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Abstract —Large-scale Cloud systems and big data analytics 

frameworks are now widely used for practical services and 

applications. However, with the increase of data volume, together 

with the heterogeneity of workloads and resources, and the 

dynamic nature of massive user requests, the uncertainties and 

complexity of resource management and service provisioning 

increase dramatically, often resulting in poor resource utilization, 

vulnerable system dependability, and user-perceived 

performance degradations. In this paper we report our latest 

understanding of the current and future challenges in this 

particular area, and discuss both existing and potential solutions 

to the problems, especially those concerned with system efficiency, 

scalability and dependability. We first introduce a data-driven 

analysis methodology for characterizing the resource and 

workload patterns and tracing performance bottlenecks in a 

massive-scale distributed computing environment. We then 

examine and analyze several fundamental challenges and the 

solutions we are developing to tackle them, including for example 

incremental but decentralized resource scheduling, incremental 

messaging communication, rapid system failover, and request 

handling parallelism. We integrate these solutions with our data 

analysis methodology in order to establish an engineering 

approach that facilitates the optimization, tuning and verification 

of massive-scale distributed systems. We aim to develop and offer 

innovative methods and mechanisms for future computing 

platforms that will provide strong support for new big data and 

IoE (Internet of Everything) applications. 

Keywords — Cloud computing, Computing at Scale, Dependability, 

Performance, Scalability, Service engineering 

 

I. INTRODUCTION 

Cloud datacenters are large-scale distributed computing 

systems, typically implemented using commodity hardware, 

capable of provisioning services to various consumers with 

diverse business requirements. The batch processing and real-

time analysis of big data are two of the most exploring and 

important requirements for Clouds. In the big data era, the 

volume and velocity of data generation are unprecedented. 

According to a study by Harvard Business Review [7], over 

2.5 exabytes of data are generated every day, and the speed of 

data generation doubles every 40 months. Through the 

computing platforms operated by Alibaba in China, hundreds 

of millions of customers visit the systems every day, looking 

for things to buy from over one billion items offered by 

merchants. Hundreds of terabytes of user behavior, transaction, 

and payment data are logged by the systems, and they must go 

through daily elaborated processing to provide timely support 

to the optimization of core business operations (including 

online marketing, product search, and fraud detection) and 

decision making, so as to improve user experiences such as 

personalization and product recommendation. In addition, 

there are a large number of tracing logs generated within these 

processes every day. These system logs are extremely valuable 

both during the development stages and at the operational 

stage for monitoring, debugging system’s operational behavior, 

and understanding its inherent patterns. 

In order to utilize and mine the business data or system logs 

effectively, data processing has been progressively migrating 

from traditional database-based store and query approaches to 

distributed systems which can scale out conveniently. 

However, such systems must be able to schedule hundreds of 

thousands of tasks per second, while their applications (e.g. 

running services and compute jobs) have to be immune to the 

increasingly unexpected system failures or unforeseen 

interactions. Therefore, scalability and dependability have 

become two fundamental challenges for all distributed 

computing at massive scale. Despite many recent advances 

from both academia and industry, these challenges are still far 

from settled, especially when a system scale grows to over 

10K servers and millions of computation tasks. 

In particular, the scheduler within such a system can easily 

become a scalability bottleneck since the system’s workloads 

increase dramatically as the increase of the system’s scale. 

Additionally, a dynamic Cloud system often introduces great 

heterogeneities due to various user requests and available 

shared resources. Many specialized systems with different 

computation purposes co-exist within the Cloud, with diverse 

resource requirements and patterns. The system resource 

utilization could be enhanced by running a mix of diverse 

workloads on the same machines (CPU- and memory-

intensive jobs, small and large workloads, and a mix of batch 

and low-latency jobs), sharing the underlying physical 

resources.  

Furthermore, Cloud service providers are constantly under 

great pressure to provision uninterrupted reliable services and 

platforms to consumers while reducing their operational costs 

due to significant software and hardware failures in such scale 

systems [43]. A widely used means to achieve such a goal is to 

use redundant system components to implement user-

transparent failover, but its effectiveness must be balanced 

carefully without incurring heavy overhead when deployed – 

an important practical consideration for systems at sufficient 

scale and complexity.  
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Figure 1. Comparison and evolution: traditional system scale v.s massive 
system scale  

In this paper we will present our understanding of the 

current challenges in this particular area based on the 

emerging characteristics of massive-scale distributed 

computing systems. We will discuss both existing and 

potential solutions in-depth to the problems especially related 

to scalability and dependability. Specifically, we will 

introduce a data-driven analysis methodology that 

characterizes the important patterns in Cloud data centers 

including resource, workload, performance and failure models, 

and traces potential performance bottlenecks in a massive-

scale computing environment. Based on the profiling 

information and knowledge generated from the field data 

analysis, we will then examine and analyze several 

fundamental challenges and solutions we are developing to 

tackle them, including incremental resource scheduling and 

messaging, decentralized scheduling, request handling 

parallelism, rapid system failover and state recovery etc. We 

will discuss the design philosophies, considerations and 

tradeoffs we usually make when implementing these 

techniques. Most of them are adopted or applied in-progress 

into the distributed platforms at the Alibaba Cloud systems. 

We will also outline a data-driven service engineering 

approach in which we realize a full closed-circle of 

engineering processes, including monitoring, analytics, 

alarming, system optimization, and the eventual verification. 

Finally, we will describe several further research directions 

not limited to our particular research areas and demonstrate 

that the proposed approaches and mechanisms could bring 

great benefits to an extensive range of computer systems, such 

as mobile computing, IoV (Internet of Vehicles), IoT (Internet 

of Things) etc.  

The remaining parts of the paper are structured as follows. 

Section 2 presents the overview of massive-scale computing 

characteristics. Section 3 specifies the data-driven analysis 

methodology while Sections 4 and 5 discuss the scalability 

and dependability challenges and possible solutions 

respectively. The systematic application of data-driven service 

engineering is described in Section 6, and the future directions 

and research challenges are examined in Section 7. 

 

II. OVERVIEW: COMPUTING AT MASSIVE SCALE  

Internet-scale or massive-scale distributed computing for 

data analysis workloads has been widely discussed in recent 

years and is becoming increasingly common. High operational 

and maintenance costs within heterogeneous workloads 

management and resource allocation lead to the philosophy of 

sharing data center cluster resources among diverse 

computation frameworks ranging from batch jobs to long-

running services. Scheduling such diverse workloads is 

inherently complex and difficult, especially as the computing 

cluster size grows rapidly.    

To determine the challenges in massive-scale computing, it 

is necessary to clearly understand the numerous emerging but 

inherent characteristics within the wide fields including Cloud 

computing and Big Data processing. As described in Figure 1, 

we summarize the emerging characteristics and trends of 

modern massive-scale distributed systems, in comparison with 

traditional systems in the following aspects: heterogeneity, 

diverse workloads, increasing scale, and frequent failures etc. 

To deal with these changes, multiple computing frameworks 

often have to run on a unified scheduler while handling 

varying requests. The diverse workloads are usually co-

allocated to the shared hardware cluster in order to improve 

utilization. 

A. Varying Request and Resource Heterogeneity 

There are great heterogeneities produced by different user 

requests and available resources in a typical data center cluster.  

Firstly, the request heterogeneity can attribute to the highly 

dynamic Cloud environment, where users with different 

computation purposes co-exist with diverse resource 

requirements and patterns. User-specific attributes can be 

normally expressed by the required type and amount of 

resources and other attributes that could dictate detailed 

preferences, including data locality, the optimal location 

where a specific workload can be executed, security 

requirements [26][27], geographical location, or specific 

hardware constraints such as processor architecture, number of 

cores or Ethernet speed among others described in [12][13]. 

Secondly, for the resource heterogeneity, the computing 

machines that constitute the data center cluster are typically 

constructed from commodity hardware owing to significantly 

reduced merchandising and operational costs in comparison 

with a high-performance supercomputer. The configuration 

diversities among different machines lead to the huge 

discrepancies in a cluster. These diversities can be 

characterized using dimensions such as micro-architecture, 

machine chipset version, CPU and memory capacities etc. [44].  

In fact, the machines are constantly supplemented into the 

computing cluster over time, using whatever configuration 

was most cost-effective [13]. Despite these benefits, these 

commodity servers are very vulnerable to hardware and 

software failures [43]. Therefore, the Cloud datacenter 

providers have to be constantly under great pressure to face 

increasing failures in such systems in order to provision 
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uninterrupted reliable services to their consumers. The 

mentioned heterogeneities will increase the scheduling 

complexity since the system has to pre-filter the candidate 

targeted servers for the specific request in the waiting queue 

by going through whole search space of available machines 

according to the request constraints and specification. 

B. Workload Diversity and Resource Sharing 

With the prevalence of big data concepts and techniques, the 

demands for data analysis and processing increase 

dramatically. At present, cluster computing systems are 

increasingly specialized for particular application domains and 

purposes. Generally, we can categorize the workloads into 

online services and offline processing. Online services can be 

regarded as long-running services, such as virtual machine 

rental, email service, storage service etc. For the offline 

processing, in addition to early systems such as Map Reduce 

[18], Dryad [17], more and more specialized systems for new 

application domains are emerging both in academia and 

industry. In particular, these systems include: Spark for in-

memory computing [34], Storm [31] and MillWheel [45] for 

stream processing, Dremel [46] and Hive [47] for interactive 

SQL queries, Pregel [48] for graph processing, Tez [50] and 

FuxiJob [28] for DAG processing, and GraphLab [49] for 

machine learning etc. Although these systems seem to be a 

natural way to achieve their corresponding computations 

effectively, these solutions can achieve neither high server 

utilization nor efficient data sharing [33]. In reality, most 

cloud facilities operate at very low utilization [38]. It seems 

contradictory to the fact that some clusters might be very busy 

or be extremely short for a specified resource dimension (such 

as CPU-, memory-intensive), although other separate clusters 

are idle but cannot be fully utilized by others. The data sharing 

among different frameworks on separate clusters becomes 

difficult and have to leverage data exporting, replicated to 

permanent storages for temporary buffering.  

Consequently, high operational costs force heterogeneous 

applications to share cluster resources for achieving economy 

of scale.  The highly-required utilization and data sharing 

demands motivate the system evolution to support multi-

tenant workloads in a unified system in order to improve the 

efficiency and utilization.  

 

C. Increasing Request and Cluster Scale 

According to a bankcard analysis [6], Visa Card system 

processed over 24,000 transactions per second in 2010 while 

more than 160 million transactions per hour could be done 

inside Master Card system in 2012. In comparison, the upper 

payment transactions in Alipay (Alibaba Group’s payment 

system) even reached 85,900 transactions per second during 

the double-eleven shopping festival in 2015 [1][2], which had 

surpassed visa as the most transacted payment gateway. Table 

1 illustrates the peak or total throughput of systems in Alibaba 

[2]. The throughput is indicated by the transactions processed 

in the payment subsystem or big-data processing system. All 

order and transaction data are finally extracted into a large-

scale computing system for real-time processing and business 

analysis. Specifically, a transparent user experience is highly 

desirable during the request bursting period without noticeable 

response latency or service timing-out due to the overloaded 

workloads beyond the system capacity. Therefore, the high-

stress requests and transactions require the underlying systems 

to cope with them timely and keep the waiting queue size as 

short as possible. Subsequently, effective resource 

assignments and allocations are expected in order to accelerate 

the turnovers of system resources, thereby improving the 

resource utilization.  

Meanwhile, the increasingly enlarged cluster size also 

gives rise to difficulties of cluster management and the 

increasing scheduling complexity.  At present, Yahoo reported 

that they can support up to 4,000 nodes before YARN [37]. 

Alibaba had supported 5,000 nodes resource management and 

provision [28] and will support over 10,000 nodes recently.  

Google claimed that their Borg system can run workloads 

across tens of thousands of machines effectively [36].  In 

reality, with the cluster size increased, even the periodical 

status updates and reports carried by the heartbeats would 

become a heavy burden, leading to the message congestions. 

The RPC call might be invalid when messages are aggregated 

within the sending queue, resulting in severe package drop and 

loss. The messages re-sending retries will further aggravate 

the system handling capability and the system might 

eventually hang out and fail to handle any request.  

Consider a cluster with hundreds of thousands of 

concurrent tasks, running for tens of seconds on average, the 

resource demand/supply situation would change tens of 

thousands times per second. Making prompt scheduling 

decisions at such a fast rate means that the resource allocation 

must realize a rapid and relatively precise mapping of the CPU, 

memory and other resource on all machines to all tasks within 

every decision making.  The statistics shown in Table 2 give a 

brief example of the numerical data, including the 

computational tasks and the available compute nodes in a 

typical production system at massive scale [28].  

 

D. Frequent Failure Occurrence 

Massive-scale systems are typically composed by hundreds 

of thousands to millions of alive and interacting components 

comprised by the resource manager, service framework and 

TABLE 1  STATISICAL DATA DURING 2015 ALIBABA DOUBLE-ELEVEN 

SHOPPING FESTIVAL [2] 

Type Number 

Peak order number  Over 120,000  per  second 

Total payment transactions in Alipay 710 millions  

Peak payment transactions in Alipay 85,900 per second 

Peak transactions processed on 

AliCloud (Alibaba Cloud) platform 

140,000 per second 

 

TABLE 2  STATISICAL DATA OF ONE PRODUCTION SYSTEM IN ALICLOUD. 

Type Number 

Server number  4830 

Job number 91,990 

Task  number  42,266,899 

Worker number  16,295,167 
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computational applications. With increasing scale of a cluster, 

the probability of hardware failures also arises [20][21]. 

Additionally, rare-case software bugs or hardware deficits that 

never show up in a small-scale or testing environment could 

also suddenly surface in massive-scale production systems. 

Essentially, failures have become the norm rather than the 

exception at large scale [19].  Due to such system scale, 

heterogeneity and complexity, it is very likely that different 

types of faults will manifest. According to our observations, 

there are a variety of failures causes including halt failures due 

to OS crash, network disconnection, and disk hang or 

insufficient memory (OOM) due to bugs in codes, overweight 

system utilization, performance interference, network 

congestion etc [22][28][64][65]. As we discussed early, the 

servers adopted widely in Cloud datacenter use commodity 

hardware, resulting in deteriorating situations. At the same 

time, the increased cluster size itself introduces much more 

uncertainties and reduces the overall system reliability, largely 

due to the increased failure probability of each node and 

software component. In this environment, traditional 

mechanisms such as health monitoring tools or heartbeat 

tracking can help but cannot completely shield the failures 

from running applications. Fault tolerance is an effective 

means in enhancing the dependability of Cloud systems, and 

will ultimately reduce the economic impact and service 

degradation for providers and consumers respectively. 

Based on fundamental analysis above, we will mainly focus 

on two outstanding system problems which are urgently 

needed to be addressed – scalability and dependability in this 

paper. 

 

III. DATA-DRIVEN METHODOLOGY 

Establishing a good understanding of Cloud systems is of 

increasing importance as well as complexity due to a Cloud's 

ability to elastically scale-up and down provisioned resources 

on-demand [10]. Additionally, such systems need to satisfy the 

expected Quality of Service (QoS) requirements to fulfill the 

diverse business objectives demanded by consumers. As a 

consequence, it is a crucial requirement to characterize the 

workloads running within a Cloud environment.  

Analysis and simulation of Cloud tasks and users 

significantly benefit both providers and researchers, as it 

enables a practical way to improve data center functionality 

and performance. For providers and system developers, it 

enables a method to enhance resource management 

mechanisms that effectively leverage the diversity of users and 

tasks to increase the productivity and QoS of their systems. 

For example, we exploit task heterogeneity to minimize 

performance interference of physical servers or analyze the 

correlation of failures to reduce resource consumption. It is 

also extremely useful for us to find the potential system 

deficiencies and bugs according to the daily regression testing 

and profiling data analysis.  

In our previous works [14][15], we conducted the 

comprehensive analysis at cluster and intra-cluster level to 

quantify the diversity of Cloud workloads and derive a 

workload model from a large-scale production Cloud data 

center [8]. The presented analysis and model capture the 

characteristics and behavioral patterns of user and task 

variability across the entire system as well as different 

observational periods. We further quantify the interference-

energy model in which we comprehensively analyze the 

energy-efficiency of massive system impacted by performance 

interference [41] and failure-energy model which depicts the 

energy-efficiency reduction and wastes due to constant 

failures in the Cloud data center [43].  

The data-driven analysis is critical to improve resource 

utilization, reduce energy waste and in general terms support 

the design of accurate forecast mechanisms under dynamic 

conditions with QoS offered to customers improved. For 

example, we classify the incoming tasks based on their 

resource usage patterns, pre-select the hosting servers based 

on resources constraints, and make the final allocation 

decision based on the current servers performance interference 

level [40][41]. Additionally, we propose a practical data 

engineering method which uses the data analytics 

methodology to driven an automatic service for system 

monitoring and diagnosis, thereby instructing where and how 

to optimize and improve the system. 

 

IV. SCALABILITY  

A. Challenges  

Resource scheduling can be simply considered as the 

process of matching demand (requests to allocate resources to 

run processes of a specific task or application) with supply 

(available resources of cluster nodes). Therefore the 

complexity of resource management is directly affected by the 

number of concurrent tasks and the number of server nodes in 

a cluster. Additionally, other factors also contribute to the 

complexity, including supporting resource allocation over 

multiple dimensions (such as CPU, memory, and local 

storage), fairness and quota constraints across competing 

applications; and scheduling tasks close to data.  

To deal with the increasing explosion of running tasks and 

the cluster scale, computing systems at massive scale have to 

firstly take the scalability issues into considerations. In this 

context, we define scalability as a constant system capability 

that sustains the scheduling throughput (such as the operation 

per second) whilst controlling the perceptional response 

Scalability 

Request handling 

scalability

Resource scheduling 

scalability 

Communication and 

messaging scalability

Request number 

and frequency

Resource dimension

and amount

System scale and 

complexity 
 

Figure 2. Charateristics of massive-scale system scalability, challenges 

and the main concerns.  
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latencies as if in ordinary smaller scale. We describe the 

characteristics and challenges in Figure 2. 

To understand the mechanisms of scalability, we divide the 

issues into the following aspects:  

[S1:] Request handling scalability - Running workloads 

(such as job or application) will propose resource requests to 

ask for resources according to application-specific execution 

logic. The requests will aggregate if they are not handled 

timely by the general resource manager. To avoid the request 

aggregation, the system should provide high cluster 

throughput with low-latency request handling and allocation 

decisions. 

[S2:] Resource scheduling scalability - Making prompt 

scheduling decisions at such a fast rate means that the resource 

allocation must realize a mapping of the CPU, memory and 

other desirable machine resource to all tasks within every 

decision making.  

[S3:] Communication and message scalability - In general, 

internal scheduling related instructions or states exchanges in 

most massive-scale systems are suitably piggy-backed by 

periodical heartbeats or interactive messages. A long period 

could reduce communication overhead but would also reduce 

the utilization when applications wait for resource assignment. 

On the other hand, frequent adjustments would accelerate the 

response to demand/supply changes, resulting in promotions 

of system resource turnovers and throughputs; however, it will 

cause the message flooding phenomenon. Thus, how to 

properly control the messaging amount whilst maintaining the 

scheduling performance is a great challenge. 

 

B. Solutions 

(1) Architectural Evolution  

The architecture experienced several phases:   

a) Single-master phase - A naive approach is to delegate 

every scheduling decision, state monitoring and updating all in 

a single master node (such as the JobTracker in Hadoop 1.0). 

But it will be severely limited by the capability of the master 

and usually leads to single-point failure, eventually negatively 

affecting the system dependability.  

b) Two-level phase - this type of approach decouples the 

resource management and the framework- or application- 

specified scheduling into two separate layers.  For example, 

Mesos [33] adopts offer-based philosophy, provisioning a 

calculated resource to each upper framework according to 

dominant resource fairness. In comparison, Yarn [37] and Fuxi 

[28] utilize request-based approach, in which the central 

resource manager is responsible for resource negotiation 

among different resource requests and application master takes 

charge of job scheduling. It significantly mitigates the loads 

and stress on the central master while enables a customized 

and flexible resource requirement in the meantime. 

c) Decentralized-schedulers phase – the third evolution to 

improve the scalability is decentralization. In general, multiple 

distributed scheduler replicas are adopted via multi-threads or 

independent processes, and each scheduler can handle requests 

simultaneously based on its local cached states or global 

shared states [35]. Such typical systems include: Apollo [29], 

Mercury [30], and Borg [36]. Moreover, no central state need 

to be maintained if the scheduler (such as Sparrow [32]) 

adopts batch-sampling and only sends resource probe to find 

candidate server.  This category is particularly effective for 

those scenarios with a strong low-latency requirement. 

 

(2) Effective Scheduling Approach  

Apart from changes derived from system architecture, 

some scheduling techniques and mechanisms are proposed 

which can be demonstrated to be very effective and efficient.  

Incremental scheduling – Achieving rapid response and 

prompt scheduling decisions at such a fast rate means that the 

central resource manager cannot recalculate the complete 

mapping of CPU, memory and other resource on all machines 

to all applications tasks in every decision making. In our 

previous work, we proposed a locality tree based incremental 

scheduling [28] in massive scale computing and only the 

changed part will be calculated.  

For example, when {2cores CPU, 10GB Mem} of resource 

frees up on machine A, we only need to determine which 

application in machine A’s waiting queue should get this 

resource. There is no need to consider other machines or other 

applications. The locality tree will be gradually formed when 

some of resource requests cannot be handled instantly and 

have to wait for scheduling. Each resource request will be 

enqueued into different queues according to its locality 

preferences. Figure 3 shows a concrete example of the 

scheduling method. Micro-seconds level scheduling can be 

achieved in light of this intuitive but effective locality-based 

approach.  

Decentralized scheduling – Decentralized method is 

mainly aimed to significantly reduce the scheduling latency. 

We can further classify it according to how states are used:    

a) Local state replica coordinated by central master:  The 

functionality of the central master can be simplified to only 

synchronization all states as a coordinator once the resource or 

state information is updated by any scheduler [29] [30] [36]. 

Typically, the used states are derived from load information 

 

Figure 3. Locality-tree based incremental scheduling example.  For 

example, App1 totally requires 14 units of resources in the cluster, and 
prefers 4 units on M1 and 4 units on M2 with the highest priority P1 due 

to data-locality considerations. 
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and abstracted states or metrics, rather than fully cluster and 

workloads states which are widely-adopted in centralized 

schedulers. Since each running job performs independent 

scheduling choices and the task is actually queued directly at 

worker nodes, the core philosophy is to disperse the burden 

and potential bottleneck of the central resource manager onto 

many execution nodes. However, distributed schedulers make 

local scheduling decisions which are often not globally 

optimal. Moreover, the state synchronization and conflict 

resolving must be handled effectively to guarantee that a 

particular resource is only made available to one scheduler at a 

time. 

b) Shared states visible to all schedulers without a central 

coordinator: Shared states can enable each distributed 

scheduler full access to the entire cluster and allow them to 

compete in a free-for-all manner [35].  The communal states 

can be locked using exclusive locking techniques or lock-free 

optimistic concurrency control by using incremental 

transaction. To our understanding, inside the transaction an 

atomic action will be consecutively conducted: the resource 

assignment decision and the global shared-state updates. The 

action is in fact equivalent to the states re-syncs with conflicts 

resolved mentioned in approach a).  

c) Stateless distributed scheduling techniques: Another 

fully-decentralized approach within the spectrum is sampling-

based probing for low-latency (e.g., Sparrow [32]). Such 

designs are highly scalable since there is no requirement to 

maintain central states and global resource view. There are 

multiple independent schedulers each of which is responsible 

for scheduling one or a subset of jobs. Each autonomous 

scheduler detects servers with fewer queued tasks by probing 

m random servers and assigns the tasks of its jobs to targeted 

machines in the cluster. 

Generally speaking, fully-decentralized solution is indeed 

very efficient for those latency-sensitive scenarios such as 

interactive queries. However, this design will be extremely 

hard to strictly satisfy the scheduling constraints (such as 

fairness, capacity, and quota management) when only 

depending on fast-changing global states without high 

synchronization cost.  Therefore, the system designers must 

strike the balances between the scalability and other variables 

according to their main objectives. 

(3) Effective Message Communications  

Incremental Communication – Because of the message 

flood in the massive scale system, a simple iterative process 

that keeps asking for unfulfilled resources will take too much 

bandwidth and get worse when cluster is busy. For this reason, 

we try to reduce the message amount by only sending 

messages from running job masters and execution daemons to 

the central resource manager when changes occur. Only the 

delta portion will be transferred. Jobs or Applications can 

publish their resource demands in incremental fashion when 

the requirement adjusts according to runtime workloads.  

Consequently, we propose an incremental communication and 

messenger mechanism. In particular, it should fulfill:  

a) Message order-preserving - we must ensure the changed 

portions be delivered and processed in the same order at the 

receiver side as they are generated on sender side;  

b) Message idempotent resending -  we must achieve the 

idempotency of handling delta messages, which might happen 

as a result of temporary communication failure;  

c) Message deduplication – we de-duplicate the message to 

minimize the network traffic and avoid useless 

communications.   

An example is demonstrated in Figure 4 and message 

resending and deduplication will occur when the network 

package get lost between the sender and the receiver. 

Cluster Partition – For the performance and 

communication scalability, we use multiple replicas of request 

manager to handle communication and periodical status 

reports in parallel. A compute cluster can be divided into 

several area partition (the equivalence notion of link shard in 

[36]) and each manager replica is responsible for request 

handling and information delegation of severs within its 

specified partition. The consistency will be guaranteed by an 

elected central coordinator and only the coordinator can 

conduct changes to the permanent store. Each manager replica 

will aggregate and compress this information by reporting 

only differences to the coordinator, in an incremental way as 

we discussed above. 

 

V. DEPENDABILITY  

A. Challenges  

Dependability is a key concern for resource managers due 

to increasingly common failures which are now the norm 

rather than the exception caused by the enlarged system scale 

and complexity, different workload characteristics, and 

plethora of faults types that can activate. Such failures within a 

massive-scale system have the potential to cause significant 

Sender App RPC-Call

1

1

MessageBuf

{max=1,ack=0}

1

2

callback

Messenger Messenger

{max=2,ack=0}

2

Receiver App

12

{max=2,ack=0}

12

Sender App RPC-Call

MessageBuf

2
callback

Messenger Messenger Receiver App

{max=2,ack=0}

12

{max=1,ack=0}

1

1

{max=2,ack=0}

2

12

{max=1,ack=0}

{ack=1}

1

 

Figure 4. Message re-sending and de-duplication in incremental 
communication messenger 
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economic consequences to Cloud providers due to loss of 

service to consumers [9][55], and affect services provisioned 

to millions globally in the event of catastrophic failures. 

Traditional techniques face a number of challenges and 

will no longer directly suitable to the massive scale systems 

due to the unaffordable costs and overheads. Specifically, 

redundancy-based methods such as Recovery Blocks [23], N-

Version Programming (NVP) [24], N-self Checking Program-

ming (NSCP) [25] rely on replicated redundant components, 

but it is infeasible to apply these redundancies into each 

component within a system composed of millions of 

components and jobs. Another widely-used fault-tolerant 

technique in distributed system is checkpointing. The system 

can recover its states by restoring the recently-recorded 

checkpoint logs or files.  Checkpoint and Restart (CR) is 

utilized in high performance computing (HPC) and super-

computing (SC) areas, due to the significant reduction of re-

computations. In particular, periodical multi-levels check-

pointing and rolling-back techniques [54] are suitable for long-

running MPI tasks but cannot be properly applied in short 

tasks or time-sensitive tasks. This is because the resource 

requests and allocations of these MPI tasks are determined in 

advance and will not change during its life-cycle. The task 

number is also not large compared with available resources, 

making sufficient resources to conduct redundant 

checkpointing. Another extended application of checkpointing 

is the snapshot and restore techniques in virtual execution 

environment [51][52][52]. The availability and dependability 

of virtual machine and the overall virtual cluster can be 

guaranteed by recovering the network whilst restoring the 

memory and disk states from the snapshot file. However, it is 

relatively time-consuming considering the large amount of 

runtime memory page size and disk states. In our proposed 

massive-scale computing system which consists of hundreds 

of thousands running tasks and active system components, it is 

extremely ineffective due to the non-negligible additional 

overheads incurred by conducting checkpoint, taking the disk 

space, communications and operations into account. 

In general, above systems achieve effective resource 

scheduling and management by large backlogs of pending 

work - an assumption which cannot be adhere to the on-

demand access required for Cloud computing. Considering the 

large cost for millions of running tasks, it is infeasible to 

conduct them in Internet-scale systems.   Within the context of 

Cloud resource managers, such techniques are required to 

effectively scale to thousands of servers, with acceptable 

overhead and impact to system performance. Thus we 

summarize the dependability challenges shown in Figure 5 and 

as follows:  

[D1:] Faults and handling coverage - Components within 

the resource manager are likely to experience different types 

of faults ranging from crash-stop to late timing failure, as well 

as have different underlying root causes [65]. As multiple 

components tend to fail simultaneously and also exhibit 

correlation, these failures will also complicate the system 

fault-tolerant solutions. Therefore, we have to maximize the 

fault coverage from both faults mode and fault handling 

coverage respectively.   

[D2:] Recovery effectiveness and efficiency – The 

recovery effectiveness can be evaluated by whether the 

infected component or application can continue to work. In 

specific data processing context, computation job might fail 

due to partial subtasks are evicted and re-compute during the 

recovery.  In addition, the recovery efficiency is also a 

significantly important metric, which might include the full 

recovery time, the system utilization and the additional 

resource cost produced by the recovery, the latent negative 

impacts onto other components or workloads, and the 

propagation pattern and behavior among different subsystems 

etc.  In a massive-scale environment, all these above will 

become increasingly complicated due to the shortened MTTF 

(means frequent failure occurrence), a plenty of component 

combinations, and system architectural complexity.  

[D3:] User-perceived impact – From our experience in 

massive-scale systems, resource overhead due to eviction, and 

re-computation of non-faulty workers produces a substantial 

amount of waste [16]. More importantly, long-running 

services are disproportionally affected due to restarting worker 

execution, leading to severely-suffered QoS. Such behavior 

will also result in increased strain on the resource manager, 

which has to handle more requests and reschedule workers 

onto nodes, causing reduced component performance as well 

as further increased failure probability. Therefore, how to 

implement a user-transparent failover technique to recover the 

service without noticeable changes to provisioned service 

perceived by consumers is a big challenge. 

[D4:] Easily-used failure detection and diagnosis - In 

spite of the proposed system prevention or recovery measures, 

some failures will always occur. The right tools can quickly 

find the root cause, minimizing the duration of the failure.  In 

addition to the software aging or system failure, human factor 

errors are observed to be another important provenance [58]. 

Although our approach can be self-healing in face of non-

human causes of errors, manual measures and technical staffs 

have to get involved if necessary. Therefore, rapid and 

effective detection and diagnosis approach can ensure a fast 

access to the types of abnormal metrics. 

 

B. Solutions 

To maximize service reliability whilst minimizing 

detrimental effects to service performance, we propose several 

fault-tolerant techniques to illustrate a feasible design and 
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Figure 5. Charateristics of Massive-scale system dependability, challe-

nges, and required specific considerations.  
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implementation towards reliable service execution for 

effective computing systems at scale.  

(1) Rapid and Effective Component Failover  

Failover with reduced checkpointing – we present the 

philosophy and architecture of a novel approach for 

component failure recovery that collects and exploits states 

collected from neighboring components instead of solely 

relying on hard-state periodically collected from dedicated 

backup systems. In particular, minimized hard state such as 

meta-data and information are persistently stored within a 

node locally, distributed file system or distributed coordination 

service. Actually, we leverage the distributed memory to store 

each component states which can constitute the overall system 

states and be used to recover infected components.  

Minimized worker eviction – we achieve it through loose-

coupling master or agent behavior from its respective workers 

during the execution. Specifically, this entails that failure 

occurrence of a master or agent does not result in its non-

faulty workers to be automatically evicted. For example, to 

tolerate timing failures, the central resource manager attempts 

to preserve the assigned resource for running workers as if 

timing-out daemons are still executing rather than directly 

evicting and re-scheduling them. In this manner, such faults 

will have minimal interference with perceived reliability.  

 

(2) Optimized Recovery Time v.s. Degraded Service Level   

According to our reduced hard state recovery strategy, the 

additional overhead cost is mainly dependent on the collection 

and required boundary of state information completeness. 

Incomplete information might appear due to timing-out 

components unable to contribute their states in time. The 

collection time also closely depends on cluster scale, 

application number, and application-specified configurations. 

For instance, increased application number signifies a larger 

amount of states to collect and the requisite time 

correspondingly. On one hand, longer waiting time can 

potentially lead to the mitigation of soft states incompletion, 

but resulting in extra end-to-end recovery time. On the other 

hand, insufficient collection time leads to incomplete states 

and subsequent degraded service level (e.g., job extended 

running time due to worker eviction, or system slow response 

due to state absences). Thus, it is necessary for cluster 

administrators to strike the balance between the recovery cost 

and various levels of degraded service.  

 

(3) Blacklist and alarm dashboard to help diagnose failures 

Multi-level blacklist - It is high probable that within the 

datacenter’s lifetime, physical nodes will experience crash or 

timing failures. Such behavior can result in cascading failures, 

as well as long-tail phenomenon of application execution [56]. 

In order to mitigate such occurrences, a multi-level machine 

blacklist has been designed and deployed in order to detect 

and isolate faulty nodes from the rest of the system. This 

blacklist functions by monitoring system behavior at both 

cluster and application level.  The blacklist can be added 

through system autonomous program or by technical staffs 

manually according to their experiences and engineering 

requirements. 

More specifically, for the cluster level, a heartbeat is sent 

between the node daemon and resource manager, reporting the 

health situation of each node within the cluster. If the manager 

detects a heartbeat timeout, the node will be removed from the 

scheduling resource list, and a resource revocation is sent to 

the application master so that it can evacuate the running 

instances away from the unresponsive executive nodes. 

Application-level blacklisting calculates the health of a 

physical node based on the status of workers as well as failure 

information collected by the node daemon, and it operates 

both at task-level and job-level. If one worker of an 

application has been reported as failed within a node, the node 

will be placed into the blacklist for the particular task which is 

currently executing in the worker. This action is taken under 

the assumption that the faulty behavior of the task could 

potentially be the result of the task operational requirements to 

execute on that particular hardware specification. 

System health self-checker and dashboard - the 

operational characteristics of each physical node and internal 

system components are monitored periodically using a health 

checker tool to diagnose the node health and process status, 

such as disk statistics machine load and network I/O etc. in 

order to calculate a health score. If the score falls beneath a 

specific threshold, the component will mark the node as 

unavailable. An advantage of this approach is that datacenter 

administrators are capable of adding customizable check items 

to the list for specific error detection, and an alarm will be 

triggered on the monitoring dashboard.  The technical staff can 

be involved and leverage the alarming information to timely 

find workaround solutions.  

 

VI. CASE-STUDY: DATA AND SERVICE ENGINEERING  

For datacenter management, existing methods are tedious, 

error-prone, and ultimately time consuming [57]; requiring the 

expertise of a large number highly trained datacenter engineers 

to develop in-house development scripts, or in the worst case 

scenario, perform the process of system monitoring, 

processing, and analysis manually. Therefore, we leverage the 

data-driven methodology and integrate the depicted massive 

computing entities model in Section 3 into an autonomous and 

automatic profiling system to aid decision making. Such 

decisions include the detection of the system abnormal 

behaviors, driving the further system optimizations, evaluation 

of the consequent effectiveness, and finally making 

configurations refines to the resource management 

mechanisms deployed within the infrastructure. Figure 6 

describes the whole architecture of the proposed closed-loop 

workflow and it is composed of several core components: 

Tracelog collector - We add probes in order to monitor 

and collect log data of system components. For example, in 

order to comprehensively monitor the lifecycle of an 

application, we monitor event status changes (i.e. submitted, 

scheduled, running, failed, completed) and resource utilization 

of physical nodes and applications. Furthermore, it is also 

393



 

necessary to profile some system metrics and overheads 

incurred by communication between components, and latency 

between resource request and negotiation for applications.  As 

a result, how to collect and monitor the generated tracelog 

efficiently while mitigating its impact of service performance 

is a big challenge. Our approach uses the inotify [59] 

mechanism in Linux 2.6 in order to incrementally tracelog 

when there are changes within individual files and directories.  

Data analysis engine - In order to exploit the monitored 

profiling data, we implement an analysis and visualization 

service based on the Alibaba Open Data Processing Service 

(ODPS) [3]. ODPS is the proprietary data platform in Alibaba 

providing massive data storage and query processing service. 

The query processor allows users to extract the results of 

interest from the collected log data of the cluster. The 

processor provisions an SQL type language to users which is 

automatically translated into a DAG workflow for query 

processing. The generated profiling data could be populated 

automatically into the data warehouse and customized queries 

are executed within the ODPS control-plane, by importing the 

data flow from the data-plane. Additionally, we calculate and 

conduct statistics-oriented computing based on the outputted 

results using R-statistic programming environment [60], which 

is an integrated suite of software facilities for data 

manipulation, calculation and graphical display. In this way, 

we integrate visualization and mathematical modeling into our 

service in order to produce charts, distribution modeling and 

cluster analysis etc. 

Diagnosis, tuning and optimization – Based on the data 

analysis framework, statistical analysis and visualization of the 

metrics profiler will facilitate the exploration of operational 

behaviors. Consequently, diagnosis, correction, and tuning to 

the system configurations or implementations could be 

conducted. Correction entails a reactive approach of direct 

intervention by technical staff to perform fault-correction upon 

the performance metric alarm detection. It allows for technical 

staff to identify and manually correct potential problems 

within the system for reducing QoS violations and catastrophic 

failure prevention (such as system outages). After the 

optimization, our profiling system can provide an automatic 

verification and test environment to evaluate the latest updates 

or configuration changes. The proposed closed-cycle can 

protects against rapid development and deployment of bad 

configurations and provides a system-test framework to 

guarantee the code quality from engineering aspects. In 

practical, we have used this methodology in our previous 

works to realize system utilization improvement [42] and 

request latency reduction [39].  

 

 

VII. FUTHER RESEARCH DIRECTIONS 

Big Data as a Service (BDaaS) - With the blooming of all 

sorts of big data provenances over the Internet, the huge data 

volume has become too large and time-consuming for 

individuals to calculate on personal machine or small-scale 

servers. The business model in Cloud computing is to enable 

on-demand and flexible resource provision. Similarly, the big 

data storage, analytics and management could be integrated 

together and provided as a service to customers [11]. Typically, 

customers only need to write their own processing logics 

according to the BDaaS APIs without any concern in terms of 

the underlying running location and implementations. In this 
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Figure 6. Data-driven methodology and overall closed-cycle of performance monitor, optimization and deployment. 
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context, the scalability and dependability of BDaaS platform 

are significantly important to guarantee the customer’s SLA. 

Debugging large-scale distributed applications - The 

management difficulties of large-scale distributed systems 

mainly derive from the intricate relationships among different 

processes (all kind of masters, slaves, and execution workers) 

that are widely dispersed on different compute nodes, and the 

extremely large size of the system logs. Debugging or 

investigating a distributed application performance issue or 

system bugs usually needs to search for some specific key 

events information from the massive logs. Due to the semi-

structured or unstructured log information, the heterogeneity 

will lead to an inability to produce a single unified query or 

scheme for issue diagnosis. From our industrial engineering 

experiences, it is extremely time-consuming for engineers and 

technical staffs to find root-causes of problems in the 

production clusters or daily Build Verification Test (BVT) 

clusters. Consequently, it is highly necessary to develop a 

series of tools by leveraging large-scale system tracing, big 

data analytics and visualization techniques to demonstrate the 

distributed execution of running jobs across many thousands 

of machines. Despite some existed works [66][67], the 

problem is far from settled. Furthermore, joint with techniques 

in software engineering of large-scale systems, research works 

have to be conducted to effectively improve the development 

and debugging of massive-scale system if the system 

continues to scale in the future.  

History-Based Optimization (HBO) approach - Resource 

sharing with running workload isolation is an intuitive idea to 

mitigate the poor resource utilization in distributed computing 

system. Furthermore, accurate estimation of resource 

requirement could be an effective alternative. For example, for 

a specific compute job which daily runs in the production 

system, the required resource can be approximately measured 

and modeled considering the processed data size, paralleled 

instance number, operator type (e.g., some SQL operators such 

as select, join, group, order, limit, union and other operators 

such as table scan, file operations etc.). The estimated value 

can be further revised based on the historical resource usage of 

the same job type due to the assumption that the resource 

pattern is stable and can be followed. However, with the 

complexity and diversity of user-defined function (UDF) or 

third-party libraries and packages, the accuracy of resource 

estimation faces great challenges.   

Simulation of large-scale system behavior - Due to the 

scarcity of large-scale test cluster, it is highly desirable to find 

a cost-effective technique to evaluate the system 

functionalities and performance in a simulation environment. 

One critical aspect of simulation is the ability to evaluate 

large-scale systems within a reasonable time frame while 

modeling complex interactions between millions of 

components. Additionally, the simulation approach is expected 

to playback the requests size and frequency in a timeline 

driven by high-fidelity system tracelogs.  

Application in container-based system - Container-based 

technique has been obtaining increasing popularity recently 

due to the fact that it is much more light-weight compared 

with virtual machine. The OS-level virtualization is able to 

leverage the process isolation mechanism to support 

independent executions of co-allocated containers and the 

resource sharing of the same underlying resources. At present, 

Docker [4] rapidly achieves wide use because it can not only 

provide convenient and effective mechanism to deploy 

applications into its containers with Dockerfiles, but securable 

and isolated execution environment. Due to these reasons, the 

performance of typical web service composition or internet 

application mashup can be enhanced by using Docker. In this 

context, it is highly indispensable for resource management 

system such as [28][33][37] or specialized system such as 

Kubernetes [5] to provision scalable and dependable request 

handling, image storage, IO throughput, resource allocation in 

order to support large-scale container composition and 

orchestrations. 

IoE Applications - With the booming development and the 

increasing demands of smart city, intelligent traffic, 

techniques within Internet of Things (IoT) and Internet of 

Vehicles (IoV) have become the significantly important means 

to realize the objectives. In addition to the hardware-related 

techniques such as sensor network, signal control, vehicle 

engineering etc., the massive-scale information system plays 

increasingly vital role in building effective solutions in 

Internet of Everything (IoE). There are huge demands of real-

time data processing, statistical analytics and distributed 

machine learning in many scenarios such as user behavior 

pattern analysis, data mining of massive trajectory data 

streaming, real-time parameter tuning during unmanned 

automatic driving etc. Some of them are extremely safety-

critical, thus have additional requirements for the dependable 

and real-time capability with low latency.  In particular, in the 

architecture of “Cloud-Network-Edge”, it is the cloud system 

that should be responsible for satisfying those demands above. 

It is noteworthy that the techniques discussed in this paper can 

be directly applicable within the IoE scenarios. Moreover, the 

computation resources at the edge side should also be fully 

utilized in tight resource environment. The executable task and 

process can be offloaded from the cloud side [61][61][63] to 

improve the holistic system utility, user QoS, and energy-

efficiency.  

 

 

VIII. CONCLUSIONS 

In this paper we have reported our latest understanding of 

the main challenges in massive-scale distributed computing, 

and discussed both existing and potential solutions, 

particularly in terms of system scalability and dependability. 

Some important observations and conclusions can be 

summarized as follows: 

 Exploiting the inherent workload heterogeneity that exists 
in Cloud environments provides an excellent mechanism 
that helps to improve both the performance of running 
tasks and the system efficiency. Combining specific 
workload types can reduce the performance degradations, 
limit negative effects on energy-efficiency, and improve 
the efficiency and effectiveness of resource scheduling.  
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 Improving the scalability of a massive-scale distributed 
system is becoming increasingly important. Traditional 
parallel processing and concurrency control techniques are 
often no longer suitable to a massive-scale system due to 
the dramatically-increased scale of its workloads and 
resources. Service providers have to pay a special 
attention to the scalability of their systems that has direct 
and huge economic consequences once massive and 
concurrent user requests cannot be handled properly.  

 Large-scale distributed systems may run millions of 
service instances concurrently, with an increased 
probability of frequent and simultaneous failures. These 
failures have to be understood properly and addressed 
appropriately together with a correct strategy for 
scheduling service instances. Inappropriate scheduling of 
instances has the potential to dramatically affect the whole 
system reliability due to the complex co-relation between 
rescheduling and communications caused by application 
failures. Timing failures is also becoming an increasingly 
dominating failure type for modern service applications.  

 Relying on real data is critical to understanding the real 
challenges in massive-scale computing and formulating 
assumptions under realistic operational circumstances. 
This is especially true in highly dynamic environments 
such as Cloud datacenters and big data processing systems 
where precise behavioral modeling is required in order to 
improve environmental efficiency, scalability and 
dependability.  

 Experiences learnt from Cloud and distributed computing 
will facilitate the development of the future generation 
computing systems that support a number of human 
intelligent decisions. We believe that it is highly likely 
that advance in massive-scale distributed computing and 
big data analytics will revolutionize our way of thinking, 
living, and working.  

 

 

ACKNOWLEDGMENTS  

Special thanks must go to the SIGRS group from Beihang University, 

the DSS group from the University of Leeds, and the Fuxi distributed 

resource scheduling team in Alibaba Cloud Inc. for their support and 

collaborative contributions to the work discussed in this report, 

especially to Dr. Peter Garraghan (Leeds) and Jin Ouyang (Alibaba 

Cloud Inc.). The work in this paper has been supported in part by the 

National Basic Research Program of China (973) (No. 2014CB34-

0304), China 863 program (No. 2015AA01A202), the UK EPSRC 

WRG platform project (No. EP/F057644/1), and Fundamental 

Research Funds for the Central Universities and Beijing Higher 

Education Young Elite Teacher Project (YETP1092). 

 

 

REFERENCES 

[1] http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-
minutes-of-sales-through-alipay-on-singles-day.html 

[2] http://www.businesswire.com/news/home/20151111006351/en/Alibaba-
Group-Generated-USD-14.3-Billion-GMV  

[3] ODPS: https://www.aliyun.com/product/odps/  

[4] Docker Project. https://www.docker.io/, 2014. 

[5] Kubernetes. http://kubernetes.io, Aug. 2014. 

[6] S. Herbst-Murphy. Clearing and Settlement of Interbank Card 
Transactions: A MasterCard Tutorial for Federal Reserve Payments 
Analysts.  

[7] A. McAfee and B. Erik. Big data: The management revolution. Harvard 
Business Review, 10 2012. 

[8] Google Cluster Data V2 (2011). [Online] Available: 
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1  

[9]  (2008) Amazon suffers u.s. outage on friday internet. [Online]. 
Available: http://news.cnet.com/ 

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud 
computing and emerging IT platforms: Vision, hype, and reality for 
delivering computing as the 5th utility," in Future Gener. Comput. Syst., 
vol. 25, pp. 599-616, 2009.  

[11] Z. Zheng, J. Zhu, and M. R. Lyu. Service-generated big data and big 
data-as-a-service: an overview. In Proceedings of IEEE Big Data, 2013  

[12] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.Das. 
Modeling and synthesizing task placement constraints in Google 
compute clusters.  In Proceedings of ACM SoCC, 2011 

[13] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. 
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. 
In Proceedings of ACM SoCC, 2012 

[14] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu. An approach for 
characterizing workloads in Google cloud to derive realistic resource 
utilization models. In Proceedings of IEEE SOSE 2013. 

[15] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu. Analysis, modeling 
and simulation of workload patterns in a large-scale utility cloud[J]., 
IEEE Transactions on Cloud Computing, 2014   

[16] P. Garraghan, I. S. Moreno, P. Townend, and J. Xu. An analysis of 
failure-related energy waste in a large-scale cloud environment, in IEEE 
Transactions on Emerging Topics in Computing, 2014  

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: 
distributed data-parallel programs from sequential building blocks. in 
ACM SIGOPS Operating Systems Review. ACM, 2007, 41(3). 

[18] J. Dean and S. Ghemawat. MapReduce: simplified data processing on 
large clusters [J]. In Communications of the ACM, 2008, 51(1). 

[19] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang. 
Failure data analysis of a large-scale heterogeneous server environment. 
In Proceedings of  IEEE DSN 2004. 

[20] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing 
hardware reliability. In Proceedings of ACM SoCC, 2010, (pp. 193-204).   

[21] F. Dinu and T. Ng. Understanding the effects and implications of 
compute node related failures in hadoop. In Proceedings of ACM HPDC, 
2012. 

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts 
and taxonomy of dependable and secure computing. In IEEE 
Transactions on Dependable and Secure Computing(TDSC),2004. 

[23] B. Randell and J. Xu, “The evolution of the recovery block concept,” 
Software Fault Tolerance, 1995. 

[24] A. Avizienis, “The methodology of n-version programming,” Soft- 

ware fault tolerance, 1995. 

[25] M. R. Lyu et al., Handbook of software reliability engineering, 1996 

[26] Z. Wen, J. Cala, P. Watson, and A. Romanovsky. Cost Effective, 
Reliable, and Secure Workflow Deployment over Federated Clouds, in 
Proceedings of IEEE Cloud, 2015   

[27] Z. Wen, J. Cala, and P. Watson. A scalable method for partitioning 
workflows with security requirements over federated clouds. In 
Proceedings of IEEE CloudCom, 2014 

[28] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. Fuxi: a fault-
tolerant resource management and job scheduling system at internet 
scale. In Proceedings of the VLDB Endowment, 2014 

[29] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. 
Zhou. Apollo: scalable and coordinated scheduling for cloud-scale 
computing.  In Proceedings of USENIX OSDI, 2014  

396

http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.cnbc.com/2015/11/10/alibaba-handles-1-billion-in-8-minutes-of-sales-through-alipay-on-singles-day.html
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV
http://www.businesswire.com/news/home/20151111006351/en/Alibaba-Group-Generated-USD-14.3-Billion-GMV


 

[30] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. 
M.Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: 
Hybrid Centralized and Distributed Scheduling in Large Shared Clusters. 
In Proceedings of USENIX ATC, 2015  

[31] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. 
Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@twitter. 
In Proceedings of the ACM SIGMOD, 2014  

[32] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: 
distributed, low latency scheduling. In Proceedings of ACM SOSP,2013   

[33] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. 

Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained 
Resource Sharing in the Data Center. In Proceedings of  the USENIX  
NSDI, 2011  

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. 
J.Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A 
fault-tolerant abstraction for in-memory cluster computing. 
In Proceedings of the USENIX NSDI, 2012  

[35] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. 
Omega: flexible, scalable schedulers for large compute clusters. In 
Proceedings of the ACM EuroSys, 2013 

[36] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. 
Wilkes. Large-scale cluster management at Google with Borg. In 
Proceedings of ACM EuroSys, 2015  

[37] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. 
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. "Apache hadoop yarn: 
Yet another resource negotiator." In Proceedings of the  ACM  SoCC, 
2013.  

[38] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of ACM ASPOLOS, 2014 

[39] R. Yang, T. Wo, C. Hu, J. Xu and M. Zhang.  D2PS: a Dependable Data 
Provisioning Service in Multi-Tenants Cloud Environments, 
In Proceedings of  IEEE HASE, 2016.  

[40] I. S. Moreno, R. Yang, J. Xu and T. Wo. Improved energy-efficiency in 
cloud datacenters with interference-aware virtual machine placement. In 
Proceedings of the IEEE ISADS, 2013  

[41] R. Yang, I. S. Moreno, J. Xu and T. Wo.  T. An analysis of performance 
interference effects on energy-efficiency of virtualized cloud 
environments. In Proceedings of the  IEEE  CloudCom, 2013 

[42] Y. Wang, R. Yang, T. Wo, W. Jiang and C. Hu. Improving utilization 
through dynamic VM resource allocation in hybrid cloud environment. 
In Proceedings of the IEEE ICPADS 2014 

[43] P. Garraghan, P. Townend and J. Xu. An empirical failure-analysis of a 
large-scale cloud computing environment. In Proceedings of IEEE 
HASE 2014 

[44] P. Garraghan, P. Townend and J. Xu. An analysis of the server 
characteristics and resource utilization in google cloud. In Proceedings 
of IEEE IC2E, 2013 

[45] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, 
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. MillWheel: fault-
tolerant stream processing at internet scale. In Proceedings of the VLDB 
Endowment, 2013 

[46] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, 
and T. Vassilakis. Dremel: interactive analysis of web-scale datasets [J]. 
In Proceedings of the VLDB Endowmen, 2010  

[47] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, 
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. In Proceedings of the VLDB Endowment, 2009 

[48] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, 
and G. Czajkowski. Pregel: a system for large-scale graph processing. In 
Proceedings of the ACM SIGMOD, 2010 

[49] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. 
M.Hellerstein. Distributed GraphLab: a framework for machine learning 
and data mining in the cloud. In Proceedings of the VLDB Endowment 
2012  

[50] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. 
Apache Tez: A unifying framework for modeling and building data 
processing applications. In Proceedings of ACM  SIGMOD, 2015 

[51] L. Cui, J. Li, T. Wo, B. Li, R. Yang, Y. Cao and J. Huai. HotRestore: a 
fast restore system for virtual machine cluster. In Proceedings of 
USENIX LISA, 2014 

[52] Y. Huang, R. Yang, L. Cui,  T. Wo, C. Hu and B. Li. VMCSnap: Taking 
Snapshots of Virtual Machine Cluster with Memory Deduplication. In 
Proceedings of IEEE SOSE, 2014 

[53] J. Li, J. Zheng, L. Cui and R. Yang. ConSnap: Taking continuous 
snapshots for running state protection of virtual machines. In 
Proceedings of IEEE ICPADS, 2014 

[54] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, Design, 
modeling, and evaluation of a scalable multi-level check-pointing 
system,  In Proceedings of IEEE SC, 2010 

[55] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer: 
An introduction to the design of warehouse-scale machines.” Morgan & 
Claypool Publishers, 2013. 

[56] J. Dean and L. A. Barroso. The tail at scale. In Communications of the 
ACM, 56(2), 2013. 

[57] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, “A 
Flexible Architecture Integrating Monitoring and Analytics for 
Managing Large-scale Datacenters”, in Proceedings of ACM ICAC, 
2011 

[58] B. Mauren. Fail at scale. In Communications of the ACM, 58(11), 2015. 

[59] R. Love, "Kernet Korner: Intro to Inotify", Linux Journal, 139( 8), 2005. 

[60] R. Ihaka,R. Gentleman,"R: a Language for Data Analysis and Graphic", 
Journal of Computational Graph Statistics, 1996. 

[61] Y. Zhang ,R. Yang, T. Wo, C. Hu, J. Kang and L. Cui. CloudAP: 
Improving the QoS of Mobile Applications with Efficient VM Migration. 
In Proceedings of IEEE HPCC, 2013  

[62] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for 
vm-based cloudlets in mobile computing.  In IEEE Pervasive Computing, 
2009 

[63] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A 
survey. In Future Generation Computer Systems, 2013  

[64] X. Chen, C.-D. Lu, and K. Pattabiraman. Failure analysis of jobs in 
compute clouds: A google cluster case study. In Proceedings of IEEE 
ISSRE, 2014  

[65] A. Rosa, L. Y. Chen, and W. Binder. Understanding the Dark Side of 
Big Data Clusters: an Analysis beyond Failures. In Proceedings of IEEE 
DSN, 2015  

[66] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. 
Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed 
systems tracing infrastructure. Technical report, Google, 2010 

[67] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Toward fine-grained, 
unsupervised, scalable performance diagnosis for production cloud 
computing systems.  In  IEEE Transactions on Parallel and Distributed 
Systems, 24(6), 2013 

 

397


