turns
out to be the worst in most cases. Regarding static graph
neural network approaches such as H-GCN that are based
on heterogeneous modeling, graph neural network can ob-
tain a fusion representation based on the relationships be-
tween houses and thus facilitate to overcome the freshness
and sparsity problem to some degree. Nevertheless, H-GCN
model neglects the temporal dependencies in the transaction
data, resulting in a performance discrepancy compared with
other improvements via heterogeneous graph modeling,
such as HT-GCN and HG-LSTM.

Due to the ignorance of heterogeneous characteristics,
LSTM-D delivers inferior results compared against other
time-series methods that can capture and model heteroge-
neous data. The results are even worse than SVR, DT, ENS
and Reg-PSO on both TorC-H and TorC-A datasets. This is
primarily because LSTM usually requires a large amount
of high-quality data to underpin the feature learning. In
the case of sparse transactions, the prediction of LSTM-D
barely outperforms the general regression models; when the
number of reference houses is insufficient, LSTM-D is even
inferior to general regression models in some scenarios.

By contrast, such approaches as HT-GCN, HG-LSTM
and LUCE elaborately consider the data sparsity by adopting
heterogeneous graph embedding that can fully leverage
house similarity and temporal dependency in the feature
learning. In fact, HT-GCN and HG-LSTM are able to deliver
competitive results on both TorC-H and TorC-A datasets
– they can output equivalent or even better estimation
compared to appraisers. Nevertheless, when dealing with
long-term prediction problem, the lack of up-to-date house
prices and valuation has much more negative impact on
the prediction results. Furthermore, we observe that noise
data stemming from the distant past house transactions
has non-negligible impact on model performance and cause
catastrophic forgetting problem. In comparision, LUCE em-
ploys the evolving multitask embedding to achieve constant
parameter updates, resulting in a better effectiveness than
HT-GCN and HG-LSTM. Our solution is even superior to
the estimation by appraisers in most cases; the improvement
can reach up to 20.21% on prediction error rate.

6.3 Lifelong Prediction Effectiveness
To further analyze the performance of handling large-scale
and continuous prediction, we simulate LUCE’s parameter
update and prediction process in multi-month, on the oc-
casion of new transaction data arrival from Tor-H. In this
context, new prices will be predicted by the model; once
a house is traded, the transaction price will be added to
the train set so that model parameter will be updated. We
record the loss of LUCE on the train set and test set during
the simulation, where the train set loss is calculated by the
optimized training loss in Eq. 8, and the test set loss is calcu-
lated by RMSE. As shown in Fig. 9, the training procedure in
LUCE’s is very stable across all stages – the performance on
the train set and test set is generally consistent, indicating
that continuous house price prediction can be effectively
conducted in LUCE on large-scale datasets.
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lifelong continuous prediction.
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Figure 10: Differences between predicted price and ap-
praiser’s price compared to actual sold price in Tor-H.

To explicitly validate the effectiveness of lifelong pre-
diction for the traded houses in the last six months of the
dataset Tor-H, we plot in Fig. 10 the numerical discrepancies
between the predicted price and the appraiser estimated
price, together with the actual trading price as a baseline (in
gray dotted line). Herein, we aggregate the average price
of traded houses within an area. Although the house prices
vary over time in dataset Tor-H without any strong regu-
larity, LUCE is still able to deliver prices in closer proximity
to the actual trading price compared with the appraiser’s
price.

To summarize, all the aforementioned experiments
demonstrate that LUCE has qualified learning capability of
spatio-temporal features, and thus overcomes the data fresh-
ness and sparsity manifesting in house transaction records,
against other baselines including simple regression methods
and conventional spatio-temporal mining methods.

6.4 Micro-benchmarking

In this section, we aim to demonstrate the individual con-
tribution of different learning components to the holistic
prediction effectiveness and performance.

Ablation study: LUCE-G, LUCE-L vs. LUCE. In light of
the methodology of variable controlling, the main steps in
this evaluation is to remain only one single component –
whilst removing others – and examine how it affects the
effectiveness. As depicted in Fig. 5 in §5, LUCE manages to
continuously evolve the embedding by adaptively updating
the parameters. The updates mainly depend on GCN layers
and LSTM layers while lifelong learning relies upon the
combinations of such GCN-LSTM units and the limited-
depth recursive parameter updating strategy.

Hence, we identify two comparable tailored subsystems
– LUCE-G (LUCE without LSTM layers) and LUCE-L (LUCE
without GCN layers) – and compare them with the com-
plete LUCE. We leverage the RMSE of the house prices
prediction on the aforementioned 6-months transactions on
TorC-H (6,000 houses) and TorC-A (3,000 houses) dataset,
respectively. As shown in Fig. 11a and Fig. 11b, there is
an RMSE increase in the LUCE-G and LUCE-L compared
against LUCE, and the removal of LSTM layers has a greater
impact on the performance than removal of GCN layers.
This indicates the proposed lifelong learning framework
can effectively and constantly tolerate the deficiency in
up-to-date transaction data and alleviate the issue of time
discontinuity.
Impact of parameter in lifelong learning. We further in-
vestigate how the lifelong learning parameter impact the
overall performance of LUCE. Specifically, the key variable
is the number of spatio-temporal feature learning units,
i.e, the maximum updated length n. We retain the same
adoption of RL based training optimization and examine
the RMSE of predicting house prices in 2019-11 based on
the dataset TorC-H. As shown in Fig. 11c, the optional
configuration of the maximum update length is 6. With the
increment of length, the back-propagation tends to experi-
ence vanished gradient increasingly and more out-of-date
transaction data will be involved in the learning. Overall,
the model’s prediction error could be acceptable when the
maximum update length is between 5-12 months. A smaller
parameter will give rise to the surging RMSE because our
model cannot completely explore the data of adjacent areas
and months – the model fails to learn the spatio-temporal
features sufficiently.

This study implies it is extremely imperative to carry
out the lifelong learning framework within LUCE– in each
of the prediction tasks, we desire to train LUCE with a
moderate recursive length thereby effectively evolving the
house embedding and minimizing the prediction error.

6.5 Effectiveness of Training Optimization
In §4.2, we regularize the house embedding in overlapping
areas to optimize the training process of LUCE. In this
section, we present some optimization details during the
training process and test the effectiveness of these optimiza-
tions during training process.
Regularization of training loss. The optimization of train-
ing loss encompasses several portions including Eq. 5, Eq. 6
and Eq. 8. By contrast, the unoptimized training loss will be
conducted without distance regulation, i.e., ε(Pt) = 08.

We therefore evaluate two cases where LUCE is attached
with and without such optimization based on 6-months
TorC-H dataset, whilst using RMSE as the main indicator.
As depicted in Fig. 12a, LUCE with regularization can sig-
nificantly lower the prediction error against LUCE without
regularization; the RMSE value can be reduced by 11.15% at
most. This phenomenon is because distance regularization
can integrate the features learned by the same house in
different graph neural networks, thereby better coordinat-
ing and calibrating the feature embedding. In comparison,

8. For this reason, we also use a separate multi-layer perception for
each graph neural network to perform price prediction.
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Figure 11: The ablation study of LUCE.
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Figure 12: LUCE’s performance about training optimization.

models without regularization have to learn the house’s
own features without strong connections and fusions from
external embedding results that can be reused.
Parameters inheritance. In order to shorten the time re-
quired for convergence during LUCE training, we adopt
the strategy of parameters inheritance and examine its ef-
ficiency. This inheritance signifies the initial parameters Wt

and θt of a new time step t can be possessed directly from
the parameter Wt−1 and θt−1 of its prior time step, without
learning from the scratch. Intuitively, the inheritance takes
advantage of similarities of evolving house embeddings in
adjacent months, which is beneficial to the initialization of
model parameters when new data arrives.

At the other extreme, parameters will be randomly ini-
tialized – when the data of new time step t arrives, the
initial values of parameter Wt and θt are given arbitrarily.
To evaluate the convergence time, we run LUCE models
by using parameter inheritance (Inheritance) and random
parameter initialization (Random), separately. we test their
training time per month to achieve convergence on the
dataset TorC-H in the last 6 month. Fig. 12b indicates that
parameter inheritance can facilitate to reduce the training
time; the training time required to achieve convergence can
be reduced by up to 33.90%.
Scalability: impact of house number. We conduct exper-
iments to examine the impact of varying the number of
houses within a GCN on RMSE and training time required
to reach convergence, by ranging the number from 2,000 to
20,000. As depicted in Fig. 12c, when only a few houses
available for learning in a GCN, it is inadequate for the
GCN to effectively learn features of spatial information, due
to the limited house overlap across different GCN units.
Taking the dataset Tor-H as an example: the overlapping
houses account for merely 4.73% of all houses on average in
a single GCN. By contrast, the increment of the total num-

ber of houses results in a soaring number of overlapping,
thereby improving the effectiveness of distance regulation.
However, the training overhead will grow drastically when
dealing with a vast number of house transactions – the train-
ing time to convergence increases significantly, susceptible
to memory overflow in some worse-case scenarios. Hence,
we leverage a proper number of houses (i.e. 10,000 in the
experiments) in building the graph and GCN, to ultimately
balance the training time and precision requirement under
memory constraints.

6.6 Importance of Meta-paths and Meta-graphs

Fig. 13 shows the learnable weights ~ω of different meta-
paths and meta-graphs after training on the dataset TorC-H.
We display the top 15 weights of the delivered meta-paths
and meta-graphs and observably there are non-negligible
differences in weights between different meta-paths and
meta-graphs. We can find House-Spatial Information-House
(H-SI-H) is the meta-path with the largest weight, indicating
that the space information (SI) has the greatest impact on
house prices among the various attributes in HIN, fol-
lowed by building type (BT), layout structure (LS), garage
type (GT), and so forth. This finding is coherent with our
common understanding of property valuation. Meanwhile,
the disparity among meta-paths and meta-graphs make it
reasonable to calculate the inherent similarity whilst recog-
nizing the most crucial factors that have heavy impact on
the real estate market.

6.7 Time Consumption

We evaluate the time consumption to demonstrate the pro-
posed LUCE is practical and scalable for the prediction
tasks. Table 7 shows the results of the average time con-
sumption and standard deviation under three datasets when
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Figure 13: Top 15 weights of meta-paths and meta-graphs.

conducting monthly average price prediction. For example,
LUCE can estimate the value of 618, 339 houses in the entire
Toronto Region after a training period with 45.16 minutes.
The observable minute-level solution stems from the adop-
tion of a series of modules such as GCN, LSTM, distance
regularization, and reinforcement learning that are usually
time-consuming. The time complexity is acceptable, consid-
ering the achieved prediction accuracy which is competitive
to the expertise of professional appraisers. In addition, our
approach is very scalable when tackling a growing number
of houses, since we split all houses into multiple pieces that
can be processed by parallel GCN units.

Table 7: Statistics of the training time consumption in a
monthly average setting (minute).

Model TorC-H TorC-A Tor-H
LUCE 15.28±1.37 17.50±1.06 45.16±2.57

7 RELATED WORK

House price prediction. The prediction of house prices
attracts researchers’ attention because it can be regarded
as a regression problem when there is sufficient transaction
and characteristic information of houses. There have been
a lot of studies to predict housing prices through simple
machine learning techniques (such as decision tree and
hedonic model) [3], [21], [22], [23], [1], [5] or deep learning
neural networks with relatively simple structures [24], [25].
These techniques can generally take into account the spa-
tial characteristics of the houses, encode the characteristics
and send them to the model for training. In recent years,
some researches [26], [27] have considered the impact of
temporal features on house prices, while fully considering
other houses characteristics, and using time series models to
predict housing prices.

Heterogeneous graph learning. Here we mainly refer to
the representation learning of heterogeneous graphs and
dynamic graphs. For heterogeneous graph representation
learning, it mainly includes two types of unsupervised
heterogeneous information network embeddings [28], [29],
[30], [31], [32], [33], [34] and semi-supervised heterogeneous
graph neural networks [35], [36], [14], [37], [38], [39]. In
terms of unsupervised heterogeneous information network
embeddings, most of the approaches are based on meta-
path [28], [29] or meta-graph [30] guided random walk on
heterogeneous network to learn the embedding of nodes

with negative sampling technologies. In terms of semi-
supervised heterogeneous graph neural networks, most ex-
isting researches are based on homogeneous graph neural
networks, fusing different types node information [35], [36]
or converting heterogeneous graphs into parameterized ho-
mogeneous graphs [14], and then learning node embedding
through graph neural networks. Besides, some recent works
[17], [18], [40] use RL to guide the neighborhood selection in
graph neural networks through learning the optimized fil-
tering thresholds. In this work, we also employ the Markov
Decision Process to learn the penalty coefficients in our task.

For dynamic graph representation learning, there are a
huge body of research on unsupervised, semi-supervised
and supervised graph embedding models [41], [42], [43],
[44], [45], [46]. Mainly through modeling dynamic processes,
they have a focus on effective or efficient representation
learning of dynamic structures. By contrast, in this work
we assumed the information of geography, facilities and
floorplan is static, while the financial information and trans-
action prices can change over time, i.e., the node attribute
and node label are varying. Hence, it would be sufficient
to use the LSTM units to learn the temporal house features.
Overall, LUCE innovate an end-to-end learning framework
by considering spatio-temporal characteristics and manag-
ing to tackle cope with the data freshness and sparsity.
Spatio-temporal data mining. Recent studies on spatio-
temporal data prediction have combined models that extract
spatial and temporal features. For example, ConvLSTM [47]
is a combination of CNN and LSTM. In terms of spatial
features, CNN is usually used for images, maps or data
that can be modeled as grids [48], [49], [50], and graph
neural network is usually used for data that can be mod-
eled as graphs and networks [51], [52], [53], [54], [55]. In
terms of temporal features, most researches utilize RNN
to learn temporal features, including LSTM [19], GRU [20],
Seq2Seq [56], Irregular Convolutional Residual LSTM [57],
Transformer [58], etc. They can be used to replace the native
LSTM modules and integrated with the current framework
to further improve the prediction accuracy.
Lifelong learning. Lifelong learning is a relatively new re-
search domain proposed in recent years, aiming to propose a
method that can accumulate past knowledge and apply it to
future learning [59]. In recent years, [60] retained the useful
parameters for new tasks by changing the gradient update
strategy, while ignoring those useless parameters [61] ex-
panded the models and combines the trained models with
the new model to train new tasks. [62] designed the gate
to determine which past task the new task is more like to
initialize the model of the new task. There are still a lot of
works to study in the field of lifelong learning.

8 CONCLUSION

We have presented LUCE, a novel learning framework for
automated property valuation. LUCE is designed to address
the spatial and temporal sparsity of house transaction data.
To extract useful information, LUCE organizes the house-
related data in a heterogeneous information network (HIN).
It then employs the GCN and LSTM to extract the spatial
and temporal information from the HIN. LUCE uses GCN
and LSTM to develop a lifelong learning framework for
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house valuation for the first time. LUCE makes use of the
limited recent house transactions data to update the valua-
tion for all house entities in the HIN to provide a complete
and update-to-date dataset to improve the accuracy of the
downstream price prediction task. We evaluate LUCE by
applying it to large-scale, real-world house transaction data
of Toronto between 2000 and 2019. Experimental results
show that LUCE consistently outperforms prior automated
house valuation methods. It reaches and often exceeds the
accuracy of valuation given by independent experts when
using the actual sold price as the ground truth.
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