
ROSE: Cluster Scheduling through Efficient Resource Overselling
Xiaoyang Sun1*, Chunming Hu1, Renyu Yang1*, Peter Garraghan2, Chao Li3

Beihang University1 Lancaster University2 Alibaba Cloud Inc3

Motivations: A long-standing issue in cluster scheduling is
the ability to effectively improve the resource utilization of
heterogeneous resources. Specifically, there exists a
substantial disparity between perceived and actual resource
utilization. The scheduler considers a cluster fully utilized if
a large resource request queue is present, even when in
actuality the average actual resource utilization of cluster
nodes is low. This disparity results in the formation of idle
resources producing inefficient cluster resource usage,
reduced system availability and incurring greater operational
costs and an inability to provision service. Through profiling
a production cluster, we have identified that the main causes
for such idle resources are resultant of message feedback
delay, resource over-estimation and fragmentation. An
intuitive solution to this problem is to leverage the
overselling technique or opportunistic execution. It is highly
desirable to exploit idle resources to minimize the waiting
time of submitted jobs, thereby shortening the end-to-end
job timespan and increasing system resource efficiency.

Apollo[2] introduces opportunistic scheduling to take
advantage of idle resources. However, randomly chosen
tasks can only fill the spare space of compute slots and may
lead to blind task dispatching. Mercury[3] adopts hybrid
scheduling to enhance cluster throughput and reduce
feedback delays. The method heavily relies on precise queue
delay estimation, and thus is not widely applicable to
systems where the execution time is challenging to estimate
due to volatile workload manifestation. Sparrow[4] performs
random-based probing to assign tasks. However, due to
limited visibility of the entire cluster resources, it sacrifices
scheduling quality for low-latency, and thus is only designed
for short interactive tasks. It is unlikely to ascertain an
appropriate destination server under high machine load.
None of these approaches are able to effectively reuse idle
resources, particularly during frequent resource requests.
Design: We design a cluster scheduling system ROSE that
enhances the two-layer scheduler architecture[1] [5] to oversell
idle resources to guarantee sufficient job execution whilst
maintaining inter-job fairness and cluster resource efficiency.
Specifically, when resource requests cannot be fully satisfied,
the ROSE job attempts to select idle resources from compute
nodes in a speculative manner instead of waiting for the
official resource allocation provided by the centralized
scheduler. The job intelligently requests to launch tasks
within ranked machines that are most suited to oversell
resources. To avoid inter-task performance interference,
these oversold tasks run at lower priorities and are
preemptable compared to currently executing tasks within
the machine. This approach is complementary and
compatible to existing protocols between the Application
Master (AM) and Resource Manager (RM) within YARN[1] .
Implementation: ROSE leverages a multi-phase machine
filtering mechanism to select and rank candidates prior to
overselling resources. The procedure considers machine load,
correlative workload performance, and queue states into

account for decision-making. To this end, a monitor is
introduced into the Node Manager(NM)[1] and a scorer into
the AM. The monitor component is responsible for
collecting runtime local information (CPU, memory, disk IO,
network, queue length, running task number, etc.) The
scorer component is responsible for rating the penalty level
of each machine by synthesizing the eviction, failure,
straggler occurrences at task-level. We use CA (Cluster
Aggregator) to converge the monitored statistic data and
machine scores. Machines that are timing-out, overloaded or
blacklisted will be eliminated. In the next phase, an election
is conducted by measuring scores, the weighted loads of
multi-dimension resources and queue states. Additionally,
we leverage timestamp ordering and bit compression to
incrementally maintain the consistency of candidate
information whilst optimizing the transmission efficiency.
 We extend NM by introducing a threshold controller and
queue management. The controller manages the whole
life-cycle of oversold tasks based on runtime system
information and quota control: task enqueue permission,
execution start time, resource allocation, preemption, and the
suitable time for task placement. Multi-resource restrictions
are imposed during the execution of oversold tasks. Herein,
a quota is used to regulate the degree of resource overselling
in the cluster to avoid using excessive resources. In this
manner, the over-estimation and fragmented resources can
be aggregated and fully reused. Furthermore, due to the
significant variation of cluster states, the original decisions
for task placement can become sub-optimal. In our design,
once the job determines that oversold tasks are delayed
within the NM’s queue via time-out detection, it will
autonomously adjust the task distribution to improve task
placement and reduce straggler occurrence.
Evaluation: We extended Fuxi[5] to implement ROSE and
evaluated its ability to improve cluster resource utilization
and job makespan on a 210-machine cluster and submitted a
synthetic workload with 60 IO-intensive jobs to emulate
production jobs. Compared with the non-overselling
approach, ROSE almost doubles the CPU utilization (from
25.63% to 52.9%) on average. Additionally, our system
outperforms random-based, system-load-based and
queue-length-based methods with at most 30.11% makespan
reduction and 18.23% disk utilization improvement.

References.
[1] https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/
[2] Boutin E, et al. Apollo: scalable and coordinated scheduling for cloud-scale

computing. USENIX OSDI 2014.
[3] Karanasos K,et al. Mercury: hybrid centralized and distributed scheduling

in large shared clusters. USENIX ATC, 2015.
[4] Ousterhout K, et al. Sparrow: distributed, low latency scheduling. ACM

SOSP 2013.
[5] Zhang Z, et al. Fuxi: a Fault-Tolerant Resource Management and Job

Scheduling System at Internet Scale. VLDB 2014

* The student Xiaoyang Sun will present the poster. Dr. Renyu Yang
is the corresponding author (renyu.yang@buaa.edu.cn).

ROSE: Cluster Scheduling through
Efficient Resouce OverSElling

Experiment Environment:

⎻ 210-node cluster with each node
having two 12-core Intel(R)
Xeon(R) CPU processors with
hyper-threading disabled (24
vcores).

⎻ Submit a synthetic workload with
60 IO-intensive jobs emulating
production workloads.

⎻ Implement ROSE via introducing
core components into Fuxi
system.

ROSE System Design and Architecture

Evaluation

Xiaoyang Sun1, Chunming Hu1, Renyu Yang1*, Peter Garraghan2, Chao Li3
Beihang University1 Lancaster University2 Alibaba Cloud Inc3

Reduction of makespan of jobs and
single job completion time;
At most 30.11% makespan reduction

compared with RB, SLB and QLB;

C
PU

 a
vg

lo
ad

M
em

or
y

U
til

iz
at

io
n

D
is

k
U

til
iz

at
io

n

R
un

ni
ng

ov
er

se
llin

g
ta

sk
s

am
ou

nt

Random
Based

System Load
Based

Queue Length
Based ROSE

Note: RB(Random Based), SLB(System Loads Based), QLB(Queue Length Based)

(a) Makespan of Jobs (b) CDF of JCT (C) Tendency of disk utilization

over 18.23% disk utilization
improvement.
More detailed comparison is
shown in heatmaps (right).

The project is supported by the National Key Research & Development Program of China(2016YFB1000503), EPSRC(EP/P031617/1) and NSFC(61421003).
* Any correspondences, please refer to Dr. Renyu Yang (renyu.yang@buaa.edu.cn).

ü Multi-phase Machine

Filtering Mechanism in CA:

- Rank and select candidates prior to
overselling resources:

1) Aggregate runtime machine load
and performance periodically.

2) Eliminate machines that are time-
out, overloaded, or blacklisted.

3) Conduct several-round election:
• machine scores (performance)
• multi-dimension weighted loads

(load pressure)
• task amount (waiting, running)

ü System monitor & Threshold Controller in NM:

- Collect local runtime information(CPU, memory, etc.)
- Decide enqueue permission, execution start time, preemption etc.
- Enforce multiple-dimension resource restriction

ü Task Scorer & Overselling Controller in AM:

- Rate machines by synthesizing eviction, failure, straggler etc. at task-level.
- Dispatch tasks speculatively when resources are already fully allocated.
- Re-schedule tasks as variation of cluster states through time-out detection.

Approaches:
- Introduce a two-layer overselling architecture where

a job speculatively attempts to select idle resources
instead of waiting for official resource allocation;

- Launch additional oversold tasks onto most suitable
machines managed by machine filtering and
threshold controller.

Goals:
- To exploit idle resources during high request number.
- To improve actual resource utilization and shorten

the end-to-end job timespan.

ROSE resource management lifecycle

Problem Statement:

- Main causes for low resource utilization:
- resource over-estimation
- message feedback delay
- fragmentation

Problem and Motivation

* We follow and extend terminologies in Yarn.
ROSE JobMaster is a specific application master.

Resource
Manager

(RM)

Cluster
Aggregator

(CA)

Node Manager(NM)

C
on

tr
ol

le
r

ROSE JobMaster
(AM)

Node Manager(NM)

C
on

tr
ol

le
r

Node Manager(NM)

C
on

tr
ol

le
r

No available resources

Enqueued

SOSP 2017
Oct 28-31

Shanghai, China

ROSE JobMaster

ROSE JobMaster

Application Master(AM)
Task

Scorer

Overselling
Controller

Tasks Info

Maintainer
Candidate
Machines

Runtime

Cluster Aggregator(CA)

Load
Aggregator

Score
Aggregator

Candidate
Selector

<N1,CPU,20>
<N1,MEM,40>

meta
<A1,N1,0.85>
<A2,N6,0.76>

meta

Maintainer

Candidate
Machines

Scores
<N1, 0.85>

……

Time-out
Detector

Node Manager(NM)
System
Monitor

Threshold
Controller

Regular tasks Queue
management

W
aiting

Incremental
transmission

ROSE JobMaster

