
Computing at Massive Scale: Scalability and

Dependability Challenges
Renyu Yang

†
 and Jie Xu

*†

†
School of Computing, Beihang University, Beijing, China

*School of Computing, University of Leeds, Leeds, UK

yangry@act.buaa.edu.cn; j.xu@leeds.ac.uk

Abstract —Large-scale Cloud systems and big data analytics

frameworks are now widely used for practical services and

applications. However, with the increase of data volume, together

with the heterogeneity of workloads and resources, and the

dynamic nature of massive user requests, the uncertainties and

complexity of resource management and service provisioning

increase dramatically, often resulting in poor resource utilization,

vulnerable system dependability, and user-perceived

performance degradations. In this paper we report our latest

understanding of the current and future challenges in this

particular area, and discuss both existing and potential solutions

to the problems, especially those concerned with system efficiency,

scalability and dependability. We first introduce a data-driven

analysis methodology for characterizing the resource and

workload patterns and tracing performance bottlenecks in a

massive-scale distributed computing environment. We then

examine and analyze several fundamental challenges and the

solutions we are developing to tackle them, including for example

incremental but decentralized resource scheduling, incremental

messaging communication, rapid system failover, and request

handling parallelism. We integrate these solutions with our data

analysis methodology in order to establish an engineering

approach that facilitates the optimization, tuning and verification

of massive-scale distributed systems. We aim to develop and offer

innovative methods and mechanisms for future computing

platforms that will provide strong support for new big data and

IoE (Internet of Everything) applications.

Keywords — Cloud computing, Computing at Scale, Dependability,

Performance, Scalability, Service engineering

I. INTRODUCTION

Cloud datacenters are large-scale distributed computing

systems, typically implemented using commodity hardware,

capable of provisioning services to various consumers with

diverse business requirements. The batch processing and real-

time analysis of big data are two of the most exploring and

important requirements for Clouds. In the big data era, the

volume and velocity of data generation are unprecedented.

According to a study by Harvard Business Review [7], over

2.5 exabytes of data are generated every day, and the speed of

data generation doubles every 40 months. Through the

computing platforms operated by Alibaba in China, hundreds

of millions of customers visit the systems every day, looking

for things to buy from over one billion items offered by

merchants. Hundreds of terabytes of user behavior, transaction,

and payment data are logged by the systems, and they must go

through daily elaborated processing to provide timely support

to the optimization of core business operations (including

online marketing, product search, and fraud detection) and

decision making, so as to improve user experiences such as

personalization and product recommendation. In addition,

there are a large number of tracing logs generated within these

processes every day. These system logs are extremely valuable

both during the development stages and at the operational

stage for monitoring, debugging system’s operational behavior,

and understanding its inherent patterns.

In order to utilize and mine the business data or system logs

effectively, data processing has been progressively migrating

from traditional database-based store and query approaches to

distributed systems which can scale out conveniently.

However, such systems must be able to schedule hundreds of

thousands of tasks per second, while their applications (e.g.

running services and compute jobs) have to be immune to the

increasingly unexpected system failures or unforeseen

interactions. Therefore, scalability and dependability have

become two fundamental challenges for all distributed

computing at massive scale. Despite many recent advances

from both academia and industry, these challenges are still far

from settled, especially when a system scale grows to over

10K servers and millions of computation tasks.

In particular, the scheduler within such a system can easily

become a scalability bottleneck since the system’s workloads

increase dramatically as the increase of the system’s scale.

Additionally, a dynamic Cloud system often introduces great

heterogeneities due to various user requests and available

shared resources. Many specialized systems with different

computation purposes co-exist within the Cloud, with diverse

resource requirements and patterns. The system resource

utilization could be enhanced by running a mix of diverse

workloads on the same machines (CPU- and memory-

intensive jobs, small and large workloads, and a mix of batch

and low-latency jobs), sharing the underlying physical

resources.

Furthermore, Cloud service providers are constantly under

great pressure to provision uninterrupted reliable services and

platforms to consumers while reducing their operational costs

due to significant software and hardware failures in such scale

systems [43]. A widely used means to achieve such a goal is to

use redundant system components to implement user-

transparent failover, but its effectiveness must be balanced

carefully without incurring heavy overhead when deployed –

an important practical consideration for systems at sufficient

scale and complexity.

2016 IEEE Symposium on Service-Oriented System Engineering

978-1-5090-2253-3/16 $31.00 © 2016 IEEE

DOI 10.1109/SOSE.2016.73

386

Scheduler

…

Scheduler

Fm 1 Fm 3Fm 2

Task submission

Fm = Framework

= compute task

= compute node

Figure 1. Comparison and evolution: traditional system scale v.s massive
system scale

In this paper we will present our understanding of the

current challenges in this particular area based on the

emerging characteristics of massive-scale distributed

computing systems. We will discuss both existing and

potential solutions in-depth to the problems especially related

to scalability and dependability. Specifically, we will

introduce a data-driven analysis methodology that

characterizes the important patterns in Cloud data centers

including resource, workload, performance and failure models,

and traces potential performance bottlenecks in a massive-

scale computing environment. Based on the profiling

information and knowledge generated from the field data

analysis, we will then examine and analyze several

fundamental challenges and solutions we are developing to

tackle them, including incremental resource scheduling and

messaging, decentralized scheduling, request handling

parallelism, rapid system failover and state recovery etc. We

will discuss the design philosophies, considerations and

tradeoffs we usually make when implementing these

techniques. Most of them are adopted or applied in-progress

into the distributed platforms at the Alibaba Cloud systems.

We will also outline a data-driven service engineering

approach in which we realize a full closed-circle of

engineering processes, including monitoring, analytics,

alarming, system optimization, and the eventual verification.

Finally, we will describe several further research directions

not limited to our particular research areas and demonstrate

that the proposed approaches and mechanisms could bring

great benefits to an extensive range of computer systems, such

as mobile computing, IoV (Internet of Vehicles), IoT (Internet

of Things) etc.

The remaining parts of the paper are structured as follows.

Section 2 presents the overview of massive-scale computing

characteristics. Section 3 specifies the data-driven analysis

methodology while Sections 4 and 5 discuss the scalability

and dependability challenges and possible solutions

respectively. The systematic application of data-driven service

engineering is described in Section 6, and the future directions

and research challenges are examined in Section 7.

II. OVERVIEW: COMPUTING AT MASSIVE SCALE

Internet-scale or massive-scale distributed computing for

data analysis workloads has been widely discussed in recent

years and is becoming increasingly common. High operational

and maintenance costs within heterogeneous workloads

management and resource allocation lead to the philosophy of

sharing data center cluster resources among diverse

computation frameworks ranging from batch jobs to long-

running services. Scheduling such diverse workloads is

inherently complex and difficult, especially as the computing

cluster size grows rapidly.

To determine the challenges in massive-scale computing, it

is necessary to clearly understand the numerous emerging but

inherent characteristics within the wide fields including Cloud

computing and Big Data processing. As described in Figure 1,

we summarize the emerging characteristics and trends of

modern massive-scale distributed systems, in comparison with

traditional systems in the following aspects: heterogeneity,

diverse workloads, increasing scale, and frequent failures etc.

To deal with these changes, multiple computing frameworks

often have to run on a unified scheduler while handling

varying requests. The diverse workloads are usually co-

allocated to the shared hardware cluster in order to improve

utilization.

A. Varying Request and Resource Heterogeneity

There are great heterogeneities produced by different user

requests and available resources in a typical data center cluster.

Firstly, the request heterogeneity can attribute to the highly

dynamic Cloud environment, where users with different

computation purposes co-exist with diverse resource

requirements and patterns. User-specific attributes can be

normally expressed by the required type and amount of

resources and other attributes that could dictate detailed

preferences, including data locality, the optimal location

where a specific workload can be executed, security

requirements [26][27], geographical location, or specific

hardware constraints such as processor architecture, number of

cores or Ethernet speed among others described in [12][13].

Secondly, for the resource heterogeneity, the computing

machines that constitute the data center cluster are typically

constructed from commodity hardware owing to significantly

reduced merchandising and operational costs in comparison

with a high-performance supercomputer. The configuration

diversities among different machines lead to the huge

discrepancies in a cluster. These diversities can be

characterized using dimensions such as micro-architecture,

machine chipset version, CPU and memory capacities etc. [44].

In fact, the machines are constantly supplemented into the

computing cluster over time, using whatever configuration

was most cost-effective [13]. Despite these benefits, these

commodity servers are very vulnerable to hardware and

software failures [43]. Therefore, the Cloud datacenter

providers have to be constantly under great pressure to face

increasing failures in such systems in order to provision

387

uninterrupted reliable services to their consumers. The

mentioned heterogeneities will increase the scheduling

complexity since the system has to pre-filter the candidate

targeted servers for the specific request in the waiting queue

by going through whole search space of available machines

according to the request constraints and specification.

B. Workload Diversity and Resource Sharing

With the prevalence of big data concepts and techniques, the

demands for data analysis and processing increase

dramatically. At present, cluster computing systems are

increasingly specialized for particular application domains and

purposes. Generally, we can categorize the workloads into

online services and offline processing. Online services can be

regarded as long-running services, such as virtual machine

rental, email service, storage service etc. For the offline

processing, in addition to early systems such as Map Reduce

[18], Dryad [17], more and more specialized systems for new

application domains are emerging both in academia and

industry. In particular, these systems include: Spark for in-

memory computing [34], Storm [31] and MillWheel [45] for

stream processing, Dremel [46] and Hive [47] for interactive

SQL queries, Pregel [48] for graph processing, Tez [50] and

FuxiJob [28] for DAG processing, and GraphLab [49] for

machine learning etc. Although these systems seem to be a

natural way to achieve their corresponding computations

effectively, these solutions can achieve neither high server

utilization nor efficient data sharing [33]. In reality, most

cloud facilities operate at very low utilization [38]. It seems

contradictory to the fact that some clusters might be very busy

or be extremely short for a specified resource dimension (such

as CPU-, memory-intensive), although other separate clusters

are idle but cannot be fully utilized by others. The data sharing

among different frameworks on separate clusters becomes

difficult and have to leverage data exporting, replicated to

permanent storages for temporary buffering.

Consequently, high operational costs force heterogeneous

applications to share cluster resources for achieving economy

of scale. The highly-required utilization and data sharing

demands motivate the system evolution to support multi-

tenant workloads in a unified system in order to improve the

efficiency and utilization.

C. Increasing Request and Cluster Scale

According to a bankcard analysis [6], Visa Card system

processed over 24,000 transactions per second in 2010 while

more than 160 million transactions per hour could be done

inside Master Card system in 2012. In comparison, the upper

payment transactions in Alipay (Alibaba Group’s payment

system) even reached 85,900 transactions per second during

the double-eleven shopping festival in 2015 [1][2], which had

surpassed visa as the most transacted payment gateway. Table

1 illustrates the peak or total throughput of systems in Alibaba

[2]. The throughput is indicated by the transactions processed

in the payment subsystem or big-data processing system. All

order and transaction data are finally extracted into a large-

scale computing system for real-time processing and business

analysis. Specifically, a transparent user experience is highly

desirable during the request bursting period without noticeable

response latency or service timing-out due to the overloaded

workloads beyond the system capacity. Therefore, the high-

stress requests and transactions require the underlying systems

to cope with them timely and keep the waiting queue size as

short as possible. Subsequently, effective resource

assignments and allocations are expected in order to accelerate

the turnovers of system resources, thereby improving the

resource utilization.

Meanwhile, the increasingly enlarged cluster size also

gives rise to difficulties of cluster management and the

increasing scheduling complexity. At present, Yahoo reported

that they can support up to 4,000 nodes before YARN [37].

Alibaba had supported 5,000 nodes resource management and

provision [28] and will support over 10,000 nodes recently.

Google claimed that their Borg system can run workloads

across tens of thousands of machines effectively [36]. In

reality, with the cluster size increased, even the periodical

status updates and reports carried by the heartbeats would

become a heavy burden, leading to the message congestions.

The RPC call might be invalid when messages are aggregated

within the sending queue, resulting in severe package drop and

loss. The messages re-sending retries will further aggravate

the system handling capability and the system might

eventually hang out and fail to handle any request.

Consider a cluster with hundreds of thousands of

concurrent tasks, running for tens of seconds on average, the

resource demand/supply situation would change tens of

thousands times per second. Making prompt scheduling

decisions at such a fast rate means that the resource allocation

must realize a rapid and relatively precise mapping of the CPU,

memory and other resource on all machines to all tasks within

every decision making. The statistics shown in Table 2 give a

brief example of the numerical data, including the

computational tasks and the available compute nodes in a

typical production system at massive scale [28].

D. Frequent Failure Occurrence

Massive-scale systems are typically composed by hundreds

of thousands to millions of alive and interacting components

comprised by the resource manager, service framework and

TABLE 1 STATISICAL DATA DURING 2015 ALIBABA DOUBLE-ELEVEN

SHOPPING FESTIVAL [2]

Type Number

Peak order number Over 120,000 per second

Total payment transactions in Alipay 710 millions

Peak payment transactions in Alipay 85,900 per second

Peak transactions processed on

AliCloud (Alibaba Cloud) platform

140,000 per second

TABLE 2 STATISICAL DATA OF ONE PRODUCTION SYSTEM IN ALICLOUD.

Type Number

Server number 4830

Job number 91,990

Task number 42,266,899

Worker number 16,295,167

388

computational applications. With increasing scale of a cluster,

the probability of hardware failures also arises [20][21].

Additionally, rare-case software bugs or hardware deficits that

never show up in a small-scale or testing environment could

also suddenly surface in massive-scale production systems.

Essentially, failures have become the norm rather than the

exception at large scale [19]. Due to such system scale,

heterogeneity and complexity, it is very likely that different

types of faults will manifest. According to our observations,

there are a variety of failures causes including halt failures due

to OS crash, network disconnection, and disk hang or

insufficient memory (OOM) due to bugs in codes, overweight

system utilization, performance interference, network

congestion etc [22][28][64][65]. As we discussed early, the

servers adopted widely in Cloud datacenter use commodity

hardware, resulting in deteriorating situations. At the same

time, the increased cluster size itself introduces much more

uncertainties and reduces the overall system reliability, largely

due to the increased failure probability of each node and

software component. In this environment, traditional

mechanisms such as health monitoring tools or heartbeat

tracking can help but cannot completely shield the failures

from running applications. Fault tolerance is an effective

means in enhancing the dependability of Cloud systems, and

will ultimately reduce the economic impact and service

degradation for providers and consumers respectively.

Based on fundamental analysis above, we will mainly focus

on two outstanding system problems which are urgently

needed to be addressed – scalability and dependability in this

paper.

III. DATA-DRIVEN METHODOLOGY

Establishing a good understanding of Cloud systems is of

increasing importance as well as complexity due to a Cloud's

ability to elastically scale-up and down provisioned resources

on-demand [10]. Additionally, such systems need to satisfy the

expected Quality of Service (QoS) requirements to fulfill the

diverse business objectives demanded by consumers. As a

consequence, it is a crucial requirement to characterize the

workloads running within a Cloud environment.

Analysis and simulation of Cloud tasks and users

significantly benefit both providers and researchers, as it

enables a practical way to improve data center functionality

and performance. For providers and system developers, it

enables a method to enhance resource management

mechanisms that effectively leverage the diversity of users and

tasks to increase the productivity and QoS of their systems.

For example, we exploit task heterogeneity to minimize

performance interference of physical servers or analyze the

correlation of failures to reduce resource consumption. It is

also extremely useful for us to find the potential system

deficiencies and bugs according to the daily regression testing

and profiling data analysis.

In our previous works [14][15], we conducted the

comprehensive analysis at cluster and intra-cluster level to

quantify the diversity of Cloud workloads and derive a

workload model from a large-scale production Cloud data

center [8]. The presented analysis and model capture the

characteristics and behavioral patterns of user and task

variability across the entire system as well as different

observational periods. We further quantify the interference-

energy model in which we comprehensively analyze the

energy-efficiency of massive system impacted by performance

interference [41] and failure-energy model which depicts the

energy-efficiency reduction and wastes due to constant

failures in the Cloud data center [43].

The data-driven analysis is critical to improve resource

utilization, reduce energy waste and in general terms support

the design of accurate forecast mechanisms under dynamic

conditions with QoS offered to customers improved. For

example, we classify the incoming tasks based on their

resource usage patterns, pre-select the hosting servers based

on resources constraints, and make the final allocation

decision based on the current servers performance interference

level [40][41]. Additionally, we propose a practical data

engineering method which uses the data analytics

methodology to driven an automatic service for system

monitoring and diagnosis, thereby instructing where and how

to optimize and improve the system.

IV. SCALABILITY

A. Challenges

Resource scheduling can be simply considered as the

process of matching demand (requests to allocate resources to

run processes of a specific task or application) with supply

(available resources of cluster nodes). Therefore the

complexity of resource management is directly affected by the

number of concurrent tasks and the number of server nodes in

a cluster. Additionally, other factors also contribute to the

complexity, including supporting resource allocation over

multiple dimensions (such as CPU, memory, and local

storage), fairness and quota constraints across competing

applications; and scheduling tasks close to data.

To deal with the increasing explosion of running tasks and

the cluster scale, computing systems at massive scale have to

firstly take the scalability issues into considerations. In this

context, we define scalability as a constant system capability

that sustains the scheduling throughput (such as the operation

per second) whilst controlling the perceptional response

Scalability

Request handling

scalability

Resource scheduling

scalability

Communication and

messaging scalability

Request number

and frequency

Resource dimension

and amount

System scale and

complexity

Figure 2. Charateristics of massive-scale system scalability, challenges

and the main concerns.

389

latencies as if in ordinary smaller scale. We describe the

characteristics and challenges in Figure 2.

To understand the mechanisms of scalability, we divide the

issues into the following aspects:

[S1:] Request handling scalability - Running workloads

(such as job or application) will propose resource requests to

ask for resources according to application-specific execution

logic. The requests will aggregate if they are not handled

timely by the general resource manager. To avoid the request

aggregation, the system should provide high cluster

throughput with low-latency request handling and allocation

decisions.

[S2:] Resource scheduling scalability - Making prompt

scheduling decisions at such a fast rate means that the resource

allocation must realize a mapping of the CPU, memory and

other desirable machine resource to all tasks within every

decision making.

[S3:] Communication and message scalability - In general,

internal scheduling related instructions or states exchanges in

most massive-scale systems are suitably piggy-backed by

periodical heartbeats or interactive messages. A long period

could reduce communication overhead but would also reduce

the utilization when applications wait for resource assignment.

On the other hand, frequent adjustments would accelerate the

response to demand/supply changes, resulting in promotions

of system resource turnovers and throughputs; however, it will

cause the message flooding phenomenon. Thus, how to

properly control the messaging amount whilst maintaining the

scheduling performance is a great challenge.

B. Solutions

(1) Architectural Evolution

The architecture experienced several phases:

a) Single-master phase - A naive approach is to delegate

every scheduling decision, state monitoring and updating all in

a single master node (such as the JobTracker in Hadoop 1.0).

But it will be severely limited by the capability of the master

and usually leads to single-point failure, eventually negatively

affecting the system dependability.

b) Two-level phase - this type of approach decouples the

resource management and the framework- or application-

specified scheduling into two separate layers. For example,

Mesos [33] adopts offer-based philosophy, provisioning a

calculated resource to each upper framework according to

dominant resource fairness. In comparison, Yarn [37] and Fuxi

[28] utilize request-based approach, in which the central

resource manager is responsible for resource negotiation

among different resource requests and application master takes

charge of job scheduling. It significantly mitigates the loads

and stress on the central master while enables a customized

and flexible resource requirement in the meantime.

c) Decentralized-schedulers phase – the third evolution to

improve the scalability is decentralization. In general, multiple

distributed scheduler replicas are adopted via multi-threads or

independent processes, and each scheduler can handle requests

simultaneously based on its local cached states or global

shared states [35]. Such typical systems include: Apollo [29],

Mercury [30], and Borg [36]. Moreover, no central state need

to be maintained if the scheduler (such as Sparrow [32])

adopts batch-sampling and only sends resource probe to find

candidate server. This category is particularly effective for

those scenarios with a strong low-latency requirement.

(2) Effective Scheduling Approach

Apart from changes derived from system architecture,

some scheduling techniques and mechanisms are proposed

which can be demonstrated to be very effective and efficient.

Incremental scheduling – Achieving rapid response and

prompt scheduling decisions at such a fast rate means that the

central resource manager cannot recalculate the complete

mapping of CPU, memory and other resource on all machines

to all applications tasks in every decision making. In our

previous work, we proposed a locality tree based incremental

scheduling [28] in massive scale computing and only the

changed part will be calculated.

For example, when {2cores CPU, 10GB Mem} of resource

frees up on machine A, we only need to determine which

application in machine A’s waiting queue should get this

resource. There is no need to consider other machines or other

applications. The locality tree will be gradually formed when

some of resource requests cannot be handled instantly and

have to wait for scheduling. Each resource request will be

enqueued into different queues according to its locality

preferences. Figure 3 shows a concrete example of the

scheduling method. Micro-seconds level scheduling can be

achieved in light of this intuitive but effective locality-based

approach.

Decentralized scheduling – Decentralized method is

mainly aimed to significantly reduce the scheduling latency.

We can further classify it according to how states are used:

a) Local state replica coordinated by central master: The

functionality of the central master can be simplified to only

synchronization all states as a coordinator once the resource or

state information is updated by any scheduler [29] [30] [36].

Typically, the used states are derived from load information

Figure 3. Locality-tree based incremental scheduling example. For

example, App1 totally requires 14 units of resources in the cluster, and
prefers 4 units on M1 and 4 units on M2 with the highest priority P1 due

to data-locality considerations.

390

and abstracted states or metrics, rather than fully cluster and

workloads states which are widely-adopted in centralized

schedulers. Since each running job performs independent

scheduling choices and the task is actually queued directly at

worker nodes, the core philosophy is to disperse the burden

and potential bottleneck of the central resource manager onto

many execution nodes. However, distributed schedulers make

local scheduling decisions which are often not globally

optimal. Moreover, the state synchronization and conflict

resolving must be handled effectively to guarantee that a

particular resource is only made available to one scheduler at a

time.

b) Shared states visible to all schedulers without a central

coordinator: Shared states can enable each distributed

scheduler full access to the entire cluster and allow them to

compete in a free-for-all manner [35]. The communal states

can be locked using exclusive locking techniques or lock-free

optimistic concurrency control by using incremental

transaction. To our understanding, inside the transaction an

atomic action will be consecutively conducted: the resource

assignment decision and the global shared-state updates. The

action is in fact equivalent to the states re-syncs with conflicts

resolved mentioned in approach a).

c) Stateless distributed scheduling techniques: Another

fully-decentralized approach within the spectrum is sampling-

based probing for low-latency (e.g., Sparrow [32]). Such

designs are highly scalable since there is no requirement to

maintain central states and global resource view. There are

multiple independent schedulers each of which is responsible

for scheduling one or a subset of jobs. Each autonomous

scheduler detects servers with fewer queued tasks by probing

m random servers and assigns the tasks of its jobs to targeted

machines in the cluster.

Generally speaking, fully-decentralized solution is indeed

very efficient for those latency-sensitive scenarios such as

interactive queries. However, this design will be extremely

hard to strictly satisfy the scheduling constraints (such as

fairness, capacity, and quota management) when only

depending on fast-changing global states without high

synchronization cost. Therefore, the system designers must

strike the balances between the scalability and other variables

according to their main objectives.

(3) Effective Message Communications

Incremental Communication – Because of the message

flood in the massive scale system, a simple iterative process

that keeps asking for unfulfilled resources will take too much

bandwidth and get worse when cluster is busy. For this reason,

we try to reduce the message amount by only sending

messages from running job masters and execution daemons to

the central resource manager when changes occur. Only the

delta portion will be transferred. Jobs or Applications can

publish their resource demands in incremental fashion when

the requirement adjusts according to runtime workloads.

Consequently, we propose an incremental communication and

messenger mechanism. In particular, it should fulfill:

a) Message order-preserving - we must ensure the changed

portions be delivered and processed in the same order at the

receiver side as they are generated on sender side;

b) Message idempotent resending - we must achieve the

idempotency of handling delta messages, which might happen

as a result of temporary communication failure;

c) Message deduplication – we de-duplicate the message to

minimize the network traffic and avoid useless

communications.

An example is demonstrated in Figure 4 and message

resending and deduplication will occur when the network

package get lost between the sender and the receiver.

Cluster Partition – For the performance and

communication scalability, we use multiple replicas of request

manager to handle communication and periodical status

reports in parallel. A compute cluster can be divided into

several area partition (the equivalence notion of link shard in

[36]) and each manager replica is responsible for request

handling and information delegation of severs within its

specified partition. The consistency will be guaranteed by an

elected central coordinator and only the coordinator can

conduct changes to the permanent store. Each manager replica

will aggregate and compress this information by reporting

only differences to the coordinator, in an incremental way as

we discussed above.

V. DEPENDABILITY

A. Challenges

Dependability is a key concern for resource managers due

to increasingly common failures which are now the norm

rather than the exception caused by the enlarged system scale

and complexity, different workload characteristics, and

plethora of faults types that can activate. Such failures within a

massive-scale system have the potential to cause significant

Sender App RPC-Call

1

1

MessageBuf

{max=1,ack=0}

1

2

callback

Messenger Messenger

{max=2,ack=0}

2

Receiver App

12

{max=2,ack=0}

12

Sender App RPC-Call

MessageBuf

2
callback

Messenger Messenger Receiver App

{max=2,ack=0}

12

{max=1,ack=0}

1

1

{max=2,ack=0}

2

12

{max=1,ack=0}

{ack=1}

1

Figure 4. Message re-sending and de-duplication in incremental
communication messenger

391

economic consequences to Cloud providers due to loss of

service to consumers [9][55], and affect services provisioned

to millions globally in the event of catastrophic failures.

Traditional techniques face a number of challenges and

will no longer directly suitable to the massive scale systems

due to the unaffordable costs and overheads. Specifically,

redundancy-based methods such as Recovery Blocks [23], N-

Version Programming (NVP) [24], N-self Checking Program-

ming (NSCP) [25] rely on replicated redundant components,

but it is infeasible to apply these redundancies into each

component within a system composed of millions of

components and jobs. Another widely-used fault-tolerant

technique in distributed system is checkpointing. The system

can recover its states by restoring the recently-recorded

checkpoint logs or files. Checkpoint and Restart (CR) is

utilized in high performance computing (HPC) and super-

computing (SC) areas, due to the significant reduction of re-

computations. In particular, periodical multi-levels check-

pointing and rolling-back techniques [54] are suitable for long-

running MPI tasks but cannot be properly applied in short

tasks or time-sensitive tasks. This is because the resource

requests and allocations of these MPI tasks are determined in

advance and will not change during its life-cycle. The task

number is also not large compared with available resources,

making sufficient resources to conduct redundant

checkpointing. Another extended application of checkpointing

is the snapshot and restore techniques in virtual execution

environment [51][52][52]. The availability and dependability

of virtual machine and the overall virtual cluster can be

guaranteed by recovering the network whilst restoring the

memory and disk states from the snapshot file. However, it is

relatively time-consuming considering the large amount of

runtime memory page size and disk states. In our proposed

massive-scale computing system which consists of hundreds

of thousands running tasks and active system components, it is

extremely ineffective due to the non-negligible additional

overheads incurred by conducting checkpoint, taking the disk

space, communications and operations into account.

In general, above systems achieve effective resource

scheduling and management by large backlogs of pending

work - an assumption which cannot be adhere to the on-

demand access required for Cloud computing. Considering the

large cost for millions of running tasks, it is infeasible to

conduct them in Internet-scale systems. Within the context of

Cloud resource managers, such techniques are required to

effectively scale to thousands of servers, with acceptable

overhead and impact to system performance. Thus we

summarize the dependability challenges shown in Figure 5 and

as follows:

[D1:] Faults and handling coverage - Components within

the resource manager are likely to experience different types

of faults ranging from crash-stop to late timing failure, as well

as have different underlying root causes [65]. As multiple

components tend to fail simultaneously and also exhibit

correlation, these failures will also complicate the system

fault-tolerant solutions. Therefore, we have to maximize the

fault coverage from both faults mode and fault handling

coverage respectively.

[D2:] Recovery effectiveness and efficiency – The

recovery effectiveness can be evaluated by whether the

infected component or application can continue to work. In

specific data processing context, computation job might fail

due to partial subtasks are evicted and re-compute during the

recovery. In addition, the recovery efficiency is also a

significantly important metric, which might include the full

recovery time, the system utilization and the additional

resource cost produced by the recovery, the latent negative

impacts onto other components or workloads, and the

propagation pattern and behavior among different subsystems

etc. In a massive-scale environment, all these above will

become increasingly complicated due to the shortened MTTF

(means frequent failure occurrence), a plenty of component

combinations, and system architectural complexity.

[D3:] User-perceived impact – From our experience in

massive-scale systems, resource overhead due to eviction, and

re-computation of non-faulty workers produces a substantial

amount of waste [16]. More importantly, long-running

services are disproportionally affected due to restarting worker

execution, leading to severely-suffered QoS. Such behavior

will also result in increased strain on the resource manager,

which has to handle more requests and reschedule workers

onto nodes, causing reduced component performance as well

as further increased failure probability. Therefore, how to

implement a user-transparent failover technique to recover the

service without noticeable changes to provisioned service

perceived by consumers is a big challenge.

[D4:] Easily-used failure detection and diagnosis - In

spite of the proposed system prevention or recovery measures,

some failures will always occur. The right tools can quickly

find the root cause, minimizing the duration of the failure. In

addition to the software aging or system failure, human factor

errors are observed to be another important provenance [58].

Although our approach can be self-healing in face of non-

human causes of errors, manual measures and technical staffs

have to get involved if necessary. Therefore, rapid and

effective detection and diagnosis approach can ensure a fast

access to the types of abnormal metrics.

B. Solutions

To maximize service reliability whilst minimizing

detrimental effects to service performance, we propose several

fault-tolerant techniques to illustrate a feasible design and

Dependability

Fault Coverage

Recovery

Effectiveness &

Efficiency

User-perceived

Impact

 Failure MTTF

Workloads and

Subcomponents

amount

System complexity

Figure 5. Charateristics of Massive-scale system dependability, challe-

nges, and required specific considerations.

392

implementation towards reliable service execution for

effective computing systems at scale.

(1) Rapid and Effective Component Failover

Failover with reduced checkpointing – we present the

philosophy and architecture of a novel approach for

component failure recovery that collects and exploits states

collected from neighboring components instead of solely

relying on hard-state periodically collected from dedicated

backup systems. In particular, minimized hard state such as

meta-data and information are persistently stored within a

node locally, distributed file system or distributed coordination

service. Actually, we leverage the distributed memory to store

each component states which can constitute the overall system

states and be used to recover infected components.

Minimized worker eviction – we achieve it through loose-

coupling master or agent behavior from its respective workers

during the execution. Specifically, this entails that failure

occurrence of a master or agent does not result in its non-

faulty workers to be automatically evicted. For example, to

tolerate timing failures, the central resource manager attempts

to preserve the assigned resource for running workers as if

timing-out daemons are still executing rather than directly

evicting and re-scheduling them. In this manner, such faults

will have minimal interference with perceived reliability.

(2) Optimized Recovery Time v.s. Degraded Service Level

According to our reduced hard state recovery strategy, the

additional overhead cost is mainly dependent on the collection

and required boundary of state information completeness.

Incomplete information might appear due to timing-out

components unable to contribute their states in time. The

collection time also closely depends on cluster scale,

application number, and application-specified configurations.

For instance, increased application number signifies a larger

amount of states to collect and the requisite time

correspondingly. On one hand, longer waiting time can

potentially lead to the mitigation of soft states incompletion,

but resulting in extra end-to-end recovery time. On the other

hand, insufficient collection time leads to incomplete states

and subsequent degraded service level (e.g., job extended

running time due to worker eviction, or system slow response

due to state absences). Thus, it is necessary for cluster

administrators to strike the balance between the recovery cost

and various levels of degraded service.

(3) Blacklist and alarm dashboard to help diagnose failures

Multi-level blacklist - It is high probable that within the

datacenter’s lifetime, physical nodes will experience crash or

timing failures. Such behavior can result in cascading failures,

as well as long-tail phenomenon of application execution [56].

In order to mitigate such occurrences, a multi-level machine

blacklist has been designed and deployed in order to detect

and isolate faulty nodes from the rest of the system. This

blacklist functions by monitoring system behavior at both

cluster and application level. The blacklist can be added

through system autonomous program or by technical staffs

manually according to their experiences and engineering

requirements.

More specifically, for the cluster level, a heartbeat is sent

between the node daemon and resource manager, reporting the

health situation of each node within the cluster. If the manager

detects a heartbeat timeout, the node will be removed from the

scheduling resource list, and a resource revocation is sent to

the application master so that it can evacuate the running

instances away from the unresponsive executive nodes.

Application-level blacklisting calculates the health of a

physical node based on the status of workers as well as failure

information collected by the node daemon, and it operates

both at task-level and job-level. If one worker of an

application has been reported as failed within a node, the node

will be placed into the blacklist for the particular task which is

currently executing in the worker. This action is taken under

the assumption that the faulty behavior of the task could

potentially be the result of the task operational requirements to

execute on that particular hardware specification.

System health self-checker and dashboard - the

operational characteristics of each physical node and internal

system components are monitored periodically using a health

checker tool to diagnose the node health and process status,

such as disk statistics machine load and network I/O etc. in

order to calculate a health score. If the score falls beneath a

specific threshold, the component will mark the node as

unavailable. An advantage of this approach is that datacenter

administrators are capable of adding customizable check items

to the list for specific error detection, and an alarm will be

triggered on the monitoring dashboard. The technical staff can

be involved and leverage the alarming information to timely

find workaround solutions.

VI. CASE-STUDY: DATA AND SERVICE ENGINEERING

For datacenter management, existing methods are tedious,

error-prone, and ultimately time consuming [57]; requiring the

expertise of a large number highly trained datacenter engineers

to develop in-house development scripts, or in the worst case

scenario, perform the process of system monitoring,

processing, and analysis manually. Therefore, we leverage the

data-driven methodology and integrate the depicted massive

computing entities model in Section 3 into an autonomous and

automatic profiling system to aid decision making. Such

decisions include the detection of the system abnormal

behaviors, driving the further system optimizations, evaluation

of the consequent effectiveness, and finally making

configurations refines to the resource management

mechanisms deployed within the infrastructure. Figure 6

describes the whole architecture of the proposed closed-loop

workflow and it is composed of several core components:

Tracelog collector - We add probes in order to monitor

and collect log data of system components. For example, in

order to comprehensively monitor the lifecycle of an

application, we monitor event status changes (i.e. submitted,

scheduled, running, failed, completed) and resource utilization

of physical nodes and applications. Furthermore, it is also

393

necessary to profile some system metrics and overheads

incurred by communication between components, and latency

between resource request and negotiation for applications. As

a result, how to collect and monitor the generated tracelog

efficiently while mitigating its impact of service performance

is a big challenge. Our approach uses the inotify [59]

mechanism in Linux 2.6 in order to incrementally tracelog

when there are changes within individual files and directories.

Data analysis engine - In order to exploit the monitored

profiling data, we implement an analysis and visualization

service based on the Alibaba Open Data Processing Service

(ODPS) [3]. ODPS is the proprietary data platform in Alibaba

providing massive data storage and query processing service.

The query processor allows users to extract the results of

interest from the collected log data of the cluster. The

processor provisions an SQL type language to users which is

automatically translated into a DAG workflow for query

processing. The generated profiling data could be populated

automatically into the data warehouse and customized queries

are executed within the ODPS control-plane, by importing the

data flow from the data-plane. Additionally, we calculate and

conduct statistics-oriented computing based on the outputted

results using R-statistic programming environment [60], which

is an integrated suite of software facilities for data

manipulation, calculation and graphical display. In this way,

we integrate visualization and mathematical modeling into our

service in order to produce charts, distribution modeling and

cluster analysis etc.

Diagnosis, tuning and optimization – Based on the data

analysis framework, statistical analysis and visualization of the

metrics profiler will facilitate the exploration of operational

behaviors. Consequently, diagnosis, correction, and tuning to

the system configurations or implementations could be

conducted. Correction entails a reactive approach of direct

intervention by technical staff to perform fault-correction upon

the performance metric alarm detection. It allows for technical

staff to identify and manually correct potential problems

within the system for reducing QoS violations and catastrophic

failure prevention (such as system outages). After the

optimization, our profiling system can provide an automatic

verification and test environment to evaluate the latest updates

or configuration changes. The proposed closed-cycle can

protects against rapid development and deployment of bad

configurations and provides a system-test framework to

guarantee the code quality from engineering aspects. In

practical, we have used this methodology in our previous

works to realize system utilization improvement [42] and

request latency reduction [39].

VII. FUTHER RESEARCH DIRECTIONS

Big Data as a Service (BDaaS) - With the blooming of all

sorts of big data provenances over the Internet, the huge data

volume has become too large and time-consuming for

individuals to calculate on personal machine or small-scale

servers. The business model in Cloud computing is to enable

on-demand and flexible resource provision. Similarly, the big

data storage, analytics and management could be integrated

together and provided as a service to customers [11]. Typically,

customers only need to write their own processing logics

according to the BDaaS APIs without any concern in terms of

the underlying running location and implementations. In this

Log Collector

Log collection

data warehouse

User Defined
Queries & Profilings

Data

 Collector

Data

Aggregator

Data Analytics

Statistical

Visualization

Statistical

Modelling

Query

Processing

Compute Cluster

Probe & Deamon

Res Util

Monitor

Event

Tracker

Node 1 Node 2 Node n

Resource Management & Scheduling System

…

Models & Profiling Metrics

User Submission Running Workloads

Resource UtilizationFailures & Abnormities

Performance Tracer & Profiler

Key Component Performance Optimizer

Interference-aware

Workload Placement

Failure-aware

Resource Scheduling

Scalable & Effective

Request Handling

QoS prediction &

management

Deploy

 into

Figure 6. Data-driven methodology and overall closed-cycle of performance monitor, optimization and deployment.

394

context, the scalability and dependability of BDaaS platform

are significantly important to guarantee the customer’s SLA.

Debugging large-scale distributed applications - The

management difficulties of large-scale distributed systems

mainly derive from the intricate relationships among different

processes (all kind of masters, slaves, and execution workers)

that are widely dispersed on different compute nodes, and the

extremely large size of the system logs. Debugging or

investigating a distributed application performance issue or

system bugs usually needs to search for some specific key

events information from the massive logs. Due to the semi-

structured or unstructured log information, the heterogeneity

will lead to an inability to produce a single unified query or

scheme for issue diagnosis. From our industrial engineering

experiences, it is extremely time-consuming for engineers and

technical staffs to find root-causes of problems in the

production clusters or daily Build Verification Test (BVT)

clusters. Consequently, it is highly necessary to develop a

series of tools by leveraging large-scale system tracing, big

data analytics and visualization techniques to demonstrate the

distributed execution of running jobs across many thousands

of machines. Despite some existed works [66][67], the

problem is far from settled. Furthermore, joint with techniques

in software engineering of large-scale systems, research works

have to be conducted to effectively improve the development

and debugging of massive-scale system if the system

continues to scale in the future.

History-Based Optimization (HBO) approach - Resource

sharing with running workload isolation is an intuitive idea to

mitigate the poor resource utilization in distributed computing

system. Furthermore, accurate estimation of resource

requirement could be an effective alternative. For example, for

a specific compute job which daily runs in the production

system, the required resource can be approximately measured

and modeled considering the processed data size, paralleled

instance number, operator type (e.g., some SQL operators such

as select, join, group, order, limit, union and other operators

such as table scan, file operations etc.). The estimated value

can be further revised based on the historical resource usage of

the same job type due to the assumption that the resource

pattern is stable and can be followed. However, with the

complexity and diversity of user-defined function (UDF) or

third-party libraries and packages, the accuracy of resource

estimation faces great challenges.

Simulation of large-scale system behavior - Due to the

scarcity of large-scale test cluster, it is highly desirable to find

a cost-effective technique to evaluate the system

functionalities and performance in a simulation environment.

One critical aspect of simulation is the ability to evaluate

large-scale systems within a reasonable time frame while

modeling complex interactions between millions of

components. Additionally, the simulation approach is expected

to playback the requests size and frequency in a timeline

driven by high-fidelity system tracelogs.

Application in container-based system - Container-based

technique has been obtaining increasing popularity recently

due to the fact that it is much more light-weight compared

with virtual machine. The OS-level virtualization is able to

leverage the process isolation mechanism to support

independent executions of co-allocated containers and the

resource sharing of the same underlying resources. At present,

Docker [4] rapidly achieves wide use because it can not only

provide convenient and effective mechanism to deploy

applications into its containers with Dockerfiles, but securable

and isolated execution environment. Due to these reasons, the

performance of typical web service composition or internet

application mashup can be enhanced by using Docker. In this

context, it is highly indispensable for resource management

system such as [28][33][37] or specialized system such as

Kubernetes [5] to provision scalable and dependable request

handling, image storage, IO throughput, resource allocation in

order to support large-scale container composition and

orchestrations.

IoE Applications - With the booming development and the

increasing demands of smart city, intelligent traffic,

techniques within Internet of Things (IoT) and Internet of

Vehicles (IoV) have become the significantly important means

to realize the objectives. In addition to the hardware-related

techniques such as sensor network, signal control, vehicle

engineering etc., the massive-scale information system plays

increasingly vital role in building effective solutions in

Internet of Everything (IoE). There are huge demands of real-

time data processing, statistical analytics and distributed

machine learning in many scenarios such as user behavior

pattern analysis, data mining of massive trajectory data

streaming, real-time parameter tuning during unmanned

automatic driving etc. Some of them are extremely safety-

critical, thus have additional requirements for the dependable

and real-time capability with low latency. In particular, in the

architecture of “Cloud-Network-Edge”, it is the cloud system

that should be responsible for satisfying those demands above.

It is noteworthy that the techniques discussed in this paper can

be directly applicable within the IoE scenarios. Moreover, the

computation resources at the edge side should also be fully

utilized in tight resource environment. The executable task and

process can be offloaded from the cloud side [61][61][63] to

improve the holistic system utility, user QoS, and energy-

efficiency.

VIII. CONCLUSIONS

In this paper we have reported our latest understanding of

the main challenges in massive-scale distributed computing,

and discussed both existing and potential solutions,

particularly in terms of system scalability and dependability.

Some important observations and conclusions can be

summarized as follows:

 Exploiting the inherent workload heterogeneity that exists
in Cloud environments provides an excellent mechanism
that helps to improve both the performance of running
tasks and the system efficiency. Combining specific
workload types can reduce the performance degradations,
limit negative effects on energy-efficiency, and improve
the efficiency and effectiveness of resource scheduling.

395

 Improving the scalability of a massive-scale distributed
system is becoming increasingly important. Traditional
parallel processing and concurrency control techniques are
often no longer suitable to a massive-scale system due to
the dramatically-increased scale of its workloads and
resources. Service providers have to pay a special
attention to the scalability of their systems that has direct
and huge economic consequences once massive and
concurrent user requests cannot be handled properly.

 Large-scale distributed systems may run millions of
service instances concurrently, with an increased
probability of frequent and simultaneous failures. These
failures have to be understood properly and addressed
appropriately together with a correct strategy for
scheduling service instances. Inappropriate scheduling of
instances has the potential to dramatically affect the whole
system reliability due to the complex co-relation between
rescheduling and communications caused by application
failures. Timing failures is also becoming an increasingly
dominating failure type for modern service applications.

 Relying on real data is critical to understanding the real
challenges in massive-scale computing and formulating
assumptions under realistic operational circumstances.
This is especially true in highly dynamic environments
such as Cloud datacenters and big data processing systems
where precise behavioral modeling is required in order to
improve environmental efficiency, scalability and
dependability.

 Experiences learnt from Cloud and distributed computing
will facilitate the development of the future generation
computing systems that support a number of human
intelligent decisions. We believe that it is highly likely
that advance in massive-scale distributed computing and
big data analytics will revolutionize our way of thinking,
living, and working.

ACKNOWLEDGMENTS

Special thanks must go to the SIGRS group from Beihang University,

the DSS group from the University of Leeds, and the Fuxi distributed

resource scheduling team in Alibaba Cloud Inc. for their support and

collaborative contributions to the work discussed in this report,

especially to Dr. Peter Garraghan (Leeds) and Jin Ouyang (Alibaba

Cloud Inc.). The work in this paper has been supported in part by the

National Basic Research Program of China (973) (No. 2014CB34-

0304), China 863 program (No. 2015AA01A202), the UK EPSRC

WRG platform project (No. EP/F057644/1), and Fundamental

Research Funds for the Central Universities and Beijing Higher

Education Young Elite Teacher Project (YETP1092).

REFERENCES

[1] http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-
minutes-of-sales-through-alipay-on-singles-day.html

[2] http://www.businesswire.com/news/home/20151111006351/en/Alibaba-
Group-Generated-USD-14.3-Billion-GMV

[3] ODPS: https://www.aliyun.com/product/odps/

[4] Docker Project. https://www.docker.io/, 2014.

[5] Kubernetes. http://kubernetes.io, Aug. 2014.

[6] S. Herbst-Murphy. Clearing and Settlement of Interbank Card
Transactions: A MasterCard Tutorial for Federal Reserve Payments
Analysts.

[7] A. McAfee and B. Erik. Big data: The management revolution. Harvard
Business Review, 10 2012.

[8] Google Cluster Data V2 (2011). [Online] Available:
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

[9] (2008) Amazon suffers u.s. outage on friday internet. [Online].
Available: http://news.cnet.com/

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility," in Future Gener. Comput. Syst.,
vol. 25, pp. 599-616, 2009.

[11] Z. Zheng, J. Zhu, and M. R. Lyu. Service-generated big data and big
data-as-a-service: an overview. In Proceedings of IEEE Big Data, 2013

[12] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.Das.
Modeling and synthesizing task placement constraints in Google
compute clusters. In Proceedings of ACM SoCC, 2011

[13] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of ACM SoCC, 2012

[14] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu. An approach for
characterizing workloads in Google cloud to derive realistic resource
utilization models. In Proceedings of IEEE SOSE 2013.

[15] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu. Analysis, modeling
and simulation of workload patterns in a large-scale utility cloud[J].,
IEEE Transactions on Cloud Computing, 2014

[16] P. Garraghan, I. S. Moreno, P. Townend, and J. Xu. An analysis of
failure-related energy waste in a large-scale cloud environment, in IEEE
Transactions on Emerging Topics in Computing, 2014

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. in
ACM SIGOPS Operating Systems Review. ACM, 2007, 41(3).

[18] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters [J]. In Communications of the ACM, 2008, 51(1).

[19] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang.
Failure data analysis of a large-scale heterogeneous server environment.
In Proceedings of IEEE DSN 2004.

[20] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing
hardware reliability. In Proceedings of ACM SoCC, 2010, (pp. 193-204).

[21] F. Dinu and T. Ng. Understanding the effects and implications of
compute node related failures in hadoop. In Proceedings of ACM HPDC,
2012.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. In IEEE
Transactions on Dependable and Secure Computing(TDSC),2004.

[23] B. Randell and J. Xu, “The evolution of the recovery block concept,”
Software Fault Tolerance, 1995.

[24] A. Avizienis, “The methodology of n-version programming,” Soft-

ware fault tolerance, 1995.

[25] M. R. Lyu et al., Handbook of software reliability engineering, 1996

[26] Z. Wen, J. Cala, P. Watson, and A. Romanovsky. Cost Effective,
Reliable, and Secure Workflow Deployment over Federated Clouds, in
Proceedings of IEEE Cloud, 2015

[27] Z. Wen, J. Cala, and P. Watson. A scalable method for partitioning
workflows with security requirements over federated clouds. In
Proceedings of IEEE CloudCom, 2014

[28] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. Fuxi: a fault-
tolerant resource management and job scheduling system at internet
scale. In Proceedings of the VLDB Endowment, 2014

[29] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L.
Zhou. Apollo: scalable and coordinated scheduling for cloud-scale
computing. In Proceedings of USENIX OSDI, 2014

396

http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV

[30] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G.
M.Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury:
Hybrid Centralized and Distributed Scheduling in Large Shared Clusters.
In Proceedings of USENIX ATC, 2015

[31] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S.
Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@twitter.
In Proceedings of the ACM SIGMOD, 2014

[32] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
distributed, low latency scheduling. In Proceedings of ACM SOSP,2013

[33] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.

Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In Proceedings of the USENIX
NSDI, 2011

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
J.Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the USENIX NSDI, 2012

[35] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In
Proceedings of the ACM EuroSys, 2013

[36] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.
Wilkes. Large-scale cluster management at Google with Borg. In
Proceedings of ACM EuroSys, 2015

[37] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. "Apache hadoop yarn:
Yet another resource negotiator." In Proceedings of the ACM SoCC,
2013.

[38] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of ACM ASPOLOS, 2014

[39] R. Yang, T. Wo, C. Hu, J. Xu and M. Zhang. D2PS: a Dependable Data
Provisioning Service in Multi-Tenants Cloud Environments,
In Proceedings of IEEE HASE, 2016.

[40] I. S. Moreno, R. Yang, J. Xu and T. Wo. Improved energy-efficiency in
cloud datacenters with interference-aware virtual machine placement. In
Proceedings of the IEEE ISADS, 2013

[41] R. Yang, I. S. Moreno, J. Xu and T. Wo. T. An analysis of performance
interference effects on energy-efficiency of virtualized cloud
environments. In Proceedings of the IEEE CloudCom, 2013

[42] Y. Wang, R. Yang, T. Wo, W. Jiang and C. Hu. Improving utilization
through dynamic VM resource allocation in hybrid cloud environment.
In Proceedings of the IEEE ICPADS 2014

[43] P. Garraghan, P. Townend and J. Xu. An empirical failure-analysis of a
large-scale cloud computing environment. In Proceedings of IEEE
HASE 2014

[44] P. Garraghan, P. Townend and J. Xu. An analysis of the server
characteristics and resource utilization in google cloud. In Proceedings
of IEEE IC2E, 2013

[45] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. MillWheel: fault-
tolerant stream processing at internet scale. In Proceedings of the VLDB
Endowment, 2013

[46] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets [J].
In Proceedings of the VLDB Endowmen, 2010

[47] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. In Proceedings of the VLDB Endowment, 2009

[48] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing. In
Proceedings of the ACM SIGMOD, 2010

[49] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.
M.Hellerstein. Distributed GraphLab: a framework for machine learning
and data mining in the cloud. In Proceedings of the VLDB Endowment
2012

[50] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.
Apache Tez: A unifying framework for modeling and building data
processing applications. In Proceedings of ACM SIGMOD, 2015

[51] L. Cui, J. Li, T. Wo, B. Li, R. Yang, Y. Cao and J. Huai. HotRestore: a
fast restore system for virtual machine cluster. In Proceedings of
USENIX LISA, 2014

[52] Y. Huang, R. Yang, L. Cui, T. Wo, C. Hu and B. Li. VMCSnap: Taking
Snapshots of Virtual Machine Cluster with Memory Deduplication. In
Proceedings of IEEE SOSE, 2014

[53] J. Li, J. Zheng, L. Cui and R. Yang. ConSnap: Taking continuous
snapshots for running state protection of virtual machines. In
Proceedings of IEEE ICPADS, 2014

[54] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, Design,
modeling, and evaluation of a scalable multi-level check-pointing
system, In Proceedings of IEEE SC, 2010

[55] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines.” Morgan &
Claypool Publishers, 2013.

[56] J. Dean and L. A. Barroso. The tail at scale. In Communications of the
ACM, 56(2), 2013.

[57] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, “A
Flexible Architecture Integrating Monitoring and Analytics for
Managing Large-scale Datacenters”, in Proceedings of ACM ICAC,
2011

[58] B. Mauren. Fail at scale. In Communications of the ACM, 58(11), 2015.

[59] R. Love, "Kernet Korner: Intro to Inotify", Linux Journal, 139(8), 2005.

[60] R. Ihaka,R. Gentleman,"R: a Language for Data Analysis and Graphic",
Journal of Computational Graph Statistics, 1996.

[61] Y. Zhang ,R. Yang, T. Wo, C. Hu, J. Kang and L. Cui. CloudAP:
Improving the QoS of Mobile Applications with Efficient VM Migration.
In Proceedings of IEEE HPCC, 2013

[62] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. In IEEE Pervasive Computing,
2009

[63] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A
survey. In Future Generation Computer Systems, 2013

[64] X. Chen, C.-D. Lu, and K. Pattabiraman. Failure analysis of jobs in
compute clouds: A google cluster case study. In Proceedings of IEEE
ISSRE, 2014

[65] A. Rosa, L. Y. Chen, and W. Binder. Understanding the Dark Side of
Big Data Clusters: an Analysis beyond Failures. In Proceedings of IEEE
DSN, 2015

[66] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D.
Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, 2010

[67] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Toward fine-grained,
unsupervised, scalable performance diagnosis for production cloud
computing systems. In IEEE Transactions on Parallel and Distributed
Systems, 24(6), 2013

397

