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Abstract—Resource scheduling in a computing system ad-
dresses the problem of packing tasks with multi-dimensional
resource requirements and non-functional constraints. The
exhibited heterogeneity of workload and server characteristics
in Cloud-scale or Internet-scale systems is adding further
complexity and new challenges to the problem. Compared with
existing solutions based on ad-hoc heuristics, Machine Learn-
ing (ML) has the potential to improve further the efficiency of
resource management in large-scale systems. In this paper we
will describe and discuss how ML could be used to understand
automatically both workloads and environments, and to help to
cope with scheduling-related challenges such as consolidating
co-located workloads, handling resource requests, guarantee-
ing application’s QoSs, and mitigating tailed stragglers. We
will introduce a generalized ML-based solution to large-scale
resource scheduling and demonstrate its effectiveness through
a case study that deals with performance-centric node clas-
sification and straggler mitigation. We believe that an ML-
based method will help to achieve architectural optimization
and efficiency improvement.

1. Introduction

In the past decade, Cloud computing has become an
indispensable part of information technology, satisfying in-
creasing demands for Internet services such as web search,
social networking, and machine learning applications. Typ-
ically, a large-scale Cloud data center consists of hundreds
of thousands of heterogeneous machines to provision reli-
able computing and storage services to customers. Through
virtualization and container technology, multiple tenants are
enabled to share data center resources and services by co-
locating latency-sensitive applications or services encapsu-
lated in virtual machines or containers; at the same time, big
data jobs such as batch processing or streaming can also be
submitted into shared production cluster environments. The
exhibited heterogeneity of workload characteristics such as
task scale, execution time and resource usage patterns [1][2]
have raised new cluster scheduling challenges in terms of
performance interference, resource utilization, power con-
sumption, system resilience etc.

Resource management plays a fundamentally important
role in assigning many kinds of resources such as CPU,
RAM, network, disk or device I/O to applications within
cluster systems or ubiquitous computer systems. Modern
resource management systems ( [3] [4] [5] [6] [7]) are

designed to effectively allocate jobs onto machines and
manage their respective resource requirements. To maximize
resource utilization whilst guaranteeing application’s QoS,
it is greatly desirable for the scheduler to take additional
control of resource allocations, task placements, and fault-
tolerant executions, etc. The pursued objectives vary ac-
cording to different scenarios – balancing system loads,
maximizing provider revenues, minimizing response time,
saving power consumption, etc. Each of these problems can
be solved by designing heuristics. Plausible heuristics are
initialized, followed by fine-grained tuning to reach an ac-
ceptable performance level; wherever we use the heuristics,
we can leverage machine learning techniques to improve
the accuracy and effectiveness of sophisticated decision
making. Compared with ad-hoc heuristics, machine learning
approaches can benefit the system with intelligent resource
allocation, choosing the most suitable action based on con-
textual states and environmental factors. In effect, Machine
Learning (ML) is on the cusp of a revolution, with core
AI algorithms and frameworks[8][9][10] proposed at an
unprecedented speed. For example, Neural Networks (NN)
have been adopted into data center management and have
reduced the overall cooling bill of Google data centers by
40% [11]. Deep Learning (DL) is being explored at the edge
of the network to reduce the amount of data propagated back
to data centers.

In this paper, we discuss how ML can facilitate resource
management in massive-scale distributed systems. We firstly
present a deep-dive overview of current research problems
in the resource scheduling domain and the major challenges
that have not yet been solved. Such problems are sub-
categorized in terms of scheduling effectiveness and efficien-
cy. We then present a generalized ML-based solution and
architecture through comprehensive problem formalization,
data driven profiling, and supervised learning modeling.
Finally, we introduce our preliminary exploration towards
leveraging ML in specific resource scheduling problems –
performance-centric node classification and the subsequent
straggler mitigation – and use it as a case study to demon-
strate the effectiveness of intelligent scheduling.

This paper is structured as follows: general resource
scheduling problems at scale are discussed in Section 2,
while Section 3 describes how and where machine learning
can benefit resource scheduling. An overview of solutions
is given in Section 4 followed by a detailed discussion of
useful ML models in Section 5. We depict the case study
in Section 6 and then conclude with future work.
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2. Resource Scheduling at Scale
Massive-scale distributed computing for data analysis

workloads has been widely discussed in recent years and is
becoming increasingly common. High operational and main-
tenance costs within heterogeneous workload management
and resource allocation lead to a philosophy of sharing data
center cluster resources among diverse computation frame-
works ranging from batch jobs to long-running services.
Scheduling such diverse workloads is inherently complex
and difficult, especially as computing cluster size grows
rapidly. This section firstly overviews the most fundamental
problems in resource management and scheduling.

2.1. The Placement Problem

Job Scheduling and Machine Selection. The primary
role of computing clusters at Internet scale is to manage
the life-cycles of tasks and machines. Task scheduling or
placement refers to the assignment of tasks to machines.
Inversely, the scheduler finds a set of machines that meet
the task’s constraints whilst having sufficient resources. In
this procedure of machine selection, the scheduler has to
determine the most suitable machines driven by scoring or
ranking, taking into account factors such as machine or
application behaviors [12], failure manifestations [13] [14],
energy efficiency [15] [16] [17], etc.

Workload Co-location. Cloud data centers are multi-
tenant environments where diverse workloads live together.
Normally encapsulated into Virtual Machines (VMs) or
Docker Containers, such workloads are co-located into the
same servers sharing the underlying physical infrastructure
to maximize the data center utilization. However, interfer-
ence among co-located workloads may lead to performance
degradation. In this context, several problems are raised
in terms of co-location algorithm, preemption mechanism
and queue management – which tasks or VMs should be
co-located on the same machine? Which tasks should be
preempted under prioritized tasks, limited resource capa-
bilities, and process switch cost etc. Which tasks should
be considered first if a unit of resource becomes avail-
able? Additionally, applications’ tolerance to interference
should be elaborately profiled and identified. For example,
deadline constrained applications are not severely affected
by transient resource shortages, while latency-sensitive or
interactive applications will be tremendously influenced.

Service Composition. The service-oriented architecture
packages functionality as a suite of inter-operable routines
that can be used within multiple, separate systems from
several business domains. These loosely-decoupled func-
tions or APIs can be accessed via pre-defined interfaces
over the network, which enables re-use and composition to
form a chain of applications. At present, such functional
services can be leveraged as fundamental appliances and
composed in a mash-up style to control development cost
and maintenance pressure. Service composition or orches-
tration is a key concept within distributed systems, enabling
the alignment of deployed applications with users’ business
interests. In this context, according to the service topology,

the composer has to choose and bind a suitable service
instance for each component from the candidate set, and
orchestrate all components to provide the required features,
meet non-functional QoS constraints such as overall cost,
latency, reliability, and response time etc. [18] [19].

2.2. Scheduling Efficiency and Optimization

Resource Sharing. Multi-level scheduling architec-
tures are adopted by modern cluster management systems
[3] [4] [5] [20] [7] [6]. They underpin diverse workload-
s through resource negotiation with a central or decen-
tralized resource manager. Meanwhile, DRF[21], capacity
scheduling[22] or fairness scheduling[23] are used to fulfill
an efficient quota-based resource sharing among multiple
jobs. Their main objective is the enforcement of scheduling
invariants for heterogeneous applications to prevent exces-
sive resource occupation.

Resource Utilization. A long-standing challenge in
cluster scheduling is the ability to effectively improve the
utilization of heterogeneous resources. Users are typically
conservative and over-provision resources for their burst-
ing requirements to avoid SLA violation. Over-provisioning
resources for performance sensitive applications can reduce
the risk of such violation[24]. However, this typically results
in low machine utilization. Also, almost all production jobs
are generated by higher-level abstractions(e.g., Hive[25] or
Pig[26] etc.). Therefore, such frameworks typically depend
on coarse-grained resource models to uniformly guarantee
jobs’ runtime execution, ignoring the varying input da-
ta size and resource requirements. In production systems,
reservation based resource request and the over-estimation
phenomenon is very common[3][4][5]. In fact, resource
consumption depends on many factors such as dataset size,
parallel degree, operators etc. Accordingly, unless a precise
resource estimation model can be produced, no one would
like to take risks in violating QoS and even failing tasks. It
is extremely challenging to estimate resource requirements
accurately, rather than simple resource reservation. To mit-
igate this, overbooking (also known as overselling or over-
subscription) [27][28][29][30] is often used as an alternative
way to compensate the lowered utilization produced by
overestimation.

Resource Contention and QoS Guarantee. Resource
over-allocation is widely used for latency-sensitive appli-
cations to guarantee QoS. However, there is a trade-off
balance between improved cluster utilization and increased
resource contention level among co-located applications.
Due to the inherent sharing and resultant contentions, the
noisy neighbor phenomenon becomes a norm. One of the
challenges is precise QoS prediction and management for
latency-sensitive applications, and this procedure needs to
precisely capture, depict and predict QoS interference and
degradation considering multi-dimensional resource types
such as CPU, memory, storage, IO, etc. Algorithms should
be carefully designed to effectively improve server utiliza-
tion while enforcing QoS requirements, without causing
significant QoS degradation.
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Datacenter Energy Efficiency. The primary goal is to
make efficient use of machines and reduce the energy con-
sumption due to resource contentions. Arguably, this action
represents a significant investment; millions of dollars can
be saved by increasing utilization by only a few percentage
points. Cloud providers still need to address a number of
key challenges, such as striking a balance between optimal
energy efficiency and satisfying increasing demand and the
high performance expectations of users. Understanding the
impact of performance interference on a datacenter’s energy-
efficiency is also very critical if we are to design energy-
efficient mechanisms that maintain performance under real-
istic environmental conditions[15].

Straggler Mitigation. Due to factors such as machine
heterogeneity, resource contention, and data skew, paral-
lelized tasks running on large-scale systems exhibit varied
execution performance and duration [31] [32] [33]. The
straggler problem occurs when a small proportion of these
tasks experience abnormally longer execution compared
with other sibling tasks from the same parallel job, leading
to extended job completion time. A speculative execution
scheme is proposed to deal with the straggler problem [34],
which creates redundant task replicas for identified strag-
glers. However, its performance can be undermined due to
the fact that speculative copies could occupy available re-
sources for new tasks. Therefore, the most critical challenges
for straggler mitigation are to accurately identify the most
needed stragglers for mitigation, and to determine when and
where to launch the replica tasks.

2.3. Challenges
The fundamental problem in resource management and

job scheduling is the match-making between available re-
sources and resource requests from waiting jobs or appli-
cations. With the large number of resources available and
the network condition variability in Cloud datacenters, the
computational challenges will become increasingly intricate:

• The system should fully exploit the diversities and
dynamicity of computing clusters at massive scale to
improve job throughput, reduce the occurrence of task
eviction, and autonomously handle component failures.
Considering workload and server heterogeneity[1][35] is
extremely important when conducting scheduling. Such
heterogeneity leads to different resource capacities and
unique machine characteristics.

• For online decision making, real-time or sometimes
faster-than real time is urgently required. We have to
find out the machines that are determined to be most
suitable for specific purposes such as workload consoli-
dation, speculative task launching, precise resource over-
subscription etc. This can be done through a filtering
process that comprehensively considers estimated load,
correlative workload performance, and queue states. On-
ly through recognizing the accurate targets for placement
can the scheduler mitigate the computation straggler or
promote resource utility and compaction.

• Performance issues are very difficult to cope with in a
white-box or top-down way due to the intricate factors

and the complicated combinations that might influence
the results. Therefore, learning-based approaches are es-
pecially best fit to resource management systems, where
decisions are often repetitive and the generated training
data can be abundantly re-used.

3. When Scheduling Meets Machine Learning
3.1. Why to Use ML

Machine Learning (ML) is a field of computer science
that enables computers to learn and solve problems without
being explicitly programmed. Compared with direct human
approaches, ML approaches not only significantly reduce
human labor and time, especially when solving complex
problems, but also are capable of dealing with multi-
dimension and multi-variety data in dynamic or uncertain
environments. There are several characteristics that can be
greatly harnessed within resource scheduling:

Automatic Feature Learning and Selection. One of
the most important advantages of machine learning is the
capability of learning proper features after random initial-
izing and training on given datasets. At present, machine
learning can be used to discover relevant features in dis-
ordered datasets, substituting manual feature selection by
domain experts or technical staffs. The features that are
demonstrated relative to scheduling can be very powerful
and critical in targeting the optimal scheduling. Even a large
group of parameters can be automatically extracted through
a deep neural architecture. It is infeasible for people to
find such an optimal setting for large number of parameters
manually.

Accurate Prediction and Inference. Due to the fact
that system utility is highly dependent on the prediction
accuracy of resource, during resource mapping and schedul-
ing, accuracy is always the top concern. In ML fields,
accuracy – one of the performance indicators – is used to
evaluate the differences between the trained model and the
real model. Currently, there are a huge number of classical
models such as decision tree, support vector machine and
neural network etc. that have been illustrated to be accurate
enough in specific scenarios [36] [37] [38]. There are many
considerations when choosing an algorithm, based on the
requirements including accuracy, training time, number of
parameters, number of features, and the relationship between
variants.

3.2. Where to Use ML

Some of the aforementioned problems are solved by
designing heuristics: a plausible heuristics for a simplified
model is first initialized, then followed by fine-grained tun-
ning to reach an acceptable performance level. However,
we believe that wherever we use heuristics, we can lever-
age machine learning techniques to improve the accuracy
and effectiveness of decision making. Based on customized
assumptions, performance metrics or system indicators can
be outlined and formulated. Afterwards, heuristic rules can
be proposed based on such indicators. Many examples
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Figure 1. A formalized concept

demonstrate how rule-based scheduling is implemented:
Interference-aware VM placement in the data center can
fulfill workload consolidation with minimized performance
degradation and resource contention; security-aware micro-
service orchestration can be used to minimize the overall
discrepancy between user security requirements and actual
system capacity.

The most problematic thing involved in the heuristic
method is to continuously tune parameters and validate until
a satisfactory model appears. However, when the workload
or environment dynamically changes, the procedure of tun-
ing might be endless before convergence. To this end, data-
driven analytics and machine learning based approaches can
effectively steer the optimization design of a scheduling sys-
tem with more precise indicators and reasoning inferences.
Also, learning the relationship between the finished place-
ment/assignment decision and the resultant effectiveness of
the system states(such as overall throughput, scheduler’s
response time, application’s QoS, and job makespan etc.)
is the key for success in adaptivity and flexibility.

4. Solution Overview

In this section, we discuss the main methodology of
applying ML into the current resource scheduling. We firstly
abstract the procedure of scheduling and then present the
core steps to realize the learning-based scheduling.

4.1. Problem Definition

Scheduling Behavior. As shown in Figure 1, the cluster
system can be seen as an environment where different ap-
plications are running. The runtime status of alive machine
resources and running tasks are monitored and collected
as the observable states. The scheduler acts as the agent
which interacts with the environment through taking actions
according to the build-in policy. In this context, the policy is
referred to the specific scheduling approach and the output
actions such as resource assignment or process operators,
resulting in the dynamic changes of states in the next time
frame. The state can be referred to the current cluster state
represented as a tuple (AR,RQ), where AR stands for
the state matrix including the available resource amount of
all dimensional attributes within each machine while RQ
depicts the pending requests from different workloads. The
dimensions may include CPU, memory, disk load, band-
width or other non-functional attributes such as kernel ver-
sion, clock speed, Ethernet speed etc. that can be specified
by the scheduler [1]. During match-making, the state of

TABLE 1. WORKLOAD CATEGORIES

Virtualized Workload Big Data Workload

Representatives Virtual Machine;
Docker containers

Map-Reduce
Spark

Type online + interactive offline + batch
Sensitivity latency-sensitive deadline-constrained

Running Time long-running
(hours, days)

short-alive
(second, sub-second)

Decision Impact instant and short-term delayed and long-term
Key Concerns temporal QoS end-to-end time
State Space small large

available resources ARi can be instantiated to represent
the available amount on the ith machine and ARn×d is the
aggregated resource state set of all machines. Additionally,
the resource request can be formalized as a 4-tuple including
the basic resource slot (the demanded resource for each
dimension), the number of slot, the preference of resource
location, and other soft or hard constraints. The RQ is
depicted as [ResReq1, . . . , ResReqq] where total q requests
are suspended and waiting for scheduling. The core process
of scheduling is to find a model or algorithm to output the
assignment results. A general output of the policy is the
probability of scheduling RQi to machine Mj .

Workload. With big data processing demands soaring
and service decoupling, there is a general manifestation that
heterogeneous workloads (in terms of execution durations,
resource patterns, etc.) run and operate in the data center
cluster [39]. Herein, we make coarse comparisons shown
in Table 1. Virtualized jobs are encapsulated inside VM
or Docker containers, resulting in a relative guaranteed
resource isolation. By contrast, the big data workload often
exists as a native process which is directly controlled by the
middleware daemon and maintained by cgroups. Due to the
inherent interaction characteristic, VMs or Dockers usually
stay alive and execute for a long period of time (typically
a few hours or a couple of days), while tasks in big data
scenarios are short-lived and only last for seconds and sub-
seconds. Therefore, temporal QoS is critically concerning
in the virtualized environment, since performance is very
susceptible to fluctuations in traffic or allocated resources.
On the contrary, the key indicator of batch workloads is
the holistic guarantee of end-to-end performance. All these
disparities need to be considered when selecting and de-
signing different machine learning techniques into different
scheduling problems.

4.2. Combining Profiling with Supervised Learning
based Scheduling

For scenarios where training data is slowly generated
and the states are numerable, we can leverage supervised
learning such as classification (discrete variables) or regres-
sion (continual variables) with unsupervised techniques such
as clustering, etc. to deal with the scheduling problem. In
Supervised Learning (SL), the core goal is to reconstruct or
forecast the unknown function F : R→ R that assigns out-
put values y to data points x, i.e., y = F (x). The value may
include the tolerance degree of resource under-provision,
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Figure 2. Profiling-based scheduling architecture
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Figure 3. Relationship curves and profiling matrix

sensitivity of interference in co-location circumstances, and
the belonging category in terms of resource submission or
workload scale etc.

Core Idea. Based on the profiling information from
the previously scheduled workloads, the application-specific
preferences such as resource amount or location preferences
of an incoming workload can be accurately generated with-
out a detailed priori analysis that will be repeated again. This
methodology can rapidly indicate the performance levels
according to the similarities with the existing workloads.
Regarding the trained learning model, the incoming appli-
cations usually need to perform a series of operations (e.g.,
some matrix operations) based on input data, in order to in-
fer possible output values. The procedure of value prediction
literally functions as an indicator to imply a performance
score or sensitivity level that further scheduling actions
are directly dependent on. To achieve this, the architecture
is shown in Figure 2. In the first phase, a profiling pool
provisions the experimental testbed to detect and capture the
tracelogs that are necessitated in the performance modeling.
Subsequently, the resource scheduler can perform the match
making based on the implications hinted from the classifier.
During execution, the run-time adjustment can guarantee
the QoS and task re-scheduling or migration may occur if
necessary.

Profiler – Characteristics and the performance pro-
filing. Due to the approximate equivalence between the
resource limitation and the resource contention [40], we
can use the resource throttling subsystems to limit the
allocated amount of resources to the specific application for
the purpose of resource pressure test. Basically, we would

like to find the relationship between the allocated resource
and the resultant performance such as the QPS and MPKI
for the interactive application, or the slowdown/speedup
to the makespan of batch jobs. For instance, we quanti-
tatively characterize the performance impact by different
resource dimensions such as CPU cores, memory, last level
cache(LLC), disk IO, network bandwidth etc. The profiler
executes the profiling for each application for a couple
of minutes, collects the results of different experimental
tests with variable values of each resource dimension, and
then records the performance degradation caused by such
resource bindings. Accordingly, the relationship curves can
be generated and stored. The procedure is simply demon-
strated in Figure 3. For the convenience of modeling and
measurement, we can also extract the performance critical
points to representatively indicate the sensitivity level of
the given resource. Specifically, we extract the value if an
acceptable level of the performance is targeted and put it into
the sensitivity matrix S where Sij represents the bounded
sensitivity of ith application to jth resource dimension. It is
noteworthy that different application may have differentiated
sensitivity. For example, appb is more sensitive to the mem-
ory allocation than appa, thus with a larger mb than ma.
That means that we have to spare more resource for appb to
guarantee its performance level. Equivalently, the lowered
sensitivity implicates a strengthened tolerance level of such
resources when co-allocating with other applications.

In light of the same principle, we can similarly gen-
erate the corresponding matrices to include the impact
of application configuration and machine heterogeneity on
the overall application performance or straggler behaviors.
Therefore, in general, the feature vectors for all applications
will constitute a full profiling matrix Pa considering app-
specific configuration C, machine heterogeneity’s impact on
application’s performance H, and the sensitivity to resource
contention S, etc.

Pa = C+H+ S (1)

Classifier – Supervised Learning for Value Predic-
tion and Labeling. Based on the stored profiling curve
set and full information Pa, similarity-based classification
methods [41] can be utilized to detect affinities among
profiled applications and new ones. In particular, according
to the sensitivity and server configuration, we can accurately
determine how many resources should be at least requested
for the given application and which machines with specific
capacity or capability should be preferably prioritized. These
inferences can achieve a safe but saving workload execution
without performance degradation. Similarly, the status of
machines and the pertaining tasks’ status such as progress
and behaviors (eviction, failures, stragglers, etc.) can also be
captured, recorded, and profiled the same way as we did for
applications. The profiling information can be represented
by Pm where each row represents profiling value of a given
machine.

Additionally, the classifier will also forecast the
performance-related indicators (e.g., the operational scores
based on different machine types and capacities, the sensitiv-
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Figure 4. Basic scheduling workflow

ity score to resource allocations, etc.) for the new, unknown
application. Those supplementary indicators are significantly
important for the scheduler to rank and sort out a series
of questions such as which pending applications should be
first handled, which servers are most suitable with sufficient
resources and demanding attributes, and where to place the
applications taking the sensitivity into account.

Scheduling. Intuitively, the profiling-based classification
or prediction is also towards a heuristic objective. The
forwarding step is highly likely to use a greedy or heuristic
algorithm to rapidly obtain a sub-optimal solution which
combines and leverages the learning results to select a group
of machines or allocate the specific set of resources that best
fit the pre-supposed constraints or preferences. The essence
of scheduling is to make the placement decision – mapping
between the [RQ∗,Pa] and servers [AR,Pm]. The funda-
mental workflow of scheduling is depicted in Figure 4. For
example, a general and exemplified scheduling problem is
to firstly deploy a service instance into a VM or Docker
container, and then find a physical machine with adequate
resources to host those containers. More specifically, after
obtaining a candidate instance h for service j from the
candidate list H , and the instance will be deployed into
an asset i (VM or docker container) which is hosted by
physical machine k. The objective is to maximize a utility
function (UtilFunc) that describe the scheduling direction
– such as minimizing the interference whilst maximizing the
resource utilization.

Sched(k, i, j, h)∗ = argmax
k,i,j,h

UtilFunc (2)

Runtime Re-calibration. After the initial placement, the
monitor in the regular resource pool will monitor application
behavior and the scheduler will continuously improve the
decision quality by leveraging new information and re-
evaluating constraints. The use of task- and data-migration
can also enhance the quality, with QoS strictly guaranteed.
Meanwhile, the new profile information will be back-flowed
to the profiling models. As a result, more accurate models
will be iteratively generated to reclassify the workload,
adjust the scheduling decision, and best fit the dynamic
application change at runtime.

5. Useful Models
By leveraging the learning techniques, additional profil-

ing information can be obtained through a series of cluster-
ing, labeling and classification. The unknown information
within the incoming tasks’ request and the environments’

states can be collaboratively inferred and predicted. Such
implications and interpretations can be extremely informa-
tive, thus should be fully exploited in the scheduling for
improved scheduling quality. In this section, we briefly dis-
cuss the useful models that may be adopted in the proposed
scenarios.

Decision Tree[36] is a general ML model where the
type of input and output data can be categorical, binary
and numeric value. Based on the maximum entropy or
minimized mean square deviation, the decision tree iter-
atively selects a feature as the decision node, partitions
training dataset and finally forms a tree structure model.
Moreover, Gradient boosting decision tree (GBDT) [42] is
a stagewise ensemble model that combines the decision
tree with gradient boosting, and it can be generalized by
optimizing the loss function. Specifically, at each stage m
where 1 ≤ m ≤ M , it is assumed that a better model Fm

can be achieved by adding an estimator h(x) to the last
stage Fm−1. In effect, h(x) is constructed by fitting new
CART decision tree[43] to the residual. y−Fm−1(x). Due to
the reduced negative effect from incremental update, GBDT
and XGBoost[44] can be used instead of the original DT in
the online ML area. Especially in the dynamic environment
where uncertain and unexpected system failures or outages
frequently manifest, the static model is difficult to reach the
accuracy requirement. In this case, GBDT can keep itself
updated over the whole running period. For example, assum-
ing the time period can be divided into equal length discrete
slots T = {t0, t1, ......, tN}, the base model F0(x) is initially
trained by the pre-set profiles. Afterwards, at the time slot
tn (0 < n ≤ N), the specific CART decision tree hn(x)
will be trained by the profile sampling at tn−1. A stronger
learner Fn(x)=F0(x)+hn(x) can be consequently generated
to forecast the matching between task and machine in tn.

Neural Network(NN)[38] is inspired by the biological
neural networks within brains. The connections between
neural cells determine the knowledges. As shown in Eq.3,
x is the output of last layer cell and yTj represents the

weight of jth connection. The b is bias and σ depicts the
activate function which enables NN to learn the non-linear
relationship. The aggregation of such information is then
passed to the next cell.

G(x) =

N∑
j=1

ajσ(y
T
j x+ bj) (3)

The universal approximation theorem[45] proved that a
simple neural network is able to represent a wide variety of
interesting functions given appropriate parameters. Through
transforms such as categorical input into multiple binary
variable or numeric input into binary encoded string, NN can
be widely applied into any kinds of mapping problems. The
problem of resource assignment and allocation is typically a
multi-input and multi-out mapping problem. The expected
resource utilization such as CPU, memory, disk, network
will be determined by inputs such as resource requirement,
dataset size, parallel degree, operators etc. Deep Neural
Network(DNN) that consists of a multi-layer network with
millions of weights are increasingly important especially in
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image and speech recognition areas. In DNN context, an
optional loss function can be defined as follows:

Loss(y, y′) =
n∑

i=1

f(y, y′) (4)

f(x, y) =

{
aMSE(x, y) x > y
bMSE(x, y) x < y

, (a > b > 0) (5)

where MSE(x, y) represents the squared error and the loss
function means the model will learn to predict the value y
that approaches to the ground truth y′. Due to the fact that
DNNs are dependent on the hand-crafted features, they can
be widely used as function approximators. The parameters
a to b can be fine-grained tuned according to the boundary
constraints and customized QoS requirements.

Recurrent Neural Network(RNN) is a class of NN
that can obtain strong outcomes on sequence modeling tasks
whose current states are related to the previous ones. RNN
can use their internal memory to process arbitrary sequences
of inputs. Basically, each unit, representing a stage in the
sequence, has its own input, output and memory cell.

h (t) = σ (Wxt + Uht−1 + b) (6)

Eq. 6 shows how status is delivered between memory cell
h from stage t− 1 to t. The current status is formed by ag-
gregating all weighted input Wxt, weighted previous status
Uht−1 and bias b. To increase the non-linear characteristic,
the activate function σ is also utilized. This can allow RNNs
to break through the obstacle from the fixed input, thus is
able to process arbitrary sequences of inputs and predict the
output accordingly. GRU(Gated Recurrent Unit)[46], LST-
M(Long Short-Term)[47] are proposed to further solve the
vanishing gradient problem. The topological service com-
position and resource allocation can be naturally solved by
such LSTM models where the structure connections between
units are very close to the workflow-based orchestration.

6. Case Study: Intelligent Straggler Mitigation
In this section, we introduce our exploration towards

leveraging ML in a specific resource scheduling problem
– performance-based node classification and the subse-
quent straggler mitigation. The effectiveness of our pre-
liminary work is validated through the OpenCloud cluster
dataset [48].

To mitigate stragglers is one of the intricate challenges
encountered by current parallel computing systems. Tasks,
even with similar designed duration, can exhibit various
execution time once running on different nodes due to
heterogeneous capacity and resource contention. Also, s-
ince node performance is a dynamic attribute that changes
over time, it is difficult to precisely estimate task durations
and identify straggler without node performance knowledge.
Under such circumstances, machine learning based methods
can help with revealing the non-trivial correlation between
task execution time and node-level statistics. To this end, we
firstly attempt to analyze and predict the node’s performance
by exploiting the timing statistics and the resultant task
execution. The profiled models can be utilized to design
and implement efficient algorithm to mitigate stragglers.

6.1. Machine Learning based Node Analyzer
Our node performance analyzer consists of several steps:

feature extraction, clustering and labeling, and classification.
Feature Extraction. We explored a series of features

extracted from historical task execution data in order to
describe node performance. These features are mainly de-
rived from two aspects: the value of task number per node
and statistics of normalized task duration. They reflect the
contention level and the relative processing speed of a node
respectively. In addition, those values are collected in a time-
incremental manner to capture the cumulative effects. For
example, if training data are collected over a month time (30
days), a tuple consisting of 90 attributes will be generated
to model the node performance as following:

< avg{˜Di
jday1

}, σ{˜Di
jday1

}, norm{N taskday1},
avg{˜Di

jday2
}, σ{˜Di

jday2
}, norm{N taskday2}, · · · ,

avg{˜Di
jday30

}, σ{˜Di
jday30

}, norm{N taskday30} >

where ˜Di
j represents the normalized task duration using z-

score normalization [49] to represent the relative speed of a
certain task T i

j within job Jj . The average and the standard

deviation avg{˜Di
jday

} and σ{˜Di
jday

} are collected daily in

a cumulative manner. In other words, for the 30th day, the
results are derived from the whole month’s data rather than
only from a single day.

Clustering and Labeling. In order to find out the affini-
ties, it is necessary to cluster nodes with similar performance
into a group by utilizing the above features and existing
clustering techniques such as k-means. However, to enable
the information usability for the scheduler when deciding
which nodes are best fit for launching tasks, there is a
urgent need of a labeling method to quantitatively determine
and represent the pertaining performance level. The early
experience of the automatic labeling procedure is conducted
[50] and we can sort out roughly 10% weak nodes from the
total training data.

Classification and Prediction. Based on the output of
supervised model training and learning, we further propose
the classification algorithms to timely determine the per-
formance level for a given machine. In particular, models
such as SVM, Boosting, Decision Tree, Random Forest,
and Naive Bayes, etc. emphasize specific attributes from
the training data to get the optimal performance. For ex-
ample, the Bayesian classifier requires all attributes to be
independent of each other, which is not suitable in our
case. The detailed experimental evaluation to predict node
performance category is demonstrated in Table 2 in terms of
the precision, recall and accuracy. It is apparently observable
that the prediction accuracy of node performance category
can be maximized to 92.86% if suitable classification tech-
niques are carefully selected.

6.2. Straggler-aware Scheduling with Blacklisting
The effectiveness of speculative execution can be un-

dermined if improper nodes are selected – the opportunities
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TABLE 2. ALGORITHM COMPARISONS

Precision Recall Accuracy

Random Forest 89.47% 58.62% 92.86%

SVM 100% 6.9% 86.22%

Ada Boosting 78.95% 51.72% 90.82%

Decision Tree 62.96% 58.62% 88.78%

Naive Bayes 16.67% 27.59% 68.88%

XGBoost∗ 82.61% 65.52% 92.86%

of task replications that overtake the stragglers will be
dramatically diminished when such duplicated tasks are
assigned to weakly-performed nodes. Failed speculations
will also inevitably lead to the wasted resources and the
long tail issues will be exacerbated under systems with high
utilization, resulting in deteriorated straggler occurrence and
extended job execution. By contrast, if the scheduler is
aware of the predicable node performance through the per-
formance forecasting and inferences, the speculations tends
to be launched to the most suitable nodes with adequate
available resources, minimized interference possibility. With
the insightful information from learning, the straggler-aware
scheduling can be achieved through performance rating
based node ranking, node filtering, and dynamic blacklisting
of weak nodes. In this manner, the speculative tasks can be
executed in an optimal or sub-optimal place.

In fact, such methodology of profiling, modeling and
scheduling can be fully exploited and extended [12] [51]
[52] [17]. Similar steps can be integrated into problems
where performance-centric tasks are involved such as rec-
ommendation of location preferences, priority dynamic eval-
uation for pending application, etc. For instance, when op-
portunistically over-subscribing the idle resources, learning-
based methods can facilitate the optimal placement based
on historical task location and the execution effect.

6.3. Discussion

Overhead Evaluation. It is true that the ML can in-
crease the accuracy during the decision making, we still have
to quantitatively assess the incurred system overhead and
performance degradation. For example, the offline profiler
module can train the workload and work out a classifier or
prediction model, but it inevitably brings in additional time
and resource consumption. Furthermore, we have to know
exactly the positive and negative gaining introduced by the
ML module. In this context, the false positive and false
negative error rates refer to concepts analogous to type I and
type II errors in statistical hypothesis testing. For example,
in the procedure of well-performed node prediction and
selection, although the false-positive will regard the good
nodes as faulty poorly-performed nodes, it will not degrade
the straggler mitigation effectiveness. On the contrary, the
false-negative case will result in the task executions on
badly-behaviored nodes, even become catastrophic to the
holistic system.

Online Learning. In another cases where data is contin-
ually generated, the model needs to be frequently updated
in order to cater the accuracy demands. Especially in the

changing scenarios, it is very likely for the prediction or
regression models to become invalid or deviate from the pre-
cision. Additionally, the model quality is heavily dependent
on the parameter numbers and their ranges. Therefore, the
profiling procedure is both time- and resource- consuming.
To mitigate the overheads, online learning can be further
exploited to autonomously enable the model well-suited
for environments that change dynamically and even unex-
pectedly. Such learning techniques such as Reinforcement
Learning(RL) [53] [54] aim to predict and evaluate the
effectiveness of a series of steps which need long-term
decision support. RL can tolerate the temporal (e.g., one-
step) reward or penalty as long as the long-term reward
can be targeted. We are planning to integrate them into
the current schedulers by designing the long-term gains to
address a variety of planning and control issues.

7. Conclusion

Resource management plays a fundamentally important
role in assigning different kinds of resources within cluster
systems to co-located workloads. Compared with ad-hoc
heuristics, machine learning approaches can benefit sched-
ulers with intelligent resource allocation, action selection
based on contextual states and environmental factors. This
paper presents a generalized ML-based solution through
comprehensive problem formalizing, data driven profiling,
supervised learning modeling, and gives an overall architec-
ture. Furthermore, we can draw the following conclusions:

• Performance-centric and QoS-aware learning can signif-
icantly steer the effectiveness and efficiency in consoli-
dated cluster environments, and thereby greatly improve
the placement quality of tasks, VMs, and etc.

• It is considerably important to span ML and AI al-
gorithms and systems into both the Cloud and Edge
devices. In Fog environments[55], more heterogeneity
of resources and appliances will become the norm, and
there are larger discrepancies between the Cloud nodes
and the Edge devices. Developing intelligent scheduling
mechanisms becomes subsequently much more intricate
and challenging.

• It is feasible to apply the state-of-the-art Deep Learning
or Deep Reinforcement Learning techniques into large-
scale systems. For long-term scheduling and optimiza-
tion goals, such approaches can deal with a large number
of planning and controls with fast convergence, and can
strengthen the system’s adaptability.
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