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Abstract—Understanding the interconnected relationships of large-scale information networks like social, scholar and Internet of
Things networks is vital for tasks like recommendation and fraud detection. The vast majority of the real-world networks are inherently
heterogeneous and dynamic, containing many different types of nodes and edges and can change drastically over time. The
dynamicity and heterogeneity make it extremely challenging to reason about the network structure. Unfortunately, existing approaches
are inadequate in modeling real-life dynamical networks as they either have strong assumption of a given stochastic process or fail to
capture the heterogeneity of network structure, and they all require extensive computational resources. We introduce LIME, a better
approach for modeling dynamic and heterogeneous information networks. LIME is designed to extract high-quality network
representation with significantly lower memory resources and computational time over the state-of-the-arts. Unlike prior work that uses
a vector to encode each network node, we exploit the semantic relationships among network nodes to encode multiple nodes with
similar semantics in shared vectors. By using many fewer node vectors, our approach significantly reduces the required memory space
for encoding large-scale networks. To effectively trade information sharing for reduced memory footprint, we employ the recursive
neural network (RsNN) with carefully designed optimization strategies to explore the node semantics in a novel cuboid space. We then
go further by showing, for the first time, how an effective incremental learning approach can be developed – with the help of RsNN, our
cuboid structure, and a set of novel optimization techniques – to allow a learning framework to quickly and efficiently adapt to a
constantly evolving network. We evaluate LIME by applying it to three representative network-based tasks, node classification, node
clustering and anomaly detection, performing on three large-scale datasets. We compare LIME against eleven prior state-of-the-art
approaches for learning network representation. Our extensive experiments demonstrate that LIME not only reduces the memory
footprint by over 80% and the processing time over 2x when learning network representation but also delivers comparable performance
for downstream processing tasks. We show that our incremental learning method can boost the learning time by up to 20x without
compromising the quality of the learned network representation.

Index Terms—Network representation learning, heterogeneous information networks, incremental learning, memory optimization
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1 INTRODUCTION

Having the ability to understand the interconnected rela-
tionships of large-scale network structures, such as social,
transport, IoT and scholar networks, is crucial for many
important applications like fraud and anomaly detection [1],
link prediction [2], recommendation [3], etc. In a real-
life setting, many networks – including social media [4],
scholar networks [5], patient and drug networks [6] and
IoT networks [7] – are heterogeneous data structures. These
heterogeneous information networks (HINs) contain mul-
tiple types of objects and links, having millions or even

• Hao Peng and Jianxin Li are with Beijing Advanced Innovation Center for
Big Data and Brain Computing and the State Key Laboratory of Software
Development Environment, Beihang University, Beijing 100083, China.
E-mail:{penghao, lijx}@act.buaa.edu.cn.

• Renyu Yang and Zheng Wang are with the School of Computing, Univer-
sity of Leeds, Leeds LS2 9JT, UK. E-mail: {r.yang1, z.wang5}@leeds.ac.uk.

• Lifang He is with the Department of Computer Science and En-
gineering, Lehigh University, Bethlehem, PA 18015 USA. E-mail:
lih319@lehigh.edu.

• Philip S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago 60607, USA. E-mail: psyu@uic.edu.

• Albert Zomaya is with the University of Sydney, Australia. E-mail:
albert.zomaya@sydney.edu.au.

• Rajiv Ranjan, Computing Science and Internet of Things, Newcastle
University, Newcastle, UK, E-mail: raj.ranjan@newcastle.ac.uk.

Manuscript received May 2020, revised October 2020, accepted January 2021.
(Corresponding author: Jianxin Li.)

billions of vertices [8]. The scale and complexity of real-
world HINs make automated machine learning a highly
attractive technology for capturing and reasoning about the
relationships or semantics hidden in a large and complex
structure.

The difficulty for applying machine learning to HINs,
however, is that it requires the network to be represented
as a set of features or embeddings that serve as inputs to a
machine learning tool. Given that real-life HINs like social
networks are unbounded, dynamically evolving graphs and
that there is an infinite number of these potential features,
finding the right representation for a large and evolving
HIN is not trivial [3].

Efforts have been devoted to extracting useful network
representations. This is now an active research field known
as Network Representation Learning (NRL) [3]. The goal of
NRL is to map nodes of a large-scale network to a low-
dimensional embedding space. By doing so, each vertex of
the network can then be represented as a low-dimensional
vector of numerical values, whilst much important infor-
mation of the global and local network structures can be
preserved. The extracted network representations can then
be used to characterize the target network and serve as
input to decision models for a wide range of downstream
processing tasks [9].

While promising, existing approaches for NRL [10], [8],
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[11], [12], [13], [14], including graph-based learning meth-
ods [15], [16], are primarily concerned about static networks,
assuming the network does not change over time. By ig-
noring the dynamicity of networks, they are inadequate in
modeling many real-life networks like social networks that
are constantly evolving. Some of the most recent studies
try to address the dynamicity of networks: Stochastic-based
approaches [17], [18], [19], [20] strongly assume the network
change follows a certain stochastic process, which hardly
stands in realistic networks. Temporal random walks based
approaches [21], [22], [23] fail to capture the heterogeneity
of network structure and thus deliver low quality NRL.
Most importantly, existing approaches all require exten-
sive memory resources and long training time to learn
an effective embedding model. These drawbacks limit the
practicality and the scale the technique can operate.

We present LIME1, a better approach for learning repre-
sentation for dynamic HINs. LIME is designed to learn rep-
resentations for a large and dynamically changing HIN with
significantly lower computational and memory overhead
compared to state-of-the-art NRL techniques. To reduce the
computational resource requirement, LIME maps the input
HIN to a cuboid structure consisting of three directional
components: rows, columns and pages, where nodes within
a directional component share the same component-level
embedding vector. In this way, a vertex is jointly represented
by three components: a row vector, a column vector and
a page vector. Since nodes in each row, column or page
share the same component vector, we use only 3 3

√
n vectors

to represent a network of n vertices. In real terms, this
means we need as few as 300 vectors to represent a graph
of 1M nodes. Compared to prior work that requires one
embedding vector for representing each vertex, our strategy
thus significantly reduces the number of vectors and the
associated computational resources for representing large
networks. As the computation is performed on a much
smaller number of vectors, our approach speeds up the
training time considerably.

At the core of LIME is a Recursive Neural Network (RsNN)2

that traverses the relationships (or edge links) of network
topology. Unlike NRL methods based on the Recurrent
Neural Network (RNN) [24], our approach explicitly models
and exploits the different relationship types to constraint
the errors of learning network embeddings. By formulat-
ing the embedding learning problem in a cuboid structure
and using the RsNN to exploit the cuboid space, we can
effectively trade information sharing for saving in memory
and computation overhead. Our evaluation shows that our
static embedding scheme has little impact on the learning
performance and can even improve the performance of the
downstream process task in certain scenarios.

To adapt to a dynamic network where new nodes and
edges constantly emerge, LIME does not retrain the embed-
ding network from scratch on the entire network because

1. LIME =Low-cost and Incremental network eMbedding Engine.
2. Not to be confused with a Recurrent Neural Network (RNN) (rb.

gy/m93yqi). A Recursive Neural Network (RsNN) (rb.gy/picdx4) is a
hierarchical network where the input is processed hierarchically in a
tree fashion. This is different from an RNN where the network unfolds
over time, which is used for sequential inputs where the time factor is
the main differentiating factor between the elements of the sequence.

doing so would be too slow and resource expensive. Instead,
it incrementally calibrates the learned network embeddings
based on the changed network structures. One of the key
challenges for our incremental learning strategy is how to
minimize the error of the objective function as we only
perform computation on a subset of nodes and relationships
of a vast network. To this end, we first formulate the objec-
tive function for incremental learning, so that we can apply
the widely used stochastic gradient descent (SGD) training
method to effectively calibrate and minimize the error of
incremental learning of local nodes. We then go further
by showing how the global, network-wide optimization
problem can be translated into a standard minimum weight
perfect matching problem [25]. This enables us to apply
the well-established dynamic minimum cost maximum flow
(MCMF) algorithm to further optimize the loss function
globally across a large network. We note that LIME is the first
attempt in applying incremental learning and the dynamic
MCMF algorithm to address NRL for dynamic HINs.

We demonstrate the benefits of LIME by applying it to
three large-scale datasets, including two scholar networks
and a cyber-physical network. We evaluate LIME by us-
ing it to support three representative downstream tasks,
node classification, node clustering and anomaly detection,
and compare it against eleven state-of-the-art NRL tech-
niques [12], [10], [11], [8], [26], [27], [17], [19], [22], [21], [28].
Experimental results show that LIME is highly effective and
resource-efficient in learning representations for both static
and dynamic HINs. Compared to prior NRL techniques,
LIME reduces the memory footprint by 4 to 6 times. It cuts
down the static and incremental learning time by up to 2
and 20 times, respectively. We show that such great advan-
tages in the memory usage and computation time do not
come at the cost of lower performance for the downstream
processing task. Instead, in certain scenarios, LIME can
improve the performance of the subsequent task by up to
3% over the best-performing NRL baseline. As a result, LIME
represents a new way of learning network representations,
which exhibits a better scalability with less memory and
computational cost over existing NRL techniques.

This paper makes the following contributions:

• It proposes a novel resource-efficient NRL model
based on RsNN for learning static embeddings of
HINs (§ 4).

• It presents the first incremental embedding scheme
for dynamic HINs based on changed network struc-
tures (§ 5). LIME advances prior works by showing
how efficient incremental learning can be achieved
by formulating the optimization space and by apply-
ing the dynamic MCMF algorithm.

• It demonstrates how static and incremental NRL
techniques can be combined together to effectively
support a wide range of network-related tasks (§ 7).

LIME is open-sourced and can be downloaded from
https://github.com/RingBDStack/LIME.

2 BACKGROUND

In this section, we introduce HINs and NRL and formulate
the scope of this work.

rb.gy/m93yqi
rb.gy/m93yqi
rb.gy/picdx4
https://github.com/RingBDStack/LIME
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2.1 Information Networks

LIME is a general framework for learning network represen-
tations. In this work, we target HINs that have heteroge-
neous structures and are dynamically evolving.

Example information networks include scholar networks
like DBLP, social networks like Twitter, and cyber-physical
systems and Internet of Things (IoT) networks. Real-life
information networks have different structures consisting of
multi-typed entities and relationships. Herein, a relationship
refers to the link between entities in a network system such
as the interconnection between an IoT sensor and an edge
device, interactions between social network users, collabo-
rations among co-authors in a scholar community, etc. For
example, the Twitter network contains multiple entities (or
node types) like users, tweets, hashtags and terms, etc., as
well as relationships encompassing follows among users,
posts between users and tweets, replies between tweets, etc.

Many information networks are dynamic structures, be-
cause new entities and relationships can be added to the
network over time. A typical real-life network can have mil-
lions or billions of entities. For example, there are over 2.2M
authors and over 5M papers in DBLP. The interconnections
of entities in DBLP, in turn, lead to hundreds of millions
of relationships among entities. The massive scale and the
dynamically changing behavior of an information network
make it extremely challenging to extract and ascertain the
subtle interconnected relationships of the network.

2.2 Network Representation Learning

To extract knowledge from a large network, we need to find
ways to capture the essential characteristics and structures
of the network. This is typically done by representing the
network using a fixed-length vector or matrix of numerical
values. The idea is to encode the network vertices using
latent, low-dimensional representations (or embeddings),
which can highly summarize informative characteristics of
the network and preserve information like the network
topology structure, node content, and other neighborhood
information. Due to the high computational complexity
of traditional network representation learning, a popular
method is to use random walk method to obtain an approx-
imation of the network structure[3]. This line of research is
known as network representation learning (NRL).

After the new node embeddings are learned, network
analytic tasks (such as graph visualization, node classifi-
cation and clustering, and link prediction, etc.) can then
be performed by applying vector-based machine learning
algorithms to the new representation space. NRL allows
us to apply many well-established machine learning al-
gorithms to a large, complex graph structure. Our work
develops a new approach to learn network representations
for dynamic, heterogeneous information networks, aiming
to provide better scalability with lower memory and com-
putational cost for NRL.

2.3 Preliminaries

In this work, we follow the terminologies used in the
seminar work of [12], [30] to define a dynamic HIN and
the network embedding.

A P V
writes

cites

publishes

(a) Network Schema

P1: A P V P Awrites publishes
‐1

publishes writes‐1

P2: A P P Awrites writes
‐1

writes writes‐1A

(b) Meta-paths

Fig. 1. A simple scholar schema (a) and two possible meta-paths (b) of
a network under this schema. Diagrams are reproduced from [29].

2.3.1 Dynamic heterogeneous information networks
A dynamic HIN is a temporal graph G(t) = (V, E ,A,R)
with an entity type mapping φ : V → A and a relationship
type mapping ψ : E → R, where V and E represent entity
set and link set, respectively, while R and A denote the
type set of corresponding entities and links. Here, t denotes
the current time-stamp. As illustrated in Fig. 1a, at a given
moment t, a scholar network (e.g., DBLP), G, consists of
three node types: Author, Paper and Venue, and three types
of links (or relationships): “an author writes a paper”, “a paper
cites another paper”, and “a paper is published in a venue”.

In real world settings, there may exist multiple types of
entities and relationships, i.e., |A| > 1 and |R| > 1. Most
notably, each entity and link are annotated by chronological
addition. For example, at time-stamp t+ 1, the network can
be expressed as G(t+ 1) = (V + ∆V, E + ∆E ,A,R), where
∆V and ∆E represent the recently-added entities and links,
respectively. Our current implementation assumes that the
types of a given entity and its relationships do not change,
but new entities and relationships can be added into the
network. For example, in a scholar network, an authoring
entity and its existing relationships, such as “author X writes
paper Y ”, would rarely change, but new authors or newly
published papers can be added into the network over time.

It is worth noting that the abstract concepts of an entity
and a link are literally instantiated by a node and an edge
respectively in a HIN instance. To aid clarity, we use node
and edge to represent the HIN objects in the rest of the paper.

2.3.2 Dynamic meta-path guided random walks
Since our neural network (i.e., RsNN) works on a sequential
sequence, we need to translate the graph structure of a net-
work to a linearized sequence. We achieve this by applying
meta-path-based random walks to the target network. This
technique is proven to be effective in prior HIN embedding
studies [12], [31], [32].

In the context of NRL, a meta-path is a path that con-
nects a pair of network nodes. It describes the semantic
relationship between nodes, and the mining of this semantic
relationship is the cornerstone of subsequent tasks. Take a
simple scholar network shown in Fig. 1a as an example.
This network consists of three types of nodes, authors (A),
papers (P), and venues (V), and three types of edges, “author
X writes paper Y ”, “paper X cites paper Y ”, and “paper X
published in venue Y ”. Fig. 1b shows two possible meta-
paths, where P1: “A-P-V-P-A” represents papers published
by two authors in the same venue, and P2: “A-P-A-P-A”
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describes that two authors share the same co-author. Here,
write−1 and publish−1 represent a backward edge on the
network.

Since we are dealing with a very large graph, it is
prohibitively expensive to exhaustively enumerate all meta-
paths of a network. Instead, existing techniques [12], [31],
[32] typically perform meta-path-guided random walks to
sample node pairs, hoping that a carefully designed ran-
dom sampling scheme would capture much of the semantic
and structural correlations between different node pairs. In
this work, we apply meta-path-guided random walks to
dynamic HINs.

Given dynamic HINsG(t) andG(t+1), a dynamic meta-
paths-guided random walk aims to continuously generate
sequences of heterogeneous nodes (paths of multiple types
of nodes) to feed recursive neural network, that contain
the newly added nodes v ∈ ∆V and edges e ∈ ∆E ,
guided by meaningful meta-paths. We firstly assume that
the length of node sequences generated by the dynamic meta-
path guided random walk at t time-stamp is T , and the
length of node sequences generated at t + 1 time-stamp is
∆T . We guarantee that T + ∆T is equivalent to the length
of node sequences generated by cold start of meta-paths
guided random walk on the HIN G(t + 1). Moreover, we
assume that the probability of a certain meta-path m during
the walking is λm and ensure that the same probability is
used when walking in both G(t) and G(t + 1) in order
to obtain an unbiased meta-paths-guided random walk. In
practice, we set an equal probability λm for each meta-path
to avoid introducing any bias among meta-paths. In this
paper, we use dynamic meta-paths-guided random walks
to assist the incremental learning described in § 5.

3 SYSTEM OVERVIEW

LIME performs NRL using a two-step approach. It first
learns the node embeddings of a static network. It then ap-
plies incremental learning to update the node embeddings
for a changed network.

3.1 Cuboid abstraction structure

A key innovation of our approach is how we encode the
node information. In this work, we map the input network
nodes into a cuboid space with three directional compo-
nents, rows, columns and pages. Fig. 4 gives an example
cuboid of a scholar network. Using our approach, nodes
within the same directional component will share the same
embedding vector assigned to that component. For example,
nodes in the i-th row will share the same row embedding
vector, xri . Similarly, nodes in the j-th column and k-th page
will share the same column and page embedding vectors,
xcj and xpk respectively. As a result, a network node in
the i-th row, j-th column and k-th page will be jointly
represented by three components, (xri , x

c
j , x

p
k). We call this

a 3-component (3-C) node representation. By sharing the
embedding vector among nodes in the same directional
component for a network with n nodes, we need only
3 3
√
n unique vectors for encoding the node embeddings.

Since existing NRL methods [3] require at least n unique
vectors for n network nodes, our cuboid representation

Scholar Network Analysis Applications CPS/IoT/Edge Applications 

Data  

Collector 

Applications 

Classification 

Clustering 

ML Operators 

Anomaly 
Detection 

Requests  

 

Results 
HIN 

Construction 

Embedding 

Encoder 

Low Dimension  

Representation 

HeterRSNN 

HeterRSNN++ 

Fig. 2. System Architecture of the LIME Engine

thus significantly reduces the number of vectors and the
memory storage space for node embeddings. Note that we
use the same cuboid structure to encode the output node
representation given by our learning framework.

3.2 Learning frameworks

The proposed learning framework for static network em-
beddings, namely HETERRSNN, is based on the RsNN
because RsNN can better model complex hierarchical struc-
tures over the RNN alternative. However, native RsNN is
a supervised model and merely operates on homogeneous
network. We also do not use the graph neural network
(GNN) as it requires significantly more memory resource
for representing the graph structure and for learning graph
embeddings, which hence does not scale well to large
networks [3]. HETERRSNN exploits the cuboid representa-
tion to reduce the memory and computation overhead for
learning node representation. Its goal is to map all HIN
nodes into a 3-dimensional cuboid while maintaining the
pertaining attributes and relationships. This is achieved by
using a carefully designed objective function to maximize
the network probability in predicting the right node of
a network path, by considering the multiple node and
edge types. Like other mainstream heterogeneous network
embedding models [12], [31], [32], we employ meta-path-
guided random walks (see also § 2.3.2) to capture both
semantic and structural relationship among different nodes
and construct heterogeneous neighborhood for each node.
We describe HETERRSNN in more details in § 4.

To adapt to changing network structures, we extend
HETERRSNN with the capability to perform incremental
learning, for which we refer to as HETERRSNN++. This
network is designed to update the node representation ob-
tained for the previous network observed at a previous time
epoch t (i.e., a month before), by taking into consideration
the changed network structures (i.e., new nodes and edges)
observed at the current update epoch t+ 1. A notable novel
aspect of HETERRSNN++ is that it employs the dynamic
minimum cost maximum flow (MCMF) algorithm to adjust
the node mapping in the cuboid space to minimize the error
of incremental learning. HETERRSNN++ is the first work
in performing incremental NRL for HINs. We describe this
network in more details in § 5.

Our work can be applied to arbitrary HINs, be it a
dense or sparse graph. In this paper, we focus on tackling
the heterogeneity of nodes and edges of a large-scale HIN.
We implement LIME as a service platform. Fig. 2 depicts
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the architecture of the LIME engine and the underpinning
modules. A request for HIN embedding is handled and
dispatched by the LIME Engine as an embedding task. The
processed results will be aggregated and sent back to the
user. We execute the HETERRSNN and HETERRSNN++ as
instances in Docker Container. Job dispatch and resource
management are also coordinated by the LIME Engine.

4 LEARNING STATIC NETWORK EMBEDDINGS

Existing embedding learning approaches designed for
memory-efficient [24] typically use an RNN for embed-
ding learning. As a significant departure from prior work,
HETERRSNN employs the RsNN and maps all nodes in
a HIN into a cuboid space to learn node embeddings. In
§ 7.2 we show that our RsNN-based approach significantly
outperforms the RNN alternative.

4.1 Overview of HETERRSNN
With HETERRSNN, NRL is performed in a cuboid space
described in § 3.1. We initialize the shared row, column and
page vectors with random values, and network nodes are
first randomly assigned to the cuboid space. At each training
epoch, we update the shared embedding vector for each
directional component, and the node location in the cuboid.
To update the embedding vector, we fix the node location in
the cuboid (§ 4.2). Then, we re-adjust the node locations in
the cuboid based on the learned embedding vectors (§ 4.3).
When training terminates, HETERRSNN outputs the node
embeddings (in a cuboid structure) as the representation of
the target network.

Working example. We use the scholar network given in
Fig. 1 as a working example to explain how HETERRSNN
learns the component vectors (i.e., the network representa-
tion) as depicted in Fig. 3. Here, HETERRSNN takes as input
a node vector (§ 3.1) of e.g., an author (A) or a paper (P)
node in the P1 meta-path of Fig. 1b, “A-P-V-P-A”. It then
uses an encoder-decoder scheme to predict the probability
of each paper node to be the next node when seeingA, or the
probability of each venue to be the next node when seeing
P of the meta-path P1. In other words, for the meta-path,
P1, HETERRSNN predicts, given an author node A, which
paper this author is likely to be a co-author; similarly, it also
predicts, given an input relationship “author A writes paper

P”, which venue, V , is likely to be the publication venue
of paper P . In essence, HETERRSNN traverses a given
meta-path to find node representation that can maximize
the probability to predict the right node given a partially
seen network path. We note that the same learning strategy
applies to any other meta-paths of the same network or
other types of networks. As outlined in § 2.3.2, the node
sequences are generated by applying dynamic meta-path-
guided random walks to the target network.

4.2 Learning Component Embeddings

4.2.1 Training objective

Our training goal is to maximize the likelihood of correctly
predicting the next node in a meta-path, given a partially
seen meta path. In other words, we want to minimize
the negative log-likelihood of the next node in the node
sequence. This is equivalent to optimizing the cross-entropy
between the target probability distribution and the pre-
dicted one given by HeterRsNN. The probability is deter-
mined by its row probability Pr, column probability Pc

and page probability with given node type Pp|a. Hence, the
overall negative log-likelihood (NLL) can be formalized as
follows:

NLL =

T∑
t=1

−logPr(Nt)− logPc(Nt)− logPp|a(Nt), (1)

where T is the length of node sequences, and Nt refers to
t-th node in the node sequences.

The negative log-likelihood can be also expanded with
respect to nodes, i.e.,NLL =

∑|V|
v=1NNLv , where |V| refers

to the total number of unique nodes in HIN, and NLLv

is the negative log-likelihood for a node v in the HIN.
Meanwhile, from the perspective of our cuboid structure,
NLLv is equal to l(v, r(v), c(v), p(v)), where (r(v), c(v), p(v))
is the position of the node v in the cuboid. In this context,
the negative log-likelihood for a node v can be expressed as:

NLLv =
∑

pos∈Sv

−logPr(Npos)− logPc(Npos)− logPp|a(Npos)

=lr(v, r(v)) + lc(v, c(v)) + lp(v, p(v)),
(2)
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where lr , lc and lp refer to the row loss, column loss and
page loss, and Sv is the position set of node v in the node
sequences.

4.2.2 Embedding learning

Using the working example for predicting P given an input
author node A, the problem of learning node representation
for a paper node Pi can be formulated as follows. Let n be
the dimension of a row, column or page input vector, and m
be the dimension of a hidden state vector of HETERRSNN.
We use a to denote the type of a network node, whether
it is an author, paper, or venue in our working example
(Fig. 1). For the input node Ai−1 of meta-path P1, “A-P-
V-P-A”, we wish to exploit the column vector xci−1 ∈ Rn,
page vector xpi−1 ∈ Rn, and row vector xri ∈ Rn, hidden
state vectors hci−1 ∈ Rm, hpi−1 ∈ Rm, and hri ∈ Rm as
well as the state value of node type a to estimate the
probability of node Pi (i.e., the second node of the “A-P-
V-P-A” meta-path). In reality, the column, row and page
vectors are derived from input-embedding matrices Xc, Xr

and Xp ∈ Rn× 3
√
|V|, respectively. As a result (see Fig. 3), the

three hidden state vectors hci−1, h
p
i−1, h

r
i can be produced by

applying the following recursive operations:

hci−1 =σ(Wxci−1 + V hri−1 + b)

hpi−1 =σ(Wxpi−1 + V hri−1 + b)

hri =σ(Wxri + U(hci−1 + hpi−1) + b),

(3)

where W ∈ Rm×n,U ∈ Rm×m,V ∈ Rm×m, b ∈ Rm are
parameters of affine transformations, and σ is a non-linear
activation sigmoid function. Obviously, by using different
parameters V and U and their combinations, the above op-
erations form a recursive neural network, not the traditional
recurrent neural network.

Meanwhile, the probability P(Ni) of node Ni is deter-
mined by its row probability Pr(Ni), column probability
Pc(Ni) and page conditional probability Pp|a(Ni) with the
same type a as Pi:

Pr(Ni) =
exp(hc

i−1 · yr
r(Ni)

)∑
i∈Sr

exp(hc
i−1 · yr

i )

Pc(Ni) =
exp(hp

i−1 · y
c
c(Ni)

)∑
i∈Sc

exp(hp
i−1 · yc

i )

Pp|a(Ni) =
exp(hr

i · yp
p(Ni)

)∑
i∈Sp|a

exp(hr
i · y

p
i )

,

(4)

P(Pi) = Pr(Ni) · Pc(Ni) · Pp|a(Ni) (5)

where r(Ni), c(Ni) and p(Ni) are the row index, column
index, and page index of Ni, respectively. yri ∈ Rm is the
i-th vector of Y r ∈ Rm× 3

√
|V| while yci ∈ Rm is the i-th

vector of Y c ∈ Rm× 3
√
|V| and ypi ∈ Rm is the i-th vector

of Y p ∈ Rm× 3
√
|V|. Sr , Sc, and Sp denote the set of rows,

columns, and pages of node cuboid, respectively. We note
that a similar learning process is applied to estimating the
probability P(Vi+1) of node Vi+1 when seeing Pi as the
model input in Fig. 3.

Unlike a RNN, HETERRSNN enables information prop-
agation in a hierarchical tree fashion (e.g., the V edge from
hri−1 to hpi−1 and the U edge from hci−1 to hri ) of Fig. 3. This

Row

Column

Page

AAAI

PR

i

Author-1

x r

jxc

kx p

IJCAI

Fig. 4. Adjusting node location in the cuboid space. Our goal is to group
nodes with similar semantics in the same directional component so that
they can share the same embedding vector of that component.

allows us to better learn and aggregate the semantical and
structural information among the three components of our
cuboid structure.

As shown in Fig. 3, given the input column vector xci−1
and page vector xpi−1 of the i− 1-th node, we first infer the
row probability Pr(Ni) and the column probability Pc(Ni)
of the i-th node. Next, we choose the indexes of the row and
column with the largest probabilities of Pr(Ni) and Pc(Ni)
to look up the next input row vector xri and heterogeneous
type a. We can therefore infer the largest conditional page
probability Pp|a(Ni) of the i-th node. Therefore, the compu-
tational complexity of this forward training can be proved
O( 3

√
|V|T ), where T is the length of the generated node

sequences.

4.3 Node Placement Optimization

Since nodes in the same directional component, be it a
row, column or page, share a single component-level vector,
we can further optimize the loss function by adjusting the
placement of nodes in the cuboid. Our intention is to group
nodes with similar semantics, e.g., authors who tend to
publish in the same venue, in the same component. Doing
so can reduce the information lost when trading the number
of node vectors for memory footprint.

As an example, consider the cuboid shown in Fig. 4 for
a scholar network. During training, we move publication-
venue node HPCA from its initial position at the j-th column
to sit at the cross-section defined by the column that is
shared by other systems-related venues like TC, TPDS,
SOSP, and FAST. Likewise, node SDM can be moved from
its initial position at the j-th column to sit together with
data-mining venues like TKDE, KDD, ICDM, and WSDM.
By so doing, we group nodes that are likely to share similar
semantics together so that we can use a single shared com-
ponent vector across all nodes in a directional component.

4.3.1 Training objective for node placement
Assume we want to move node v from its initially assigned
location (r(v), c(v), p(v)) to a new location, (i, j, k), in the
cuboid. We can independently calculate (i.e., by fixing the
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other two directions when moving node v in one direction,
and keeping other nodes unchanged) the loss for the row
lr(v, i), column lc(v, j) and page lp(v, k). According to the
loss function given in Eq. 2, the total loss, l(v, i, j, k), of the
new location, (i, j, k), for node v, due to this movement
is lr(v, i) + lc(v, j) + lp(v, k). Here, each term of the total
loss would have already been computed when learning the
component embeddings. This is because to predict the next
node we need to compute the probability (i.e., in Eq. 4,
hr,c,pi−1 · yr(Pi)) of all the nodes in the node sequences.

As a result, lr(v, i) is the sum of−log(
exp(hc

t−1·y
r
r(n))∑

i∈Sr
exp(hc

t−1·yr
i )

)

over all the occurrences of node v in the node sequences
seen during learning component embeddings; lc(v, i) and
lp(v, i) are computed in the same way. Hence, after we
calculate l(v, i, j, k) for all possible new locations, (i, j, k),
we can translate the node reallocation into the following
optimization problem:

ming

∑
(v,i,j,k)

l(v, i, j,k)g(v, i, j, k) subject to

∑
(i,j,k)

g(v, i, j,k) = 1 ∀v ∈ V,

∑
v

g(v, i, j, k) = 1 ∀i ∈ Sr, j ∈ Sc, k ∈ Sp,

g(v, i, j, k) ∈ {0, 1}, ∀v ∈ V, i ∈ Sr, j ∈ Sc, k ∈ Sp,

(6)

where g(v, i, j, k) = 1 indicates node v is assigned to (i, j, k)
in the cuboid, and Sr , Sc and Sp denote the set of nodes in
the row, column and page directions, respectively.

4.3.2 Solving node placement optimization

Inspired by [24], we convert the above optimization prob-
lem to the standard minimum weight perfect matching
(MWPM) problem [25]. This is done by defining a weighted
bipartite graph3 BG = (V, E) with V = (V, Sr × Sc × Sp),
in which the weight of the edge in ε connecting a node
v ∈ V and location/node (i, j, k) ∈ Sr × Sc × Sp is the
loss l(v, i, j, k) of node v. Specifically, we intend to find a
set of edges so that all vertices in graph BG are matched, and
the sum of the edge weights (and hence the loss) of the edge
subset can be as small as possible. Here, a matching is a set
of edges, no two sharing a vertex and a matching is perfect
if all vertices are matched.

The MWPM problem has been extensively studied in
the literature, and one of the widely used solutions is the
minimum cost maximum flow (MCMF) algorithm. How-
ever, the computational complexity of MCMF is O(|V|3),
which would still be expensive for a large network. To
reduce the computational overhead, we leverage linear-time
approximation [33], [34], with respect to the edge number
of the bipartite graph, i.e., |E| = |V|2, to find a nearly-good
solution. To this end, we employ an Improved Path Growing
Algorithm (IPGA’) [34] to solve the node reallocation. We
choose IPGA’ because it is shown to be more computation-
ally efficient and more accurate [34], [35] than the other
alternative used in prior embeddings learning work tuned
for resource usage [24].

3. A graph is bipartite if its vertices can be colored with two colors
such that each edge has ends (or vertices) of different colors.

4.4 Time Complexity of HETERRSNN

The time complexity of training HETERRSNN comes from
two parts, learning on the component embeddings and
performing node reallocation using IPGA’. The complexity
of the former and the latter are O( 3

√
|V|T ) (see § 4.2.2) and

O(|V|2) respectively, where |V| is the total number of nodes
in the HIN, and T is the total length of node sequences.
Putting together, the overall time complexity of HeterRsNN
model is O(( 3

√
|V|T + |V|2)K), where K is the number

of training epochs. This is determined by the larger one
between 3

√
|V|T and |V|2.

5 INCREMENTAL LEARNING

5.1 Modeling Network Changes

We periodically update the existing node embeddings by
considering the new nodes and edges added into the target
network. This is done by first applying dynamic meta-paths-
guided random walks (§ 2.3.2) to break down the new
nodes and edges seen at time t + 1 with respect to the
network observed at the previous timestamp t. Specifically,
we formulate the new node set V ′ and the new length of
node sequences T ′ at time t + 1 using increments (∆)4,
V ′ = V + ∆V and T ′ = T + ∆T with respect to the ones
seen at time t.

Furthermore, due to the introduction of new network
nodes, we also need to update the cuboid structure used
for learning node embeddings. We decompose the overall
loss function for learning representation for the changed
network, G(t+ 1), as:

NLL′ =

T∑
t=1

−logP (Nt) +

T+∆T∑
t=T+1

−logP (Nt), (7)

where Nt refers to t−th node in generated node sequences.
Here, we leverage the learned parameters of HETERRSNN
and component embedding vectors obtained from G(t)
to compute the first term,

∑T
t=1−logP (Nt), of the loss

function. We describe this strategy in the next subsection.
Like learning static embeddings, at each training iteration,
we perform two optimizations: learning the component
embeddings (§ 5.2) and adjust the node placement in the
cuboid (§ 5.3).

5.2 Design of HETERRSNN++

To reduce the training overhead for NRL for a changed net-
work, HETERRSNN++ leverages the parameters and node
vectors of HETERRSNN that was trained on an early version
of the target network to update the node embeddings in
each directional component (i.e., row, column and page). We
achieve this using a two-step approach described as follows.

Step-1: Inheriting parameters and vectors. We inherit all
the parameters and vectors for the target network, G(t),
observed at the previous timestamp, t, which have been
trained in using the loss function defined in Eq. 2. More

4. ∆V and ∆T can be generally referred to as adding or removing
network nodes and the node sequences corresponding to those nodes.
Namely, the negative delta indicates the removal of the node’s contri-
bution to the loss function.
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specifically, the parameters and vectors to be inherited in-
clude W ∈ Rm×n,U ∈ Rm×m,V ∈ Rm×m, b ∈ Rm, Xr ∈
Rn× 3
√
|V|, Xc ∈ Rn× 3

√
|V|, Xp ∈ Rn× 3

√
|V|, Y c ∈ Rm× 3

√
|V|,

Y r ∈ Rm× 3
√
|V| and Y p ∈ Rm× 3

√
|V|. We use these param-

eters to initialize the newly-added vectors with the same
settings in the function Eq. 2.

Step-2: Calibration. Simply using the inherited parameters
and embedding vectors for the first term of Eq. 7 will
inevitably introduce large errors. To minimize the loss func-
tion defined in Eq. 7, we calculate the difference in the
loss, ∆NLL′, due to accumulated computation errors. We
calibrate and reduce ∆NLL′ using a standard SGD method.
To do so, we also breakdown ∆NLL′ into three directional
components, corresponding to rows, columns and pages in
our cuboid structure:

∆NLL′ =|
T∑

t=1

(log
∑
i∈S′r

exp(hc
t−1y

r
i ) + log

∑
i∈S′c

exp(hp
t−1y

c
i )

+ log
∑
i∈S′p

exp(hr
ty

p
i ))− logRCP |,

(8)

where

R =

T∑
t=1

∑
i∈Sr

exp(hc
t−1y

r
i ), (9)

C =

T∑
t=1

∑
i∈Sc

exp(hp
t−1y

c
i ), (10)

P =

T∑
t=1

∑
i∈Sp

exp(hr
ty

p
i ). (11)

The breakdown allows us to update some of the param-
eters and vectors, i.e., yci ∈ S

′

c, yri ∈ S
′

r , and ypi ∈ S
′

p, using
SGD, while keeping others inherited vectors and affining
transformation parameters unchanged. By only learning
and updating a subset of the inherited parameters and
vectors, we can accelerate the process for learning and
update component embedding vectors. We can therefore
merely update partial parameters yci ∈ S

′

c, yri ∈ S
′

r , and
ypi ∈ S

′

p vectors with SGD in Eq. 8 whilst fixing the others
inherited vectors and affining transformations parameters
to accelerate the procedure above.

Beside from the inherent errors introduced from the pa-
rameter inheritance, we also need to consider the incremen-
tal portion (i.e., changed network structures) in the second
term of Eq. 7. To this end, we use the newly generated
corpus ∆T to train and update all parameters and vectors
again with SGD.

Fault tolerance. Since the network is dynamically evolved,
fault tolerance should not be ignored. Our incremental
learning scheme offers a way to rapid recovery from the
backward embedding vectors. Accordingly, different por-
tions of the loss function 7 can be rebuilt if parts of the
network data get lost.

5.3 Node Placement for Dynamic Networks

We now describe how to adjust the node placement in the
cuboid during incremental learning, like what we do for
learning static embeddings (§ 4.3).

As discussed in § 4.3.2, we translate the problem of node
placement optimization into an MWPM problem builds
around a weighted bipartite graph, for which we solve by
using an MCMF algorithm with linear-time approximation.
Algorithms for solving MWPM within a bipartite graph are
based on the idea of augmenting paths defined as follows. In
graph theory, a matching is a set of edges, no two sharing
a vertex (see also § 4.3.2), and an alternating path is a path
whose edges are alternately in and out of the matching. An
augmenting path is an alternating path that starts from and
ends on unmatched vertices.

Existing linear-time approximation methods, like
LAM [33] used in [24] and IPGA’ [34], [35] used for static
embeddings in this work, cannot solve the MWPM problem
for a dynamic bipartite graph. Alternative MCMF algo-
rithms, like the zkw algorithm [36] and the Kuhn-Munkres
algorithm, are not applicable to our problem either, because
they cannot effectively limit the range of finding augment-
ing paths when new nodes are added to the graph. We also
cannot use the Dijkstra’s shortest path algorithm to find the
augmenting path in our weighted bipartite graph, because
it cannot handle edge with a negative weight.

To address the above limitations, we employ a Edmonds-
Karp algorithm based the shortest path faster algorithm
(SPFA) [37], namely EK-SPFA. This algorithm is a good
fit for our problem as it can effectively find augmenting
paths in a dynamic, weighted directed bipartite graph
with negative-weight edges. With EK-SPFA in place, we
then apply the optimization strategy as in § 4.3 for node
placement optimization, but this time we use a new objec-
tive function for incremental learning (Eq. 7). Incremental
learning is achieved by breaking down the changes in the
node sets in each row, column and page of the cuboid, i.e.,
S′r = Sr + ∆Sr , S′c = Sc + ∆Sc, and S′p = Sp + ∆Sp, where
Sr , Sc and Sp respectively denote the set of nodes in the
row, column and page component. We use these to compute
∆T in the second term of the loss function given in Eq. 7.

5.4 Time Complexity of HETERRSNN++

The worst-case running time of SPFA is O(|VE|), where
|E| is number of bidirectional edges. However, experiments
suggest the average running time of SPFA isO(κ|E|), where
κ is the number of times each node entering a queue and
generally meets κ ≤ 2. Since the step for finding augment-
ing paths runs less than |V| times, and each step theoret-
ically takes O(|VE|) with an average of O(κ|E|), the time
complexity of our node placement algorithm for incremental
learning is O(|V2E|) in theory and O(κ|VE|) on average in
practice. Here, E equals 2|V|2+4|V| in our problem. Putting
together, for our solution, the time complexity is bounded
to O(|V|4) in theory and O(κ|V|3) on average. It is worth
noting that |V| is same with the scale of the vertices of the
entire dynamic bipartite graph BG, rather than the scale
of the incremental vertices 2∆|V| in the bipartite graph.
Since the EK-SPFA algorithm is naturally compatible with
dynamic network evolution, a smaller increment can help
to significantly reduce the time complexity.
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6 EXPERIMENTAL SETUP

6.1 Hardware and Software
We evaluate the LIME Engine using a 16-node GPU cluster,
where each node consists of a 64-core Intel Xeon CPU E5-
2680 v4@2.40GHz with 512GB RAM and four NVIDIA Tesla
P100 GPUs. The server nodes run Ubuntu 20.04 LTS with
Linux kernel v.5.4.0. We implement LIME using Tensorflow
v1.4.0. In the experiment, we dispatch each network embed-
ding tasks to run on a lot of server nodes.

6.2 Model Training
For all embedding methods, we use the same set of hyper-
parameters, including the learning rate (0.01), mini-batch
size (64), and the multi-threading number (32) and the num-
ber of negative samples per positive (5). For random walks
(§ 2.3.2), we set the number of walks per node, the max walk
length to form a node sequence, and the neighborhood size
to be 1,000, 100, 7, respectively. As a result, a mini-batch
size of 64 represents a batched training on a sequence of
64×1,000 nodes.

6.3 Datasets
We use three heterogeneous networks, including the DBLP
dataset5, Aminer Computer Sciences (CS) dataset [38] and
an cyber-physical datastream, described as follows.

DBLP. This dataset consists of over 6.5 million nodes of
four types: 2,251,371 authors (A), 2,476 organizations (O),
and 4,314,846 papers (P) from 5,744 publication venues (V).
There are three types of relationships: organization affiliates
authors (O–A), authors writes papers (A–P), and papers
published in venues (P-V). This dataset contains data up to
2018. We construct the heterogeneous information network
following [12] and use 4 types of meta-paths. We assign each
month’s new nodes and edges to a new time epoch based on
combinations of a publication venue, papers, new authors
and new organizations.

AMiner. This scholar network dataset consists of over 4
million nodes of three types: 1,693,531 authors (A) and
3,194,405 papers (P) from 3,883 publication venues (V) held
until 2016. We use AMiner heterogeneous collaboration
network constructed by [12] and use 3 types of meta-
paths. This dataset contains two types of relations: authors
writes papers (A-P), and papers published in venues (P-V).
We follow [12] to match the eight research fields (or cate-
gories6) for publication venues grouped by Google Scholar7

with those in AMiner dataset to get labeled venues. We
assume that a specific researcher belongs to a particular
area if the researcher has over ten papers were published
in corresponding venues of that area.

CTI. This Cyber Threat Intelligence (CTI) dataset includes
639,450 records from 612 security reports published between

5. https://dblp.uni-trier.de/
6. The eight categories include: Computational Linguistics, Com-

puter Graphics, Computer Networks and Wireless Communication,
Computer Vision and Pattern Recognition, Computing Systems,
Databases and Information Systems, Human Computer Interaction,
Theoretical Computer Science.

7. https://scholar.google.com/citations?view op=top venues&hl=
en&vq=eng

January 2008 and June 2019. We covert this dataset to a HIN
by following the methodology described [7]. This dataset
includes four types of nodes: IP Address (I), Domain Name
(D), Malware Hash (M) and Email Address (E), and five
types of relationships (edge types): “domain name is resolved
to ip address (D–I)”, “domain name is visited by malware
hash (D–M)”, “domain name is registered by email address
(D–E)”, and “ip address connects to an email address (I–E)”.
We involve 7 types of meta-paths for the random walks. We
assign each month’s new nodes and edges to a new time
epoch based on combinations of a complete security report.

6.4 Competitive Methods
To evaluate the advancement of LIME, we firstly compare
HETERRSNN with the NRL methods below:

Metapath2Vec. This is the state-of-the-art NRL method for
HINs [12]. It leverages predefined meta-path-guided ran-
dom walks to construct the heterogeneous neighborhood
of a node and then applies RNN-based skip-gram with
negative sampling technology to perform node embedding.

DeepWalk. This method [10] learns d-dimensional vectors
by capturing node pairs within w-hop neighborhood via
uniform random walks. It is a typical homogeneous network
embedding model.

Node2Vec. This model is generalized from DeepWalk,
which learns d-dimensional node vectors by capturing node
pairs within w-hop neighborhood via parameterized ran-
dom walks [11]. In this work, we use the suggested param-
eters, p = 4 and q = 1, given in the source publication for
comparison.

LINE. This model preserves first-order and second-order
proximities between nodes [8]. We use two d/2-dimensional
vector representations for the first-order and second-order
proximities, and then concatenate them as the node repre-
sentation.

GraphSAGE. This is a inductive NRL framework for dy-
namic homogeneous networks [26]. It samples node neigh-
borhoods to generate vertex embeddings for unseen data.

PTE. This approach [27] decomposes a HIN to a set of bipar-
tite networks by edge types and learns d-dimensional node
vectors by capturing 1-hop neighborhood of the resulting
bipartite networks.

We further compare HETERRSNN++ against the follow-
ing 5 representative dynamic NRL methods:

HTNE-a. This employs a multivariate hawkes process and
attention mechanism to learn homogeneous temporal net-
work embeddings [17].

DyRep. This method employs time-scale dependent multi-
variate point process model to learn homogeneous temporal
network embeddings [19].

DNE. This method extends homogeneous network embed-
ding methods built around RNN-based skip-gram models
to handle dynamic networks [22].

CTDNE. This employs temporal random walk-based
continuous-time dynamic network embedding to learn
homogeneous and time-preserving network representa-
tions [21].

https://dblp.uni-trier.de/
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng


IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 2021 10

DyHAN. This method uses node-, edge- and temporal-
level attention to learn dynamic heterogeneous network
embedding [28].

HeterRNN. This is a variant of HETERRSNN. Instead of
using the RsNN, it uses an RNN to learn component em-
beddings.

6.5 Evaluation Methodology
We evaluate all approaches for efficiency and effectiveness.

Efficiency. We measure the resource usage (particularly the
memory footprint), execution time and the speedup of train-
ing time in both static and dynamic network scenarios. To
compute the speedup, we use metapath2vec as the baseline.

Effectiveness. We evaluate the quality of the learned node
representation by feeding it to standard machine learning
tools to support downstream processing tasks. We con-
sider three tasks: node clustering, node classification, and
anomaly detection. For node clustering, we apply k-means
to scholar networks to group nodes of authors and venues,
and use normalized mutual information (NMI) [39] to quantify
the clustering effectiveness. For node classification, we con-
sider both multi-class and multi-label classification. We feed
the embedding results into a logistic regression classifier
and use Macro-F1 and Micro-F1, two high-is-better metrics
[40], to evaluate the classification performance. For anomaly
detection, we apply a logistic regression classifier to perform
node classification on the CTI dataset and use Macro-F1 and
Micro-F1 to evaluate the performance. For the three tasks,
we set the embedding size to 129 (which is a multiple of 3 as
required by LIME’s 3-component representation). To observe
the convergence of error and bias in our SGD solution, we
also measure the difference of the objective function (error)
under different incremental scenarios. This indicates the bias
introduced from the parameter inheritance.

Performance report. To minimize the noise, we repeat each
experiment 10 times independently and compute the aver-
age running time or accuracy. For a fair comparison, we vary
the hyper-parameters for each competing method for each
task, and use the best-performing settings.

7 EXPERIMENTAL RESULTS

This section demonstrates that LIME is efficient by using the
least amount of memory resources and computational time
(§ 7.1), and effective by delivering comparable or even better
performance for downstream processing tasks (§ 7.2).

7.1 Efficiency Evaluation
In this experiment, we apply NRL methods to the DBLP
dataset in both static and dynamic settings. To evaluate
the impact of network size on resource and computational
efficiencies, we sample the entire DBLP datasets to construct
networks of different sizes. Specifically, we choose a subset
of publication venues, which are then used to choose the
associated nodes like authors and organizations. We use five
sample rates to choose the venues, 20%, 40%, 60%, 80%, and
100%, and a sample rate of 100% means we use the entire
DBLP dataset. We empirically use the meta-path ”O-A-P-V-
P-A-O” to guide random walks in the dataset. We set the

TABLE I
Time and memory overhead for different sized DBLP networks.

Method 20% 40% 60% 80% 100%

DeepWalk 13.802 35.003 39.106 41.428 42.059
Node2vec 13.815 35.218 39.304 41.694 42.260
LINE 6.2814 17.005 19.463 21.856 22.352
PTE 22.736 54.504 58.659 62.142 63.088
Metapath2v. 13.813 35.491 39.137 41.781 42.402
GraphSAGE 41.255 85.801 130.588 180.502 226.104Ti

m
e

(m
in

.)

LIME 6.109 16.190 17.809 19.192 20.056

M
em

.(
G

B)

DeepWalk 2.918 4.041 6.928 8.817 10.437
Node2vec 2.955 4.058 6.931 8.827 10.445
LINE 2.954 4.060 6.933 8.833 10.452
PTE 2.965 4.088 6.952 8.840 10.463
Metapath2v. 2.998 4.020 6.970 8.833 10.190
GraphSAGE 3.905 5.911 8.148 10.663 13.021
LIME 0.712 0.793 0.859 0.904 0.983

dimension of node embedding vectors to be 513 (so that it
can be divide exactly by 3 since LIME uses a 3-component
vector representation).

7.1.1 Static embedding learning
Table I reports the memory footprint and training time for
learning node embeddings for a static DLBP dataset. LIME
delivers the fastest training time by using the least amount
of memory. Metapath2Vec is the best-performing alternative
method for HIN embedding, but it requires at least 4x
(up to 6.3x) more memory space and is 2x slower than
LIME. It is to note that some memory space (i.e., 0.7GB
to 0.9GB) is used to store the node sequences generated
by random walks – this is a cost must be paid by all
methods. By excluding this overhead, LIME only requires
less than 90MB to store the node vectors. By comparison,
alternative methods at least 2GB (up to 10GB) for storing the
node vectors, which thus incurs significantly larger memory
overhead. By using a fewer number of node vectors, LIME
also speeds up the training time considerably, because doing
so also reduces the number of computational operations and
memory accesses. DeepWalk, Node2Vec, LINE, PTE and
Metapath2Vec have similar time and space consumption
due to their similar inherent mechanism of random walk
and negative sampling. Overall, LIME reduces the memory
footprint required for learning static network embeddings
by at least 4x (up to 10x) and speeds up the training time
by at least 2x (up to 16x) over competing methods. This
lower memory resource requirement and faster processing
time mean that LIME can scale better to larger network for a
given processing hardware platform.

7.1.2 Dynamic embedding learning
In this experiment, we consider the DBLP data generated
between 1936 to 2017 as the starting, or genesis network,
i.e., G(t), t = 0. We then incrementally add data from
January 2018 onwards into the genesis network on a daily,
weekly, monthly, seasonally, and yearly basis, to form a
changing network, G(t + 1), with different time scales. The
average number of new nodes introduced by the different
time scales, i.e., the daily, weekly, monthly, seasonally, and
yearly basis, is 1,753, 11,255, 42,960, 108,983, and 304,633,
respectively. The changed network is used to evaluate the
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Fig. 5. Comparing LIME’s incremental learning strategy against the
best alternative static embedding method and the mainstream learning
models for dynamic network representation. The x-axis shows the gran-
ularity for applying incremental learning to a changed network. LIME is
significantly faster in learning embeddings for an evolving network.

performance of our incremental learning strategy (§5). As
no prior work in heterogeneous information network em-
bedding supports effective incremental learning, we adopt
Metapath2Vec – the best performer of prior work in static
embedding learning – together with other 5 representative
baselines to evaluate the performance of dynamic NRL.
Specifically, we compare to the ’cold-start’ Metapath2Vec that
learns embeddings from scratch on a changed network.

Fig. 5 depicts the comparison of raw processing time.
By leveraging the changing network structures and the
previously learned embeddings of the target network, LIME
accelerates the learning time by 5− 20x compared with the
Metapath2Vec. It is worth noting that the processing time
of Metapath2Vec is relatively stable because of the number
of new nodes is small compared to the ones in the genesis
network. We can observe that LIME has a larger advantage
over Metapath2Vec when processing under a smaller chang-
ing scale (e.g., one day or one week). This is because the
fewer the changes in the network, the smaller number of
optimization operations needed to be performed during the
incremental learning process. We consider this a benefit of
LIME as it allows us to update node representation more fre-
quently so that the downstream processing model can catch
up with the evolution of a network quicker. Compared with
continuous random walk based approaches such as CTDNE
and DNE, LIME significantly benefits from the shared vec-
tor mechanism and thus obtains higher computational ef-
ficiency. DyRep and HTNE-a models spend more time on
modeling the temporal process and DyHAN consumes the
longest time because the 3-layer self-attention units are
extremely computation intensive, making it unrealistic for
handling evolving networks.

7.2 Effectiveness Evaluation
We now evaluate the quality of the learned representation
by feeding the node embeddings to standard machine learn-
ing algorithms for three downstream processing tasks: node
clustering, node classification, and anomaly detection.

7.2.1 Node clustering
In this experiment, we use nodes of authors and publication
venues gathered the eight research fields (categories) in the

TABLE II
Normalized mutual information (NMI) for node clustering. This is a

higher-is-better metric.

Methods Author Cluster. Venue Cluster.

DeepWalk 0.4941 0.8521
Node2vec 0.6246 0.8902
LINE 0.6423 0.8967
GraphSAGE 0.6479 0.9003
PTE 0.6483 0.9060
Metapath2vec 0.7470 0.9274
HeterRNN 0.6450 0.8906

St
at

ic

HeterRsNN (LIME) 0.7794 0.9356
DyRep 0.5483 0.8801
CTDNE 0.6873 0.9104
DyHAN 0.6628 0.9035
HTNE-a 0.5248 0.8717
DNE 0.6538 0.8813

D
yn

.

HeterRsNN++ (LIME) 0.7685 0.9306

AMiner dataset to evaluate how the representation learned
by different embedding methods perform on node cluster-
ing. The goal of node clustering is to group authors and
venues in the same research field into the same cluster. To
label the research field of an author, we select the category
in which the author has the most article records.

In addition to static network embedding models, we also
compare our approach against other dynamic NRL base-
lines. We use 80% of venues related node and edges as the
starting network and the remains as new nodes added into
the initial network. We apply the k-means algorithm (k = 8
as we target eight research fields) to cluster the author
and venue nodes using the learned node embeddings. We
then evaluate the performance of the clustering results by
computing the NMI.

Table II gives the NMI scores for static and dynamic
learning. While using significantly fewer number of node
vectors, HeterRsNN and HeterRsNN++ employed by LIME
outperform all other comparative methods. This is because
LIME can better discover the internal semantic relationships
among nodes in the HIN due to its novel node placement
optimization scheme (§ 4.3 and § 5.3). When performing
author clustering for the static network, HeterRsNN gives
an improvement of 3% on NMI over the best-performing
comparative method, Metapath2vec and an improvement of
13%-28% over others. For author clustering in the dynamic
network, improves HTNE-a and DNE by 9% and 22%
respectively. For venue clustering, our approach also gives
the highest NMI score, with a 1%-8% improvement over
others. Considering LIME is designed to trade node em-
bedding quality for reduced computational resources, any
improvement it achieves would be a bonus. Owing to the
beneficial strategy of grouping nodes that may share similar
semantics together, LIME achieves the best performance in
node clustering tasks. Therefore, the improved NMI score
given by LIME is remarkable.

7.2.2 Node classification
This task predicts which of the eight research fields in
the AMiner dataset, an author or venue node is likely to
be based on other training labeled nodes. As an author
can contribute into multiple research fields, we formulate
the author node classicization a multi-label classification
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TABLE III
Multi-label author node classification in AMiner.

10% 30% 50% 70% 90%

DeepWalk 0.6341 0.6684 0.6687 0.6785 0.6888
Node2vec 0.6365 0.6614 0.6633 0.6738 0.6848
LINE 0.6486 0.6711 0.6714 0.6726 0.6883
GraphSAGE 0.6715 0.6724 0.6759 0.6786 0.6815
PTE 0.6536 0.6817 0.6854 0.6892 0.6944
Metapath2vec 0.6863 0.7149 0.7185 0.7211 0.7327
HeterRNN 0.6387 0.6691 0.6677 0.6727 0.6895

St
at

ic

HETERRSNN 0.6908 0.7135 0.7237 0.7249 0.7242
DyRep 0.6558 0.6829 0.6874 0.6893 0.6988
CTDNE 0.6520 0.6806 0.6838 0.6839 0.6961
DyHAN 0.6753 0.6784 0.6773 0.6791 0.6836
HTNE-a 0.6573 0.6819 0.6834 0.6958 0.6991
DNE 0.6527 0.6744 0.6715 0.6747 0.6910

M
ac

ro
-F

1

D
yn

.

HeterRsNN++ 0.6856 0.7134 0.7195 0.7253 0.7322
DeepWalk 0.6486 0.6787 0.6789 0.6887 0.6973
Node2vec 0.6493 0.6737 0.6767 0.6829 0.6755
LINE 0.6573 0.6834 0.6845 0.6878 0.6966
GraphSAGE 0.6604 0.6833 0.6850 0.6883 0.6995
PTE 0.6642 0.6916 0.6968 0.6977 0.7082
Metapath2vec 0.6919 0.7256 0.7265 0.7325 0.7369
HeterRNN 0.6522 0.6817 0.6810 0.6814 0.6809

St
at

ic

HETERRSNN 0.6964 0.7249 0.7291 0.7374 0.7221
DyRep 0.6660 0.6927 0.6984 0.6991 0.7093
CTDNE 0.6651 0.6919 0.6952 0.6972 0.7064
DyHAN 0.6682 0.6874 0.6904 0.6914 0.7199
HTNE-a 0.6681 0.6924 0.6909 0.6957 0.7005
DNE 0.6581 0.6895 0.6900 0.6903 0.7973

M
ic

ro
-F

1

D
yn

.

HETERRSNN++ 0.6911 0.7238 0.7257 0.7310 0.7218

TABLE IV
Multi-class venue node classification in AMiner.

10% 30% 50% 70% 90%

DeepWalk 0.3796 0.6695 0.7812 0.8674 0.8357
Node2vec 0.4486 0.7767 0.8394 0.8935 0.9177
LINE 0.4629 0.8473 0.9203 0.9466 0.9466
GraphSAGE 0.4725 0.8591 0.9271 0.9493 0.9507
PTE 0.3388 0.8304 0.9210 0.9505 0.9489
Metapath2vec 0.5247 0.8971 0.9532 0.9701 0.9670
HeterRNN 0.4481 0.7635 0.8489 0.9067 0.9091

St
at

ic

HETERRSNN 0.5082 0.8735 0.9391 0.9605 0.9527
DyRep 0.4293 0.8388 0.9267 0.9583 0.9499
CTDNE 0.4267 0.8341 0.9236 0.9540 0.9482
DyHAN 0.4884 0.8590 0.9291 0.9593 0.9469
HTNE-a 0.3984 0.6813 0.7966 0.8795 0.8577
DNE 0.4612 0.8438 0.9195 0.9482 0.9484

M
ac

ro
-F

1

D
yn

.

HETERRSNN++ 0.5039 0.8747 0.9385 0.9609 0.9522
DeepWalk 0.4042 0.7166 0.7990 0.8877 0.9186
Node2vec 0.4981 0.7957 0.8586 0.9145 0.9451
LINE 0.5167 0.8457 0.9209 0.9500 0.9571
GraphSAGE 0.5258 0.8522 0.9281 0.9569 0.9611
PTE 0.4267 0.8372 0.9239 0.9550 0.9571
Metapath2vec 0.5975 0.9011 0.9522 0.9725 0.9857
HeterRNN 0.4974 0.7939 0.8591 0.9187 0.9301

St
at

ic

HETERRSNN 0.5751 0.8829 0.9389 0.9605 0.9693
DyRep 0.4305 0.8413 0.9280 0.9595 0.9509
CTDNE 0.4392 0.8504 0.9253 0.9521 0.9568
DyHAN 0.5133 0.8654 0.9308 0.9510 0.9687
HTNE-a 0.4274 0.7381 0.8229 0.9011 0.9248
DNE 0.5138 0.8503 0.9211 0.9489 0.9571

M
ic

ro
-F

1

D
yn

.

HETERRSNN++ 0.5733 0.8845 0.9377 0.9606 0.9671

problem. Here, we learn node embeddings for all authors
and venues and feed the labeled nodes (as introduced in
§ 6) into a logistic regression classifier. We use 10%, 30%,
50%, 70% to 90% of the data to train the classifier and
the remaining for testing. To evaluate dynamic embedding
learning, we use the AMiner dataset by a monthly step and
compare HeterRsNN++ with dynamic NRL baselines.

For all training-test-split ratios, LIME outperforms most
baselines with an average 0.5%-6% improvement for au-
thor node classification and an average 1%-17% for venue

TABLE V
Anomaly detection on the CTI dataset.

10% 30% 50% 70% 90%

DeepWalk 0.5071 0.6084 0.6219 0.6445 0.6492
Node2vec 0.5753 0.6621 0.6957 0.7118 0.7245
LINE 0.5844 0.6669 0.6983 0.7125 0.7353
GraphSAGE 0.5858 0.6721 0.7005 0.7238 0.7386
PTE 0.5675 0.6569 0.6848 0.7033 0.7219
Metapath2vec 0.5882 0.6891 0.7289 0.7400 0.7491
HeterRNN 0.5685 0.6609 0.6921 0.7107 0.7241

St
at

ic

HETERRSNN 0.5947 0.6915 0.7291 0.7485 0.7522
DyRep 0.5724 0.6618 0.6882 0.7011 0.7225
CTDNE 0.5766 0.6659 0.6832 0.7104 0.7306
DyHAN 0.5856 0.6871 0.7188 0.7332 0.7419
HTNE-a 0.5622 0.6501 0.6885 0.7011 0.7218
DNE 0.5823 0.6695 0.6932 0.7119 0.7355

M
ac

ro
-F

1

D
yn

.

HETERRSNN++ 0.5873 0.6989 0.7286 0.7451 0.7490
DeepWalk 0.5492 0.6515 0.6841 0.6990 0.7127
Node2vec 0.6255 0.7227 0.7501 0.7658 0.7713
LINE 0.6311 0.7425 0.7699 0.7823 0.7894
GraphSAGE 0.6327 0.7429 0.7701 0.7874 0.7925
PTE 0.6149 0.7205 0.7433 0.7599 0.7704
Metapath2vec 0.6455 0.7486 0.7831 0.7979 0.8080
HeterRNN 0.6128 0.7044 0.7415 0.7532 0.7629

St
at

ic

HETERRSNN 0.6483 0.7502 0.7833 0.7980 0.8035
DyRep 0.6166 0.7214 0.7433 0.7610 0.7844
CTDNE 0.6194 0.7201 0.7486 0.7658 0.7894
DyHAN 0.6314 0.7321 0.7568 0.7658 0.7905
HTNE-a 0.6175 0.7291 0.7481 0.7618 0.7713
DNE 0.6321 0.7208 0.7415 0.7558 0.7883

M
ic

ro
-F

1

D
yn

.

HETERRSNN++ 0.6385 0.7403 0.7786 0.7850 0.7955

classification. In some test settings, LIME gives marginally
lower performance (between 0.5% and 2%) over the best-
performing HIN NRL method Metapath2vec for static em-
bedding, but with significantly less computational re-
sources. The comparable performance suggests that LIME is
effective in capturing an ensemble of semantic and struc-
tural correlations of heterogeneous networks. The vector
sharing mechanism adopted by LIME allows multiple nodes
to share component vector(s), which inherently result in an
increased correlation among these nodes. If we consider
the RNN variant of LIME (e.g., replacing the RsNN with
an RNN), we see that HeterRNN does not deliver the
state-of-the-art performance, suggesting that an RNN is less
effective in modeling network structures. Finally, we also
observe that the scores of HeterRsNN (that operates on the
entire dataset) and HeterRsNN++ are close. This suggests the
effectiveness of incremental learning approach.

7.2.3 Anomaly detection
In this task, we train a logistic regression classifier to take as
input the node embeddings to predict potential anomalies of
the CTI dataset. Like node classification (§7.2.2), we vary the
training ratios from 10% to 90% with a step of 20%. Because
a security report can be attributed with multiple catalogue
tags, we formulate this as a multi-label classification prob-
lem. Similarly, we grow the CTI dataset by a monthly basis
to evaluate dynamic embedding learning.

Table V gives the Macro-F1 and Micro-F1 scores for each
approach. Like node classification, HETERRSNN and HET-
ERRSNN++ outpeform all but Metapath2vec. However, the
performance gap between HETERRSNN/HETERRSNN++
and Metapath2vec is small, between 0.1% and 0.8%. We also
observe that HETERRSNN ++ delivers similar performance
over HETERRSNN, albeit it applies a incremental learning
strategy that has lower memory footprint and faster training
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TABLE VI
LIME can automatically group venue/author nodes in the same research field to share the same row or column vector.

Vector no. Network nodes (venues or authors) Research field
row-45 TC, TPDS, TOS, ASPLOS, IPDPS, TOCS, HPCA, OSDI, SOSP, FAST, ICDCS, TECS, PARCO, ISCA Computing systems
row-72 VLDB, ICDE, SIGMOD, ICDT, TODS, VLDBJ, CIDR, EDBT, PVLDB, PODS, DASFAA, SSDBM Database
row-86 KDD, TKDE, ICDM, TKDD, WSDM, DMKD, CIKM, SDM, KAIS, ECML-PKDD, PAKDD Data mining
row-99 Albert Zomaya, Andrew S. Tanenbaum, Ion Stoica, Schahram Dustdar, David A. Patterson Computing systems
row-121 NIPS, ICML, JMLR, TPAMI, Neural Computation, AIJ, UAI, IJCV, TNNLS, Machine Learning Machine learning
column-19 Jiawei Han, Philip S. Yu, Christos Faloutsos, Jian Pei, Xindong Wu, Charu Aggarwal Data mining
column-55 CVPR, ICCV, TPAMI, MM, TIP, ECCV, TMM, IJCV, ACCV, CVIU, IET-CVI Computer vision
column-89 ACL, EMNLP, NAACL, COLING, TSLP, TASLP, CoNLL, JSLHR, Computational Linguistics Computational linguistics
column-131 AAAI, IJCAI, UAI, Artificial Intelligence Journal, JAIR, ECAI, JSLHR, IJAR, Neural Networks AI
column-71 Andrew Zisserman, Jitendra Malik, Andrew Fitzgibbon, Eric Grimson, Roberto Cipolla Computer vision

time. This experiment shows that LIME can extract high-
quality network representation for anomaly detection.

7.3 Observable Error of Objective Loss Function
To validate the effectiveness of model convergences, we
conduct an empirical micro-benchmarking study on the
error of objective loss function in HETERRSNN++ and
cold-start HETERRSNN, respectively. In general, a smaller
loss indicates better model effectiveness of unsupervised
learning models. We leverage different datasets with various
sizes extracted from DBLP to showcase different time scales
and their effects on the dynamic HINs. We configure the in-
crement on a daily, weekly, monthly, seasonally, and yearly
basis, respectively. In Fig. 6, there is an observably stable but
descending trend of the objective function differences under
different increment scales. The error tends to decrease as
the number of HIN nodes soars. For instance, the error of
daily increment in HETERRSNN++ is roughly 0.0804 while
it falls to merely 0.0004 in case of yearly increment. This
is because more HIN nodes are involved in the bias cali-
bration, wherein a increasing number of training iterations
will gradually improve the precision despite the inevitably
longer processing time (Fig. 5). The result indicates the
objective loss error can be constantly maintained at an
extremely low level with minimized bias stemming from
dynamic network changes.

7.4 Case study
As a significant departure from NRL methods [3], LIME can
automatically discover the internal semantic relationship
among nodes in our cuboid space. In an attempt to illustrate
this advantage, we show the author and venue nodes that
share the same row and column vectors when applying
HETERRSNN to the DBLP dataset. The results are given
in Table VI, which include both publication venues and
authors of different research fields.

As can be seen from Table VI, LIME is highly effective
in grouping nodes with similar semantics. For example,
the publication venues in row-45 are all conferences and
journals in computing systems. We also observe similar
grouping for authors and venues in other fields of data
mining, databases, AI, ML, NLP, CV, etc. Given that the
grouping is done automatically without human involve-
ment or similar search, LIME is thus able to learn the
semantic relationships during training. The results show
that our 3-component shared embedding scheme is about
to capture and incorporate the underlying structural and
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Fig. 6. Objective loss on different sized HIN.

semantic relationships between various types of nodes in
heterogeneous networks. This allows LIME to reduce the
number of node vector without significantly compromising
the quality of the node representation.

8 RELATED WORK

Deep network embedding models. Previous network rep-
resentation learning models primarily focus on improving
the learning ability such as preserving original network
structural information and properties [3] or semantic cor-
relations of different types of nodes and relationships [31],
[12], [41]. Unlike these, LIME aims to improve the effi-
ciency in computational resources and training time to allow
the learning algorithm to scale to large networks and to
respond to a dynamically changing HIN quickly. While
graph-based learning methods have recently demonstrated
impressive results on learning graph representations, graph
neural networks (GNNs) would incur significant memory
overhead and long training time for real-life networks. As
a result, GNNs are ill-suited for learning embedding for
larger, dynamically changing HINs.

LightRNN [24] is the most closely related work for
resource-tuned representation learning. It targets word
embedding learning for natural language processing
tasks. LightRNN adopts a 2-component shared embed-
ding scheme using RNN for learning word embeddings.
LightRNN allocates every word in the word vocabulary
into a table so that words in a row shard with a row
vector and words in each column share a common column
vector. While LightRNN reduces the model size and run-
ning time for processing texts, a 2-component scheme is
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ill-suited for HINs because it cannot adequately model the
semantics among heterogeneous nodes in a HIN. Inspired
by LightRNN, we adopt a 3-component shared scheme
and employ RsNN to propagate and aggregate information
across the network hierarchy. LIME also advances LightRNN
by using a faster and more accurate algorithm to solve the
optimization problem in shared embedding space.

Dynamic network embedding models. Numerous dynamic
network embedding models have been proposed [42] and
can be classified into three categories: i) Stochastic-based ap-
proaches [17], [18], [19] assume the network changes follow
a certain stochastic process (e.g., Hawkes process, Triadic
closure process, or Multivariate point process), which can
hardly stand in realistic networks. ii) Approaches based on
temporal random walks [21], [22], [23] exploit snapshot and
skip-gram technologies for learning the embedding. How-
ever, such models have intrinsic limited scalability in terms
of computation and storage, and ignore the heterogeneity
of network structure, thereby limiting the representation
precision. iii) Attention-based approaches [28] use node-,
edge- and temporal-level attention for graph embedding,
most suitable for link prediction. However, the computation
and space complexity impede its applications in large-scale
networks, wherein out-of-memory tends to manifest. Fur-
thermore, other task-specific graph embedding approaches
[43], [44], [45] use supervised/semi-supervised modeling to
learn dynamic rules. However, they aim to predict the struc-
ture of graph instead of effective node embedding, causing
prohibitively long training time. One can easily integrate
the proposed node embedding LIME with recurrent neural
network such as LSTM to effectively fulfill such prediction.
As a departure from prior work, LIME has significantly
accelerated the embedding procedure with lower memory
cost but can achieve higher-quality embeddings.

9 CONCLUSION

Networks are a universal language for modeling complex
systems. The ability for understanding and characterizing
network structures underpins many applications. However,
realizing this ability in a resource- and time-efficient man-
ner is highly challenging because real-world networks en-
compass massive heterogeneous nodes and edges and can
change drastically over time. We have presented LIME, a
fast, resource-efficient method for extracting useful repre-
sentation from dynamic information networks. To reduce
the memory requirement for learning network representa-
tion, LIME exploits the semantic relationships among net-
work nodes to encode multiple nodes with similar seman-
tics in shared vectors. By using many fewer node vectors,
LIME thus significantly cuts down the memory space and
computational time over the state-of-the-arts. To minimize
the information lost when using fewer node vectors, LIME
exploits the recursive neural network with carefully de-
signed optimization strategies to explore the node semantics
in a novel cuboid space. To quickly adapt to the changes
in a network, we develop a novel incremental learning
for changing networks. We apply LIME to three large-scale
datasets across three downstream processing tasks and com-
pare LIME against eight prior state-of-the-art methods for
learning network representation. Our extensive experiments

show that LIME reduces the memory footprint by over 80%
and computational time over 2x, without compromising the
quality of the learned network representation.
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