
SysOptic: a Fine-Grained Monitoring System for Virtual Machines Based on PMU

Pin Liu12, Renyu Yang32∗, Jie Sun12, Xudong Liu12
1SKLSDE Lab, Beihang University, China

2Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), China
3School of Computing, University of Leeds, UK

{liupin, sunjie, liuxd}@act.buaa.edu.cn ; r.yang1@leeds.ac.uk

Abstract—Modern cloud datacenters indicate the frequent ex-
istence of complex failure manifestation. Failures have become
the norm, and not the exception. This is a key challenge
since assumptions that underpin designing reliable systems are
monitoring systems status and detecting anomaly at runtime.
Performance Monitoring Unit on CPU (PMU) can obtain
fine-grained monitoring data by adopting interrupt sampling
method based on hardware events. However, profilers in virtual
machines fail to receive PMU relevant information directly
due to the limited capacity of PMU virtualization. In this
paper, we present a fine-grained monitoring system SysOptic
based on PMU virtualization. First, we propose a method to
expose PMU information PMU and ensure the visibility of
such information at virtual machine level. Second, to maximize
the PMU reusability, SysOptic supports the PMU sharing and
simultaneous monitoring among multiple virtual machines.
Furthermore, we also describe how to synchronize interrupts
on physical machines to virtual machines by using injecting
interrupts. Experimental results show that with the aid of
SysOptic, profiler tools in virtual machines manage to perceive
the existence of PMU and collect the monitoring data. The
additional overhead incurred by SysOptic is at most 9.8%.

Index Terms—cloud computing, virtualizaiton, performance
monitoring, PMU

1. Introduction

Cloud data centers are multi-tenant environments where
diverse workloads live together. Normally encapsulated in
Virtual Machines (VMs) or Docker Containers, such work-
loads are co-located into the same servers sharing the under-
lying physical infrastructure to maximize the data center uti-
lization. Accordingly, machine loads significantly increase
with the growth of workload heterogeneity and data amount.
Load fluctuation varies among different workloads and time
periods and more resources are required to underpin the
increasing workload demands. However, interference among
co-located workloads may lead to performance degradation
[1]. In resource-restricted cluster environment, workloads

. This work is supported by the National Key Research and Development
Program (2016YFB1000103) and NSFC(61421003). Renyu Yang is the
corresponding author

need to share and compete for resources with other co-
located neighbors. Unsatisfied or insufficient resource allo-
cation inevitably leads to severe performance problems [2]
[3] [4]. In such a dynamic and error-prone environment, it
is significantly important for fine-grained status monitoring
and anomaly detection at runtime to underpin designing
reliable systems [5].

Resource auto-scaling is one of solutions to mitigate the
problem due to resource shortage [6] [7]. If load spike is
detected in the system, additional resources will be binded
to the specific workloads. However, purely adopting mecha-
nism does not function efficiently when faults or/and heavily
resource-consuming loops (buggy codes or other software
deficiencies) manifest in the workloads. Alternatively, it is
necessary to quickly detect and locate system anomaly and
faults by using fine-grained monitoring, thereby reducing
the negative impact of abnormal workload behavior on
performance [8].

For this purpose, performance analysis and profiling
tools can collect and extract fine-grained metrics from
Performance Monitoring Unit on CPU (PMU) at physical
machine level [9]. PMU is a set of registers for performance
monitoring on CPU. It uses PMC (Performance Monitoring
Counter on PMU) to count the number of hardware events
generated during workloads’ execution, such as the number
of CPU cycles, instructions and cache misses, etc. Never-
theless, in the virtualized environment, QEMU-KVM can
only acquire coarse-grained information such as CPU and
memory, which is far insufficient for programs to exploit for
fault detection [10] [11]. Literally, it is impossible to obtain
the PMU information without PMU virtualization provided
by VMM layer. Therefore, how to effectively bridge the gap
between physical PMU and profiling within virtual machines
is the key research challenge.

In this paper , we design a novel monitoring mechanism
underneath virtual machines with the same principle of PMU
on physical machines. First, we propose an approach to
expose PMU information to virtual machines. This method
allows virtual machines to obtain PMU information through
simulation instruction to make virtual machines to perceive
the existence of PMU. Instead of directly exposing PMU
information, our approach can also adjust the monitoring
granularity by selectively submitting information of the
PMC bits number to virtual machines. Second, we present

a PMU reuse mechanism to assign a virtual PMC (VPMC)
to the performance event, attach a free PMC to VPMC
before monitoring, and recall the PMC after the procedure
of monitoring finishes. Furthermore, we describe an ap-
proach to injecting PMC interruptions into virtual machines,
which ensure the awareness of PMU interruption in virtual
machines and guarantee the sample events can be timely
processed. We integrated those techniques into a monitor-
ing system which can be easily applied into realistic IaaS
systems. Experimental results show that the virtual machine
can obtain the information monitored by PMU through our
system SysOptic. Furthermore, performance analysis tools
can analysis this data to obtain functional level performance
data of the load. Such as the CPU usage and cache miss of
a function. In particular, the contributions are outlined as
follows:

• We enable a visible pathway of PMU information to
virtual machines . Virtual machine can perceive and
leverage such information for fault detections.

• We propose a PMU reuse mechanism to make sure
virtual machines can monitor more events with the
limited number of PMC.

• We implement SysOptic to provide a full-link mon-
itoring system for virtualized environments.

Organization. In Section 2, we discuss related work and
the background. We present the system overview and key
techniques in Section 3 and Section 4 respectively. Section
5 depicts the experimental results before we conclude this
paper and discuss the future work in Section 6.

2. Background and Related Work

The combination of QEMU and KVM is the most
common solution of Linux virtualization [12]. They provide
secure and controllable resources in the form of virtual
machines via virtualization of CPU, memory and network
resources. This results in the equivalent performance of vir-
tual machines and physical machines as long as virtualized
resources can be isolated, monitored and controlled [13].
However, only dimensions such as CPU, memory, disk, and
network usage are monitored inside virtual machines [13]. In
comparison, at physical machine level more information can
be collected and monitored. Numerous performance analysis
and profiler tools can analyze fine-grained monitoring data
through PMU hardware at process level or function level.
With the prevalence of PMU technique among mainstream
processor manufacturers [14], function-level performance
monitoring has been changed from clock-interrupt-based
cyclic sampling to PMU-events based sampling [15]. Ob-
viously current defective PMU virtualization impede virtual
machines from fine-grained profiler and anomaly detection.

Regarding virtual machine performance monitoring, Sa
Wang et al. proposed Vmon to analyze the relationship be-
tween the LLC miss rates and VM performance degradation
in order to predict the interference amone different resource-
intensive VMs [16]. Mohamad Gebai et al.used kernel trac-
ing to facilitate Cloud administrators to efficiently monitor

Figure 1. System architecture

VM usage [17]. However, these approaches can monitor
coarse-grained information which is far from satisfied. In
terms of PMU virtualization, Du J et al. proposed a virtu-
alization method where PMU direct exposes information to
virtual machine [18]. However, not all unscreened interrup-
tions are caused by overflow of PMU counters, giving rise
to the incomplete collection of event and sample amount.
Therefore, an effective and complete event sampling and
collection mechanism is urgently desired at virtualized level.

3. System Overview

We adopt performance event sampling to realize the
fine-grained monitoring. The basic principle of performance
profiling is to program PMU relevant registers. Literally,
PMU is a set of registers such as performance monitor-
ing event selector (PMS), performance monitoring counters
(PMC), status registers, and control registers. Fig. 1 describe
the architecture of SysOptic. Both SysOptic and VMM are
located in the midst of virtual machine layers and physical
resources. VMM is mainly responsible for management of
virtualized resources such as CPU, memory and disk whilst
our SysOptic will primarily focus on the PMU virtualiza-
tion. The two-fold functionality encompasses: 1) simulating
instructions from virtual machines to operate PMU and de-
livering them to PMU; 2) feeding the information monitored
by PMU into the performance profiler in virtual machines.

The event sampling based workflow consists of four
important submodules – PMU exposure, VPMU (virtual
PMU) initialization, PMU virtualization and interrupt han-
dling. The main steps are:

a) The SysOptic queries the PMU information. Module
for exposing PMU is responsible for obtaining PMU hard-
ware information and providing part of it to module for
VMPU initialization. For example, adjust the bit width of
PMC before providing it.

b) SysOptic initializes VPMU related data structures.
In combination with the information provided by the mod-
ule for exposing PMU, module for VPMU initialization is
responsible for the operation of VMPU related data struc-
tures when VMM operates VCPU information. For example,

Figure 2. Simulate CPUID.0AH instruction execution.

when VMM creates VCPU structure, it is responsible for
initializing VPMU information that is not related to CPUID.

c) SysOptic assigns VPMU for monitoring events. After
selecting the monitoring event, the VCPU binds a VPMC
for the monitoring event. Meanwhile, module for PMU
virtualization is responsible for assigning a free PMC to
the VPMC.

d) Performance events are being monitored. PMC mon-
itors performance events in a counting manner and records
relevant data.

e) PMC overflows after the monitor event number
reaches the set value. If the PMU chooses to interrupt, then
proceed to step 6. If the PMC chooses not to interrupt, the
module for VPMU virtualization is notified to reconfigure
PMC and returns to step 4.

f) SysOptic injects the interrupt into the virtual machine.
Module for interrupt handling is responsible for injecting
the interrupt into the VCPU corresponding to the VPMC.
Then module for PMU virtualization is called back to release
PMC resources. The free PMC waits for the next allocation.

g) The performance analysis tool samples. After receiv-
ing the interrupt information, VCPU is responsible for noti-
fying the interrupt handler in the performance analysis tool
to sample at the interrupt site and analyze the performance
results.

Particularly, step d) and g) are the most critical steps be-
cause they are mainly charge of fetching important process
data during a monitoring period. SysOptic, as the middle
layer, can realize the fine-grained monitoring over virtual
machines.

4. Key Techniques

The above briefly introduces the basic workflow of
SysOptic and explains how virtual machines monitoring
with different functional modules. In this section, we will
present the detailed design and implementation.

4.1. PMU Information Exposure

This module is used for being called by module for PMU
virtualization. Its actual execution process is as follows. It
simulates CPUID instructions to access PMU information

on physical machines and returns the information to vir-
tual machines. Fig. 2 presents the process of simulation
instructions. First of all, VM-Exit occurs after the virtual
machine executes CPUID.0AH instruction. Then the module
returns the client mode after writing the appropriate PMU
information on VMCS.

Exposing part of PMU information to virtual machines
selectively mainly refers to adjusting the bit width of PMC
according to actual monitoring ability and providing the
adjusted bit width to virtual machines. The smaller the bit
width value is, the more data are sampled at the same time,
and the more accurate the analysis results are. However, high
frequency sampling can seriously affect the performance of
virtual machines. When the value of bit width is larger, the
sample data is too small to analyze the effective performance
results. Experiments show that: when the value of bit width
is greater than 16 and less than 20, it can not only guarantee
the accurate performance analysis results, but also guarantee
the low performance consumption.

4.2. VPMU Initialization

This module is used for initializing VPMU data struc-
ture. Fig. 3 presents the VPMU data structure. Its actual exe-
cution process is as follows. It manipulates VPMU structure
information when VMM manipulates VCPU. The entire pro-
cess contains four phases: First, when VMM creates VCPU
structure, this module is responsible for initializing VPMU
information that is not related to CPUID. Second, when
VMM resets VCPU structure, this module is responsible
for initializing VPMU information that is related to CPUID.
Third, when VMM updates VCPU structure, this module is
responsible for updating VPMU information that is related
to CPUID. Fourth, when VMM deletes VCPU structure, this
module is responsible for deleting VPMU.

The most important information on the VPMU structure
is the information related to CPUID, which includes per-
formance monitoring version, events that can be monitored,
number of two types of PMC, bit width and so on. One type
of PMC is the PMC for programmable performance moni-
toring events. It’s numbered from bit 0 to 31, and it has a
maximum of 32. The other is the PMC for monitoring fixed
hardware events, starting at bit 32 and it has a maximum of
3. This paper mainly uses the first type of PMC which are
freely allocated to monitored events.

4.3. PMU Virtualization

This module is used for the reuse of PMU. Since there
are only seven or 11 PMC at each physical logical core,
this module is responsible for reuse of PMC. As Fig. 4
shows, its process can be divided into three phases: 1-3
is the PMU non-overflow phase, 4 is performance event
monitoring phase and 5-8 is the PMU overflow phase.

Fig. 5 illustrates PMU non-overflow phase. Each time
the virtual machine monitors a performance event, The
VCPU threads are scheduled to run. At the same time, the
virtual machine allocates a VPMC for monitoring events

Figure 3. VPMU related data.

Figure 4. The process of using PMC in monitoring.

to count. When VPMC starts to count, module for PMU
virtualization allocates a free PMC to VPMC and writes
VPMC values to PMC. Then the PMC begins to monitor
the corresponding monitoring events.

Fig. 6 illustrates PMU overflow phase. When the PMU
generates unscreened interrupts due to overflow, module for
interrupt handling injects interrupts into the virtual machine,
which is responsible for notifying the interrupt processing
function to complete sampling. At the same time, module
for PMU virtualization receives the callback information
returned by module for interrupt handling , and then notifies
the VPMC stop counting corresponding to this PMC. After
PMC values are written to VPMC, the PMU resource is
released and waits for the next allocation.

4.4. Interrupt Handling

This module is used to call back the module for PMU
virtualization and interrupt injection. When PMC overflows,
it can choose whether to interrupt by setting PMS. There-
fore, when the PMU overflows, the process of this mod-
ule can be divided into two situations: interrupt and non-
interrupt. When PMC non-interrupt, this module reversely
calls back the module for PMU virtualization to reassign
free PMC to VPMC. When PMC interrupts, this module
injects interrupt into the VCPU before the VM-Entry occurs
to the virtual machine. Then the VCPU interrupts the VPMC
corresponding to the PMC. After the VM-Entry occurs,
the VCPU notifies the interrupt handler to sample at the
interrupt site and analyze the performance results.

Figure 5. Module for PMU Virtualization (with PMU overflow).

Figure 6. PMU virtualization (without PMU overflow).

5. Evaluation

5.1. Setting-up

In this section, in order to verify the effectiveness of
our method, we mainly design the experiments from two
perspectives, i.e., the function and performance of methods.

The former are experiments designed according to three
critical steps of PMU monitoring workflow under virtual
machines, which involves the evaluation concerning the
number of performance events, the number of sampling
performance events, and the analysis of fine-grained per-
formance under virtual machine. The latter is responsible
for the evaluation of the performance of virtual machines
with and without SysOptic respectively.

Objectives and Methodology. The purposes encompass
a) Whether PMU can implement fine-grained monitoring
of the performance events under virtual machines by using
our system SysOptic; b) How much the performance con-
sumption of virtual machines does SysOptic will bring. To
demonstrate the superiority of system, we set the baseline
as physical machine monitored by PMU. We implement
our experiments in the following environment to verify
the function and performance of the SysOptic system. We
set both the physical and virtual machine environments as
shown in Table1 and 2.

Metrics. According to the above experimental purposes,
we set corresponding metrics to evaluate the experimental
results. For the first purpose, we use the events count, sam-
ples count, percent of CPU usage/cache miss rate to evaluate
the function of our system. These three metrics correspond
to the data collected in three key steps of workflow of
virtual machines for PMU-based fine-grained monitoring,

TABLE 1. PHYSICAL MACHINE CONFIGURATION

Processor Ram OS version
Intel(R) Core(TM) i5 8G Ubuntu16.04.3

Kernel version QEMU version Oprofile version
4.10.0-28-generic 2.5.0 1.2.0

TABLE 2. VIRTUAL MACHINE CONFIGURATION

VM name OS version Kernel version CPUcores RAM
VM1 Ubuntu16.04.3 4.10.0-28-generic 1 1GB
VM2 Ubuntu14.04.1 3.13.0-32-generic 2 1GB
VM3 debian9 4.9.0-4-amd64 1 2GB

which are the statistics of performance events, sampling the
performance events, and analyzing the result of sampling.
For the second purpose, we set two metrics for evaluation.
First, the performance score is used to evaluate the overall
performance of the virtual machine under non-load. Second,
the load running time is used to evaluate the performance
of the virtual machine under load.

5.2. Comparison of events number

For the first purpose of our experiments, we use events
count to evaluate the function of . This experiment used
the stress-ng threads to run four loads of pi, matriprod,
crc16 and ackermann respectively in physical machines and
virtual machines. On physical machines, we use the tasket
command to bind the stress-ng thread to CPU cores. On
virtual machines, firstly we use the tasket command to
bind the stress ng thread to VCPU and then use cgroup
command to bind the VCPU to the corresponding physical
logical core. Finally, we verify the accuracy of the number
of performance events obtained in the virtual machine by
comparing with the physical machine. Fig. 7 presents the
statistical results of performance events number. The specific
conditions are set as follows.

Native:1:t1 and native:1:t2 represent that two threads
with the same load are running on a physical machine and
are attached to the same logical core. vm1:1:t1 and vm1:1:t2
represent that two threads are simultaneously running on a
single core virtual machine, and the VCPU is attached to
a logical core. vm2:1:t1 and vm2:1:t2 represent that dual-
core VMs simultaneously run two threads of the same load
each of which is attached to one VCPU. And two VCPUs
are attached to one logical core. native:2:t1 and native:2:t2
represent two threads under the same load are running on
a physical machine and are attached to two logical cores.
vm1:1:t represents that only one thread runs on a single-
core virtual machine and VCPU is attached to a logical core.
vm2:2:t1 and vm2:2:t2 represent that two threads under the
same load are running on a virtual machine with dual-core
and each of them is attached to a VCPU which is attached
to a logical core respectively.

According to the results, running a load thread yields
twice as many events as running two threads on the premise

Figure 7. Comparison results of statistics monitoring performance events
under different loads.

Figure 8. Comparison of the number of samples under different loads.

of a logical core. Furthermore, the performance events num-
ber in virtual environment is rather close to that of physical
environment.

5.3. Comparison of the number of samples

On the basis of the previous experiment, for the first pur-
pose of our experiments, we use samples count to evaluate
the function of . This experiment runs under three different
loads simultaneously on the physical machine and virtual
machine. Then, we employ the performance analysis tool
for sampling at different frequencies. Finally, we verify the
accuracy of the number of samples obtained in the virtual
machine by comparing with the physical machine.

Fig. 8 plots the number of event samples of different
frequencies under three types of loads. In the figure, the
red, green, and blue curves represent three types of loads
respectively in which X axis represents the sampling fre-
quency and Y axis represents the number of event sam-
ples. Overall, the number of event samples decreases as
the sampling frequency increases. Moreover, the number of
events samples under the physical machine is almost the
same as the virtual machine under different conditions in
this experiments. Consequently, the result can demonstrate
the effectiveness of module for exposing PMU and module
for interrupt handling.

5.4. Analyzing the performance monitoring data of
virtual machine at function level

On the basis of the previous two experiments, for the
first purpose of our experiments, we use percent of CPU
usage/cache miss rate to evaluate the function of . In this
experiment, the computational intensive load and memory
intensive load were tested.

Figure 9. Comparison of performance analysis results for computational
intensive workloads.

Figure 10. Diagram of memory-intensive load cache misses.

1. Concerning computational intensive loads, we con-
struct two functions computea () and computeb () for float-
ing point operations in an infinite loop on both the physical
and virtual machines, and then we use perf report command
to obtain the analysis results. Here, we will verify the
accuracy of performance data at function level by comparing
the percent of CPU usage of physical machine and virtual
machine.

Fig. 9 presents the analysis results for both physical
and virtual machines. The specific settings are as follows.
Native:1:1 represents that a performance analysis process
run on a single-core physical machine. vm:5:1 represents
that five single-core virtual machines, each of which runs a
performance analysis process simultaneously. vm1:1:5 rep-
resents that five performance analysis processes are running
simultaneously on a single-core virtual machine. vm1:1:10
represents that a dual-core virtual machine run 10 perfor-
mance analysis processes simultaneously.

We can observe that as the number of processes for
performance analysis on a virtual machine increases, the
CPU utilization decreases slightly since the process running
affects the performance of the virtual machine. Moreover,
the data captured by the virtual machine is almost identical
to that of the physical machine. The experimental results
also demonstrate that multiple virtual machines can run per-
formance analysis processes for monitoring simultaneously.

2. Regarding memory intensive loads, we use the stress-
ng command to access memory space of different sizes on
both physical and virtual machines. Then we use perf report
command to obtain the analysis results and average them.
Here, we verify the accuracy of performance data at function
level by comparing the cache miss rate of physical machine
and virtual machine.

Figure 11. Results of overall performance test of virtual machine based on
Unixbench.

Figure 12. Results of program run time at different sampling periods.

Fig. 10 presents the analysis results for both physical and
virtual machines. X-axis represents the size of the working
set and Y-axis represents the cache miss. Results show that
the cache miss rate of virtual machine and physical machine
are basically same under the same working set, which can
demonstrate that can be used for memory intensive loads.

5.5. Overall performance analysis of virtual envi-
ronments

For the second purpose of our experiment, we use the
overall performance score of the virtual machine to evaluate
the impact of on virtual machine performance. This exper-
iment runs 13 processes of UnixBench in virtual machines
respectively and obtains each test item. Here, we compare
each test item to the baseline of the ”George” workstation
to get a score for each item. While running without running
, the performance consumption of is verified by comparing
the value of each test item in virtual machines.

Fig. 11 presents the overall performance analysis re-
sults of virtual machines. The 13 processes are Dhrys-
tone2 respectively using register variables, Double-Precison
Whetstone, Excel Throughput, File Copy 1024 bufsize 2000
maxblocks, File Copy 256 bufsize 500 maxblocks, File Copy
4096 bufsize 8000 maxblocks, Pipe Throughpu, Pipe-based
Context Switching, Process Creation, Shell Scripts(1 con-
current), Shell Scripts(8 concurrent), System Call Overhead
and Score.

The experimental results show that the overall perfor-
mance of virtual machines decreases slightly after fine-
grained monitoring with . Therefore, it also verifies that
runtime has a low performance consumption.

5.6. Performance analysis for computational inten-
sive loads

On the basis of the previous performance experiment,
for the second purpose of our experiment, we use the
time it takes for the load to run to evaluate the impact
of on virtual machine performance. This experiment runs
the same load as the blue curve in section 5.3 under the
physical machine and the virtual machine. The number of
interruptions increases as the sampling period increases.
we verify the impact of interrupt processing on virtual
machines performance by comparing the running time of the
load under different sampling periods. Fig. 12 presents the
running time of the load under different sampling periods.

Overall, the running time increases with the increase of
the sampling period. Because the sampling operation has
a slight impact on the performance of the virtual machine.
Moreover, the running time of virtual machine is 1.65%
larger than that of physical machine. Therefore, it also
verifies that has low performance consumption.

6. Conclusions

In this paper, we reinforce PMU virtualization and en-
able the pathway of data fetching, collecting and extracting
from physical machine to virtual machines. To improve the
efficiency, we use the PMU reuse mechanism to ensure the
simultaneous system monitoring among co-resident virtual
machines. We integrated those techniques into SysOptic
and experimental results show that the additional overhead
brought by SysOptic is at most 9.8% but monitoring func-
tions can realize fine-grained profiler beyond pure CPU,
memory and disk usage. In our future work, we will continue
to optimize the PMU virtualization and further reduce the
performance overheads. We are also integrating the proposed
fine-grained system monitoring mechanism into our resource
management platforms [19] [20] to facilitate the fault detec-
tion, system failover and resource threshold control.

References

[1] R. Yang and J. Xu, “Computing at massive scale: Scalability and
dependability challenges,” in Service-Oriented System Engineering
(SOSE), 2016 IEEE Symposium on. IEEE, 2016, pp. 386–397.

[2] M. Vanitha and P. Marikkannu, “Effective resource utilization in
cloud environment through a dynamic well-organized load balancing
algorithm for virtual machines,” Computers & Electrical Engi-
neering, vol. 57, pp. 199–208, 2017.

[3] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algo-
rithms for virtual machines placement in cloud computing,” Concur-
rency and Computation: Practice and Experience, vol. 29, no. 12, p.
e4123, 2017.

[4] R. Yang, I. S. Moreno, J. Xu, and T. Wo, “An analysis of performance
interference effects on energy-efficiency of virtualized cloud environ-
ments,” in Cloud Computing Technology and Science (CloudCom),
2013 IEEE 5th International Conference on, vol. 1. IEEE, 2013,
pp. 112–119.

[5] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,”
IEEE Cloud Computing, vol. 5, no. 5, pp. 12–21, 2018.

[6] N. Rameshan, Y. Liu, L. Navarro, and V. Vlassov, “Elastic scaling
in the cloud: A multi-tenant perspective,” in 2016 IEEE 36th Inter-
national Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 2016, pp. 25–30.

[7] R. G. Martinez, A. Lopes, and L. Rodrigues, “Automated generation
of policies to support elastic scaling in cloud environments,” in
Proceedings of the Symposium on Applied Computing. ACM, 2017,
pp. 450–455.

[8] S. S. Alshamrani, D. R. Kowalski, and L. A. Gasieniec, “Ef-
ficient discovery of malicious symptoms in clouds via monitor-
ing virtual machines,” in Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
IEEE, 2015, pp. 1703–1710.

[9] X. Wang and R. Karri, “Reusing hardware performance counters
to detect and identify kernel control-flow modifying rootkits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 3, pp. 485–498, 2016.

[10] T. Kim, S. Choi, J. No, and S.-S. Park, “hypercache: A hypervisor-
level virtualized i/o cache on kvm/qemu,” in 2018 Tenth International
Conference on Ubiquitous and Future Networks (ICUFN). IEEE,
2018, pp. 846–850.

[11] J.-S. Ma, H.-Y. Kim, and W. Choi, “Kvm-qemu virtualization with
arm64bit server system,” in International Conference on Cloud Com-
puting. Springer, 2015, pp. 334–343.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
symposium, vol. 1. Dttawa, Dntorio, Canada, 2007, pp. 225–230.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in ACM SIGOPS operating systems review, vol. 37,
no. 5. ACM, 2003, pp. 164–177.

[14] G. M. Amdahl, G. A. Blaauw, and F. Brooks, “Architecture of the
ibm system/360,” IBM Journal of Research and Development, vol. 8,
no. 2, pp. 87–101, 1964.

[15] E. W. L. Leng, M. Zwolinski, and B. Halak, “Hardware performance
counters for system reliability monitoring,” in Verification and Secu-
rity Workshop (IVSW), 2017 IEEE 2nd International. IEEE, 2017,
pp. 76–81.

[16] S. Wang, W. Zhang, T. Wang, C. Ye, and T. Huang, “Vmon: Monitor-
ing and quantifying virtual machine interference via hardware perfor-
mance counter,” in Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, vol. 2. IEEE, 2015, pp.
399–408.

[17] M. Gebai and M. R. Dagenais, “Virtual machines cpu monitoring
with kernel tracing,” in 2014 IEEE 27th Canadian Conference on
Electrical and Computer Engineering (CCECE). IEEE, 2014, pp.
1–6.

[18] J. Du, N. Sehrawat, and W. Zwaenepoel, “Performance profiling of
virtual machines,” Acm Sigplan Notices, vol. 46, no. 7, pp. 3–14,
2011.

[19] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu, Z. Zhang,
and C. Li, “Reliable computing service in massive-scale systems
through rapid low-cost failover,” IEEE Transactions on Services
Computing, vol. 10, no. 6, pp. 969–983, 2017.

[20] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li,
“Rose: Cluster resource scheduling via speculative over-subscription,”
2018.

