
Journal of Parallel and Distributed Computing 177 (2023) 1–16

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Affinity-aware resource provisioning for long-running applications in

shared clusters

Clément Mommessin a,1, Renyu Yang a,∗,1, Natalia V. Shakhlevich a,∗, Xiaoyang Sun a,b,
Satish Kumar a, Junqing Xiao b, Jie Xu a

a School of Computing, University of Leeds, UK
b Alibaba Group, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2022
Received in revised form 23 December 2022
Accepted 21 February 2023
Available online 6 March 2023

Keywords:
Resource scheduling
Long-running applications
Vector bin packing

Resource provisioning plays a pivotal role in determining the right amount of infrastructure resource
to run applications and reduce the monetary cost. A significant portion of production clusters is now
dedicated to long-running applications (LRAs), which are typically in the form of microservices and
executed in the order of hours or even months. It is therefore practically important to plan ahead
the placement of LRAs in a shared cluster for the minimized number of compute nodes required by
them. Existing works on LRA scheduling are often application-agnostic, without particularly addressing
the constraining requirements imposed by LRAs, such as co-location affinity constraints and time-varying
resource requirements. In this paper, we present an affinity-aware resource provisioning approach for
deploying large-scale LRAs in a shared cluster subject to multiple constraints, with the objective of
minimizing the number of compute nodes in use. We investigate a broad range of solution algorithms
which fall into three main categories: Application-Centric, Node-Centric, and Multi-Node approaches, and
tune them for typical large-scale real-world scenarios. Experimental studies driven by the Alibaba Tianchi
dataset show that our algorithms can achieve competitive scheduling effectiveness and running time, as
compared with the heuristics used by the latest work including Medea and LraSched. Best results are
obtained by the Application-Centric algorithms, if the algorithm’s running time is of primary concern,
and by Multi-Node algorithms, if the solution quality is of primary concern.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Resource provisioning in large-scale compute clusters is of the
utmost importance in IT infrastructure capacity management [45]
and critical to the overall stability and performance of a clus-
ter [15]. Virtualization and containerization offer a cost-effective
solution for server and application consolidation [26,50]. The con-
solidation typically has an objective of minimizing the number of
occupied hosts (virtual machines or physical servers) needed to
underpin the workloads. It must take into account the characteris-
tics of workloads and use cases in order to correctly size a cluster
and minimize the cost of workload deployment.

Traditional workloads in clusters are data analytic batch jobs
[18,42,54] with short-lived tasks (in the order of seconds). How-
ever, long-running applications (LRAs) – such as latency-sensitive

* Corresponding authors.
E-mail addresses: r.yang1@leeds.ac.uk (R. Yang), n.shakhlevich@leeds.ac.uk

(N.V. Shakhlevich).
1 Co-first authors.
https://doi.org/10.1016/j.jpdc.2023.02.011
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
databases, user-facing services, streaming processing frameworks,
etc. – have now become another main type of workloads sup-
ported by production clusters (Google [47], Microsoft [21], Al-
ibaba [33]). In particular, across six analytics clusters at Microsoft,
each comprising tens of thousands of machines, at least 10% of
each cluster’s machines are used for LRAs and two clusters are
used exclusively for LRAs [21]. In Alibaba, 94.2% of the total CPU
capacity in a cluster is allocated to LRAs [25]. In fact, microservice
architecture has been the key enabler to build up large-scale IT
infrastructures. Each individual microservice – practically instanti-
ated as an LRA that can be independently implemented, built and
maintained – is hosted in a long-lived container that usually ex-
ecutes for a long time frame (from hours to months) either for
iterative computations in memory or for handling web requests.
An LRA often makes use of multiple replicas of it to ensure low
latency, fault tolerance, and high availability [47,14,1].

While it is appealing to build up complex enterprise IT sys-
tems consisting of a very large number of LRAs, there are many
challenges associated with co-location, LRA multiplicity and het-
erogeneity. In reservation-based infrastructure, LRAs typically need
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jpdc.2023.02.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.02.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:r.yang1@leeds.ac.uk
mailto:n.shakhlevich@leeds.ac.uk
https://doi.org/10.1016/j.jpdc.2023.02.011
http://creativecommons.org/licenses/by/4.0/

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
to reserve multi-dimensional resources ahead of their execution,
and their resource usage usually has strong temporal patterns. To
optimize the performance and resilience, an LRA has application-
specific placement preferences or exclusions when it is co-located
with other LRAs. For instance, some LRAs are often required to be
co-located to save network bandwidth and reduce latency or to be
separately placed to reduce resource contention and performance
interference. The ever-increasing scale of the number of new LRAs
to be deployed (tens of thousands) and the corresponding affinity
relationships further complicate resource reservation. In a nutshell,
a robust and scalable resource provisioning scheme should tackle
multi-dimensional temporal resource requests and LRA-level affini-
ties, i.e., it should address placement of identical replicas incurred
by each LRA, resolve replica conflicts stemming from the affinity
constraints, and handle efficiently large-scale LRA deployment sce-
narios.

To the best of our knowledge, none of the existing studies to
date addresses all these requirements at the same time, although
every single requirement might have been considered. Most of the
existing work (e.g., [54,47,46,43,51]) is application-agnostic and
only focuses on node-related affinity, neglecting inter-application
affinity constraints. Kubernetes [1] and Medea [21] address the
application-related affinity, but do not address the requirement of
scheduling all LRAs as a global optimization problem: Kubernetes
schedules one LRA replica (pod) at a decision point, while Medea
aims at runtime scheduling of relatively small batches of LRAs pe-
riodically. LraSched [11] only addresses the intra-application affin-
ity constraints. Additionally, the capability of handling massive-
scale scheduling problems of these three solutions has not been
fully investigated.

The problem we study is to minimize the number of com-
pute nodes required for accommodating LRAs in a shared cluster,
subject to a set of strict resource and affinity constraints. We for-
mulate the problem as an ILP and develop a new system model
that can be considered as a generalization of the combinatorial op-
timization problems of Vector Bin Packing and Bin Packing with
Conflicts [16]. Considering the diversity of real-world scenarios
that gives rise to instances with a variety of characteristics, a fast
heuristic, successful for one scenario, may perform poorly on an-
other. This motivates us to develop an algorithm suite that can
be used by practitioners for selecting the best performing heuris-
tics that best fit the specific needs of a given scheduling scenario.
To illustrate the capabilities of the suite, we perform experiments
on instances generated from the Alibaba Tianchi dataset [44] and
compare the winning approaches from our suite with the best per-
forming published algorithms: two heuristics from Medea [21],
namely TagPopularity and NodeCandidate, as well as a heuristic
based on the Fitness measure introduced in LraSched [11]. A high-
level summary of the most successful algorithms in our toolkit and
those published in the literature is presented in Fig. 3, Section 5.

Our suite consists of three groups of algorithms: Application-
Centric, Node-Centric and the Multi-Node approaches. The first
two algorithm groups stem from the state-of-the-art research on
Vector Bin Packing and Bin Packing with Conflicts [16]. The third
algorithm group is particularly successful in the presence of LRA
replicas and associated affinity restrictions. While Application-
Centric algorithms are recommended when the computation time
is required to be as small as possible, the Multi-Node algorithms
deliver solutions of best quality (within only 0.3% deviation from
the lower bound), with a larger running time. Node-Centric Algo-
rithms place themselves in between, offering a trade-off between
solution quality and time to find a solution.

To summarize, the main contributions of this paper are as fol-
lows:
2

• Formulating a resource provisioning problem to address tem-
poral resource requests and application-level affinity con-
straints (§3);

• Devising an algorithm suite to provide adaptable solutions to
a variety of real-world scenarios (§4);

• Selecting, via extensive computational experiments, a collec-
tion of best performing algorithms that can effectively handle
large-scale LRA deployment (§5), focused on the use-case of
the Alibaba Tianchi dataset [44];

• Elaborating algorithm recommendations providing a trade off
between computation time and solution quality when con-
fronted with different scenarios (§6).

Our findings can serve as the basis for practitioners and re-
searchers for optimizing the resource provisioning and capacity
planning to handle large-scale LRA placement in different scenar-
ios.

2. Background and motivation

2.1. Microservice and long-running applications

Cloud services and enterprise IT systems have been experienc-
ing a major shift from monolithic applications that encompass
the whole functionality within a software package (e.g., the full-
stack LAMP application) to thousands of loosely-coupled microser-
vices that can be independently built and maintained. According to
Statista survey [2], in 2021, 85% of respondents from large organi-
zations with 5, 000 or more employees stated that they had been
using microservices in their software development environments.

As a key enabler, microservice architecture is particularly sup-
portive to build extensible and loosely-coupled systems at scale.
Enterprise microservices can be considered as an important and
widely popular types of long-running applications (LRAs). They
are typically hosted in long-lived containers that can run for
hours, or even months, and consist of a diverse mix of appli-
cations from web servers to databases. Such applications are
long-standing, user-facing and interactive services, working in
“request-and-response” manner to serve user requests. Represen-
tative examples of LRAs include streaming processing frameworks
(Storm [3], Flink [4], Kafka streams [5]), latency-sensitive database
applications (HBase [6] and MongoDB [37]), and data-intensive in-
memory computing frameworks (Spark [53], Tensorflow [8]).

2.2. Resource provisioning

LRAs need to be deployed into on-premises or cloud infrastruc-
ture. Resource provisioning – one of the key elements in capacity
management [45] – plays a pivotal role in determining the initial
amount of infrastructure capacity (required resources) that can run
a collection of applications. Particularly, for a homogeneous com-
puting cluster where each node has the same hardware and the
same operating system, infrastructure capacity can be regarded as
the number of compute nodes (bare metal servers or virtual ma-
chines in a virtualized cloud cluster).

Most large-scale infrastructure managers [47,33,13] adopt reser-
vation-based resource requests and resource allocations, i.e., appli-
cation users or developers are required to specify the number of
resources required (CPU cores, RAM, GPUs, etc.) at the submission
of the applications. To lower the operational costs, one simple yet
prevalent task of resource provisioning is to minimize the num-
ber of nodes capable of handling the reservation requests of a
given set of LRAs. The plan-ahead before LRA deployment and ex-
ecution is of major importance to IT administrators to facilitate
a better understanding of resource requirement and to resize the
infrastructure configuration in an economical and environmental-
friendly manner.

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Fig. 1. CPU and memory temporal usage over 12 hours of four anonymous LRAs in Alibaba cluster trace.
2.3. Problem scope and challenges

While runtime LRA scheduling is well addressed by cluster
schedulers [47,51,34,28], this work focuses on addressing a plan-
ning problem for resource provisioning as we envisage the impor-
tance of pre-execution planning to the cost reduction of infrastruc-
ture management. The resource planner aims to work out the best
option for deploying the LRAs ahead of their execution, given that
all information of LRAs to be submitted is foreknown, to ensure a
predictable LRA execution.

We highlight challenging requirements for the planning prob-
lem we address in this paper.

• [R1] Multi-dimensional and time-varying resource require-
ments. LRAs usually require resources of different types (CPU
cores, memory, disk, etc.). Additionally, LRAs experience a no-
ticeable temporal resource dynamicity over time. Fig. 1 illus-
trates the dynamicity of CPU and memory usage of multiple
co-located LRAs over 12 hours, observed from the Alibaba
Cluster Trace [7]. Such dynamicity can be captured through
history-based profiling as most LRA workloads run in a re-
curring manner and have strong temporal pattern [17], which
helps to unlock the potential of accurate requirement models
and workload co-location in large-scale clusters [33,25,13]. The
owner of an LRA typically needs to determine the resource de-
mands (e.g., through extracting resource skyline based on the
resource requirement model) and translate the temporal re-
quirement into resource reservation.

• [R2] Application-level affinity constraints. Affinity constraints
encompass placement preferences or exclusions between LRAs.
While node-related affinity specifies which nodes an LRA is
eligible to be placed on, application-level affinity specifies
how many replicas of an LRA can be placed jointly given
the co-located LRAs on a node. These constraints are com-
pletely application-specific. For example, data producing and
data consuming applications could be co-located on the same
node for sharing intermediate data to save network bandwidth
and reduce network latency. To avoid excessive performance
interference, latency-sensitive streaming applications should
not be co-located on the same node. However, for some LRAs,
it is reasonable to co-locate their replicas within the same
available zone, which would help to ease service management,
reduce the cost of synchronization or data communication
between applications. Running applications without satisfying
such constraints would lead to unexpected application slow-
down or system turbulence. Such affinity requirements are
usually specified in the configuration (e.g., in a YAML/JSON
file) to flag LRA-specific performance preferences and QoS re-
quirements, before the deployment requests are submitted to
the infrastructure manager.
3

• [R3] Large-scale LRA deployment. Launching tens of thousands
of LRAs has now become the norm rather than the exception
for cloud service providers in the face of new cluster initializa-
tion. This increases the management complexity of deploying
large-scale LRAs. Each LRA has its own specific deployment
and resource requirements (e.g., CPU cores, RAM and persis-
tent storage). Therefore, the infrastructure manager needs to
be robust and scalable enough to make (near-)optimal deci-
sions, incorporating in the planning a huge number of resource
and affinity requirements, in the initial deployment stage.

The existing works only partially solve the above research chal-
lenges. Unlike runtime LRA scheduling, that aims to achieve low
scheduling latency (in the order of seconds or milliseconds), the
main task of pre-execution planning is to precisely place the LRAs
and to determine the amount of required resources in the IT in-
frastructure while satisfying all sophisticated specific constraints
of applications.

Obviously, for the resource planner, it is worth trading the plan-
ning time for solution quality. This trade-off in the planning pro-
cedure is particularly pivotal as low-quality LRA placement may
incur excessive cost in LRA re-scheduling and container migra-
tion, which is expensive due to the huge amount of state and disk
data to migrate over the network and unacceptable service down-
time. We believe an optimization-based plan-ahead is a necessary
and promising means for effective resource provisioning. Our work
aims at integrating the above requirements into a holistic system
model, and developing a suite of algorithms able to solve the re-
source provisioning problem and adapt to different scenarios.

3. System model and problem formulation

3.1. System model

Our system consists of compute nodes, which form the set N ,
and LRAs, which form the set L. Additionally, there are affinity re-
strictions for some pairs of LRAs from L.

Compute nodes are identical and their resources are character-
ized by d dimensions. In our basic model, there are two types of
resources, the number of CPU cores C1 and the number of units of
memory C2. It can be extended to take into account such charac-
teristics as the size of disk storage or Last-Level Cache, the memory
bandwidth, the number of GPU, etc. In general, according to [R1]
of the model, a node has d dimensions, with resource capacities
C1, C2, . . . , Cd .

LRAs differ in a number of parameters. In accordance with [R2],
each LRA consists of a given number of replicas that run from time
0 to infinity (or to a given time limit common for all LRAs). An LRA
i ∈ L has a given size sih (i.e., resource requirement) in dimension
h, 1 ≤ h ≤ d, and that value is the same for all replicas of that LRA.
For example, for the basic model, si1 and si2 are the number of

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Fig. 2. Allocation of three-dimensional LRAs to one node taking into account chang-
ing resource requirements over T time intervals.

CPU cores and the number of units of memory needed by each
replica of LRA i.

In the basic model, we assume that the sizes of LRAs do not
change over time. If several replicas of LRAs are allocated to the
same node, then the total size of allocated replicas in each dimen-
sion cannot exceed the node capacity in that dimension. Thus d
capacity constraints should be satisfied for each node.

In the enhanced model, the profiles of LRAs may change over
time. They are approximated via piece-wise constant functions. If
the timeline is split into T time intervals, so that within one inter-
val resource requirements of LRAs do not change, then the original
d-dimensional problem, with d resource types, is converted into
the problem of d′ dimensions:

d′ = T × d.

Fig. 2 illustrates allocation of three LRAs to one compute node.
Each LRA has specific resource requirements for d = 3 resource
types: memory, CPU and disc space. If application requirements
are static, then it is sufficient to consider only one fragment of
Fig. 2: one three-dimensional cube for a node, with LRAs placed
inside it without overlaps in each dimension. If application require-
ments change in T time intervals, then the memory, CPU and disk
constraints should be considered for each time interval. For the in-
stance considered in Fig. 2, there is one node and T snapshots of
that node, with the same three LRAs allocated to the node in each
of the T snapshots. The resource requirements of the LRAs change,
but the overall capacity of the node is not exceeded.

Affinity restrictions are defined for pairs of LRAs which replicas
can be jointly co-located to the same node, but with some limits,
or for pairs of incompatible LRAs, which cannot be co-located. If
LRA i is restrictive to LRA j, then there is an integer affinity value
aij which sets up an upper bound on the maximum number of
replicas of j that can be co-located on a node where at least one
replica of i is allocated. Thus [R2] of the model is characterized
by the set of affinity restrictions, represented as a directed graph
where vertices correspond to LRAs and arcs (i, j) correspond to
affinity restrictions associated with the values aij .

3.2. Problem formulation

In a feasible solution to the resource provisioning problem, all
replicas of all LRAs in the given set L should be allocated to a sub-
set of N , without violating affinity restrictions and node capacities
in each of the d dimensions (or, in general, d′ dimensions). The
objective is to minimize the total number of nodes in use.

We introduce an Integer Linear Programming (ILP) formulation
for the resource provisioning problem with constant resource de-
mands. Recall that for the time-varying resource demands, the
d-dimensional problem is converted into d′-dimensional problem,
d′ = T d, which implies that d is replaced by d′ in the ILP formula-
tion.

We use the following notations:
4

L for the set of LRAs,
Ri for the set of replicas of an application i ∈L,
N for the set of nodes,
A for the set of pairs (i, j) of applications which

have affinity restrictions aij ,
sih for the size of resource h required by a replica

of application i ∈L, in dimension h, 1 ≤ h ≤ d,
Ch for the capacity of each node in dimension h,

1 ≤ h ≤ d,
aij for the affinity restriction imposed by

application i (how many replicas of j can be
co-located together with a replica of i).

The decision variables take 0 – 1 values:

xirn is equal to 1 if the rth replica of application i
is allocated to node n,

yn is equal to 1 if node n is activated and
accommodates some replica(s),

zin is equal to 1 if at least one replica of
application i is allocated to node n.

Additionally, we compute constants νi for the maximum num-
ber of replicas of application i which can be allocated to one node,
regardless of affinity restrictions from other applications:

νi = min

{
min

1≤h≤d

{⌊
Ch

sih

⌋}
, |Ri |

}
. (1)

Here |Ri | is the total number of replicas of application i and
�Ch/sih� is the limitation associated with dimension h if replicas
of application i are allocated to a node. For example, in the basic
model with two resource types per node, the ratios �C1/si1� and
�C2/si2� are related to the CPU and memory limitations for repli-
cas of LRA i. In the enhanced model with time-varying profiles,
each dimension 1 ≤ h ≤ T d gives rise to a resource restriction in
the corresponding time interval.

The problem of allocating the replicas of all LRAs to the mini-
mum number of compute nodes without exceeding node capacities
and violating affinity restrictions of LRAs is modeled as the follow-
ing ILP:

min
∑
n∈N

yn (2a)

s.t.
∑
n∈N

xirn = 1, i ∈ L, r ∈ Ri, (2b)

∑
i∈L

sih

∑
r∈Ri

xirn ≤ Ch yn,

n ∈ N ,1 ≤ h ≤ d, (2c)∑
r∈Ri

xirn ≤ νi zin, i ∈ L,n ∈ N , (2d)

zin ≤
∑

r∈Ri

xirn, i ∈ L,n ∈ N , (2e)

∑
r∈R j

x jrn ≤ aij zin + ν j(1 − zin),

(i, j) ∈ A,n ∈ N , (2f)

xirn, yn, zin ∈ {0,1},
i ∈ L, r ∈ Ri,n ∈ N . (2g)

Objective function (2a) is the total number of activated nodes.
Constraint (2b) ensures that all replicas of all applications are allo-
cated, while constraint (2c) ensures that the capacity of each node

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Algorithm 1 Application-Centric approach.
1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: Select i ∈L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: Set n ← n + 1, N ← N ∪ {n} and activate node n
7: Select n∗ ∈ N , feasible for i, using a predefined rule
8: Allocate the maximum number of replicas of i to n∗
9: Remove i from L

is not exceeded in each dimension. The variables yn and zin are
linked to xirn by (2c)-(2e), and constraint (2f) guarantees that affin-
ity restrictions are observed.

The resource provisioning problem is NP-hard, as it generalizes
the combinatorial optimization problems of Vector Bin Packing and
Bin Packing with Conflicts [16]: the Vector Bin Packing problem oc-
curs when each LRA consists of a single replica and there are no
affinity restrictions; the Bin Packing with Conflicts occurs when
d = 1, each LRA consists of a single replica, and affinity values aij
between two conflicting LRAs are restricted to 0.

As we will discuss in §5.1, the presented ILP is capable of solv-
ing medium size instances, with up to 2, 000 two-dimensional
LRAs. In what follows we elaborate a broad range of heuristic
methods capable of solving effectively and efficiently LRA schedul-
ing problems typical for real-world massive-scale systems.

4. Our algorithm suite

This section presents an overview of the approaches (§4.1) and
implementation details for a range of algorithms (§4.2 to §4.4). We
then discuss the worst-case time complexities of the algorithms
(§4.5).

4.1. Overview

The heuristics described in this section stem from the vast body
of research on the Bin Packing Problem and its enhanced versions.
The methods distinguish in how they order the set of applications
L, the set of nodes N or the set of application-node pairs. The
choice of the most promising prioritization rules depends on the
scenarios to which the method is applied and on the datasets.

All methods consider only feasible allocations of application
replicas to the nodes, so that the node capacities are not exceeded
for each of the d resource types in each of the T time intervals, and
the affinity restrictions for the applications already allocated are
observed. By allocating replicas to the nodes in a feasible fashion
we guarantee that requirements [R1]-[R2] are satisfied. To handle
requirement [R3] we strive to achieve fast running times for our
heuristics.

Application-Centric approach. This approach considers the appli-
cations one by one in accordance with their ordering in L. For a
current application, it selects the first feasible node in the ordered
list N and allocates the maximum number of replicas to that node.
It then selects the next feasible node from N to continue alloca-
tion of the replicas of the current application. After all replicas of
the current application are allocated, the algorithm proceeds with
the next application in L, etc. The rules for ordering L and N are
formulated in §4.2, using the state-of-the-art findings in the body
of research on Bin Packing and Vector Bin Packing [16,35,40]. Al-
gorithm 1 outlines the pseudo-code of this approach.

Node-Centric approach. This approach considers the nodes one by
one in accordance with their numbering in list N . For a current
node, the algorithm selects from the list of non-allocated applica-
tions the one which is feasible for the current node and has the
5

Algorithm 2 Node-Centric approach.
1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: if no i ∈L is feasible for n then
4: Set n ← n + 1, N ← N ∪ {n} and activate node n
5: Select i∗ ∈ L which is feasible for n and delivers the maximum score
6: Allocate the maximum number of replicas of i∗ to n
7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

largest application-node score. The maximum number of replicas of
that application are allocated to the node. If the node is not fully
packed, then the application-node scores are recalculated, taking
into account the residual capacity of the current node, and the ap-
plication delivering the highest score is used for loading the node.
The process continues until no feasible application for the current
node can be found on the list L. The algorithm then proceeds with
the next node in the list, etc. The scoring rules are formulated in
§4.3, using the findings in the body of research on the Vector Bin
Packing problem [40]. Algorithm 2 outlines the pseudo-code of this
approach.

Multi-Node approach. This approach aims to overcome the myopic
nature of the Application-Centric and Node-Centric algorithms. A
large set of nodes is activated directly at start, and best allocation
options are selected across the whole pool of nodes. The algorithm
either finds a feasible solution or declares a failure, if the number
of activated nodes is too small to accommodate all applications.
The proposed approach requires that the desired number of nodes
is specified as part of the input. The search for a feasible solution
with the minimum number of nodes is arranged by calling the
algorithm repeatedly with different trial values for the number of
nodes, either via binary search, or with the trial value decremented
in steps.

We distinguish between the following two versions of the
Multi-Node approach, whose pseudo-codes are given as Algo-
rithms 3 and 4.

• The Multi-Node approach with Replica Spreading is the adap-
tation of the Application-Centric approach. LRAs are also con-
sidered one by one, but instead of allocating the maximum
number of replicas of a current application to the highest pri-
ority node, only one replica is allocated. With replicas spread
over a large pool of activated nodes, there is more flexibility
for selecting compatible LRAs for future co-location: affinity
constraints aij become less restrictive if a small number of
replicas of i and j are allocated to the same node.

• The Multi-Node approach with Application-Node Matching is
the adaptation of the Node-Centric approach. At each step the
score for every feasible application-node pair is computed, and
the pair with the highest score is selected for extending a
partial solution. One replica of the selected application is al-
located to the corresponding node, and the scores are recalcu-
lated to define the next most promising application-node pair.
This approach is more flexible than the original Node-Centric
approach: it benefits from a larger freedom for selecting the
most promising application-node pairs, with potentially better
utilized resources as a result.

4.2. Application-centric algorithms

At the core of the Application-Centric algorithms are the pri-
ority rules for ordering the list of applications L and the list of
nodes N . Based on the best performing algorithms known for Bin
Packing, there are three widely accepted possible orderings for the
nodes N and two orderings for the applications L.

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Algorithm 3 Multi-Node approach with Replica Spreading.
1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: Select i ∈L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: declare a failure and break
7: Select n∗ ∈ N , feasible for i, using a predefined rule
8: Allocate one replica of i to n∗
9: Remove i from L

Algorithm 4 Multi-Node approach with Application-Node Match-
ing.
1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: if no pair (i, n) is feasible (i ∈L, n ∈N) then
4: declare a failure and break
5: Select a feasible pair (i∗, n∗) which delivers the maximum score
6: Allocate one replica of i∗ to n∗
7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

For N , the nodes can be considered (a) in the activation or-
der, (b) in the increasing order of a priority index, or (c) in the
decreasing order of a priority index. For L, the applications can
be considered (1) in the order of their numbering, or (2) in the
decreasing order of a priority index. The priority indices can be de-
fined in multiple ways for the multi-dimensional problem. In the
remainder of this section, we describe the rules for calculating the
priority indices of applications, denoted by size measures and used
for ordering (2) of list L, and the rules for calculating the priority
indices of nodes, denoted by residual capacity measures and used
for ordering (b) or (c) of list N .

Depending on how the rules for N are combined with the rules
for L, the resulting algorithms are classified as (1a) First Fit (FF),
(1b) Best Fit (BF), (1c) Worst Fit (WF), (2a) First Fit Decreasing
(FFD), (2b) Best Fit Decreasing (BFD) and (2c) Worst Fit Decreasing
(WFD).

Applications’ priority indices. In the presence of resource require-
ment in multiple dimensions, one most significant dimension can
be used for prioritizing the applications. If no dominant dimen-
sion exists, as in the case of the Alibaba Tianchi dataset [44], there
is a need to compute a combined size measure si for each applica-
tion i ∈ L and to use it as a priority index. Introducing a single
measure allows us to address efficiently the issues related to re-
quirement [R1].

When dealing with non-comparable sizes sih of LRAs, such as
the number of CPU cores and memory, the values should be nor-
malized to satisfy s′

ih ∈ [0, 1], which is achieved by setting s′
ih = sih

Ch

in each dimension h, 1 ≤ h ≤ d. With the normalized sizes s′
ih of

LRAs, the node capacities are set to C ′
h = 1. In what follows, we

assume that the preprocessing has been done and the normalized
values are calculated. For simplicity, we drop the prime in the no-
tation.

The two natural combined measures are Average and Max,
whose corresponding expressions are stated in the first two lines
of Table 1.

The remaining measures use the following notations:

Wh = ∑
i∈L |Ri | sih for the total demand of all

LRAs in dimension h,
Dh = Wh∑

i∈L|Ri | for the average demand of all

LRAs in dimension h,
λh = Wh∑d

k=1 Wk
for the normalized demand of

all LRAs in dimension h.
6

Table 1
Application-Centric size measures si for applications i ∈L.

Average si = 1
d

∑d
h=1 sih

Max si = max1≤h≤d{sih}
Average with exponential weight [40] si = ∑d

h=1 eεDh · sih

Surrogate [12] si = ∑d
h=1 λh sih

Extended Sum [11] si = ∑d
h=1

|Ri |
Wh

sih

The Average measure with exponential weight is one of the best
performing measures in experiments on Vector Bin Packing, per-
formed by Panigrahy et al. [40]. It is computed as the weighted
sum of sih-values, with exponential weights depending on average
demands Dh . Parameter ε is a small number selected appropriately
for scaling.

The Surrogate measure is a natural extension of the 2-dimen-
sional measure of Caprara and Toth [12]. It is computed as the
weighted sum of sih-values, with the normalized demands λh used
for weights.

Finally, the Extended Sum is an adaptation of the measure used
in LraSched [11]. For application i, it is defined as the sum, over
all dimensions h, of the demands of all replicas of that application
|Ri |sih in dimension h normalized by the total demand Wh of all
applications in that dimension.

Prior research in the area of Bin Packing with Conflicts has dis-
covered the benefits of combining the demand-based measure si

with the conflict-based measure, which takes into account the crit-
icality of an application in terms of interference [38]. Generalizing
these ideas to affinity restrictions [R2] of our model, we define
the hybrid demand-affinity measure as the weighted sum of the
demand-based measure si and the affinity-based measure δi :

s̃i = α
si

s
+ (1 − α)

δi

δ
. (3)

Here si is computed via one of the expressions from Table 1, δi is
the total number of applications linked with application i in the
affinity graph, while α ∈ [0, 1] is chosen to give a higher priority
to application demands or to interference. Scaling is performed for
handling incomparable parameters, dividing by s and δ, the aver-
age values of si and δi , respectively.

Nodes’ residual capacities. The key characteristics of a partly
loaded node n ∈ N are residual capacities Cnh , maintained for all
dimensions h = 1, 2, . . . , d. They are computed as original node ca-
pacities Ch minus the total size of allocated replicas for the same
dimension h. In the presence of residual capacities in multiple di-
mensions, there is a need to compute a single residual capacity
measure Cn for each node n ∈ N and to use it as a priority in-
dex.

For each application size measure si from Table 1, we similarly
define the corresponding node residual capacity measure Cn (see
Table 2).

4.3. Node-centric algorithms

For the Node-Centric approach, the application-node score for
application i and node n, denoted by ξin , is computed only for a
feasible application node pair. The higher the score, the more ben-
eficial it is to allocate replicas of application i to node n, which is
currently being packed.

We explore in our algorithms the known best-performing
scores, together with a newly proposed score, denoted by Tight-
Fill, as shown in Table 3.

All four scores select for a current node n the application which
uses the d resources of the node to the highest extent.

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Table 2
Application-Centric residual capacity measures Cn for node n ∈N .

Average Cn = 1
d

∑d
h=1 Cnh

Max Cn = max1≤h≤d{Cnh}
Average with exponential weight Cn = ∑d

h=1 eεD ′
h · Cnh

Surrogate Cn = ∑d
h=1 λ′

h Cnh

Extended Sum Cn = ∑d
h=1

Cnh
W ′

h

where W ′
h = ∑

n∈N Cnh , D ′
h = W ′

h|N | ,

and λ′
h = W ′

h∑d
k=1 W ′

k

Table 3
Bin-Centric scores ξin for applications i ∈L and nodes n ∈N .

DotProduct [40] ξin = ∑d
h=1 sih Cnh

L2Norm [40] ξin = −∑d
h=1

(
Cnh − sih

)2

Fitness [11] ξin = ∑d
h=1

sih
Wh

· Cnh∑
k∈N Ckh

TightFill ξin = ∑d
h=1

sih

Cnh

• In the DotProduct score this is achieved by prioritizing the
dimensions for which node n has the largest capacity. An ap-
plication with highest demands in those dimensions is consid-
ered as the best choice.

• In the L2Norm score, the expression is negative so that the
smallest positive value indicates the best application for node
n. The preferred application minimizes the difference between
its size and residual capacity of the node measured via the L2
norm.

• In the Fitness score, the application demands sih are normal-
ized with respect to Wh , the total demand of all applications
in dimension h, and the node capacities Cnh are normalized
with respect to the total free capacity of all nodes in dimen-
sion h, 1 ≤ h ≤ n.

• The TightFill score is a counterpart of DotProduct which ensures
the tightest usage of the node residual capacity.

4.4. Multi-node algorithms

Recall that multi-node algorithms require a target number of
nodes as part of the input. The search for a feasible solution with
the minimum number of nodes is arranged by calling the algo-
rithm repeatedly with different trial values for the number of
nodes, either via binary search or with the trial value decremented
in steps.

Multi-Node Algorithms with Replica Spreading. These algorithms
use the same principles as the Application-Centric algorithms, but
with the aim of replica spreading across the whole pool of ac-
tivated nodes, reducing this way the restrictions imposed by the
affinity constraints aij . Among the six Application-Centric algo-
rithms discussed in Section 4.2, only Worst Fit and Worst Fit De-
creasing produce different solutions if n nodes are activated at
start rather than being activated one by one on the fly. The re-
maining Application-Centric algorithms, First Fit, First Fit Decreas-
ing, Best Fit and Best Fit Decreasing, do not change their behavior
if a pool of nodes is activated at start. For this reason, we cre-
ate only two algorithms by combining the Multi-Node and the
Application-Centric approaches, with the shortcut names SpreadWF
and SpreadWFD.

Multi-Node Algorithms with Application-Node Matching. These
algorithms use the same principles as the Node-Centric algorithms,
7

Table 4
Algorithms’ time complexity. L is the number of applications, R is the total number
of all replicas of all applications, n is the given (target) number of nodes.

Application-Centric O (R2 L)

Node-Centric O (RL2)

Multi-Node with Replica Spreading and n nodes O (RLn)

Multi-Node with Application-Node Matching and n nodes O (RL2n)

but on a pool of n activated nodes rather than on single nodes con-
sidered one by one. Each time, the most appropriate application-
node pair is selected among all possible pairs of unallocated ap-
plications and non-fully packed nodes by using the scores defined
in §4.3 for the Node-Centric approach, and a single replica is allo-
cated. It is expected that the replicas of an application are spread
broadly across the nodes pool, with less restrictions caused by the
affinity constraints.

4.5. Time complexity of algorithms

The three introduced approaches, Application-Centric, Node-
Centric and Multi-Node, provide the foundation to build a wide
range of heuristics. The choice of a specific method, together with
the most appropriate measures or scores, depends on special fea-
tures of scenarios and datasets, and on limitations on algorithms’
running times. Analytical estimates of running times are provided
in Table 4. Note that the actual performance of the algorithms may
differ from the theoretical estimates since the worst-case analysis
takes into account very rare scenarios. It is also noted that the
running time estimates for the Multi-Node approach are made for
a single call with a fixed n given as the trial number of nodes.
These estimates have to be multiplied by the total number of calls
made by the decrementing method, or by the binary search, to get
the time complexity of the overall procedure.

The choice of the size measure (Table 1) for si should take into
account not only its impact on the running time, but also the na-
ture of the dataset. In the presence of a dominating (bottleneck)
resource type h∗, 1 ≤ h∗ ≤ d, which plays the critical role in ap-
plication allocation, computing of the measure si can be simplified
by using si = sih∗ instead. For Application-Centric approaches, in-
corporating the hybrid size measure of Eq. (3) on top of one of
the standard measures from Table 1 can be beneficial if affinity
constraints are very restrictive, so that many pairs of applications
are in conflict. Note that Eq. (3) does not affect the asymptotic
worst-case time complexity, but may slow down the algorithms’
performance on large datasets.

5. Performance evaluation

All algorithm codes, scripts for generating the instances, as well
as additional figures, are publicly available at https://github .
com /DSSGroup -Leeds /LRA -binpacking -expe.

5.1. Experimental settings

Simulation configuration and instance generation. As the pre-
execution planning is independent from the runtime execution of
LRAs, we adopt simulation-based evaluation to validate the effi-
cacy of different algorithms on a single machine equipped with
one Intel Xeon Gold 6138 CPU and 64 GB of memory. We sim-
ulate different scales of LRA submission and evaluate how our
algorithms succeed in LRA allocation onto a mocked compute clus-
ter with identical nodes comprising 64 CPU cores and 128 GB of
memory.

Our aim is to examine several sets of instances, each set with
common features and related to a specific scenario, and to select
the winning algorithms from our suite. The instances stem from

https://github.com/DSSGroup-Leeds/LRA-binpacking-expe
https://github.com/DSSGroup-Leeds/LRA-binpacking-expe

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Table 5
Summary of generated instances.

Scenario Varied affinity density Varied number of LRAs

|L| 9, 338
10,000
50,000
100,000

|Ri | , sih same as Alibaba [44] similar to Alibaba [44]

affinity density �
1%
5%
10%

0.5%

affinity graph type arbitrary threshold normal arbitrary threshold normal

d = 2
(CPU, memory)

90 instances
without temporal changes

90 instances
without temporal changes

d = 98 × 2
(CPU, memory, 98 time steps)

90 instances
with temporal changes

90 instances
with temporal changes
the dataset published by the Alibaba Tianchi Platform [44]. The
original dataset contains the data for 9, 338 LRAs with a total of
68, 224 replicas and 24, 078 affinity restrictions. Each LRA has re-
source requests in two dimensions: CPU cores and memory. LRA
resource profiles change over time, with recordings known for 98
time sampling points.

We study two scenarios: one with different densities of affinity
restrictions and another one with different numbers of LRAs. Our
aim is to evaluate the impact of these characteristics on the so-
lution quality and the running times of the proposed algorithms.
Each scenario is subdivided into two sets of instances depending
on whether LRA resource requests are constant or change over
time. Each set contains a total of 90 instances:

• three types of affinity graphs (arbitrary, normal, threshold),
• three values of one of the varied parameters (affinity density

or the number of LRAs),
• 10 instances for each combination.

A summary of the generated instances is presented in Table 5.
In the instances with varied affinity density, represented in the

second column of Table 5, the number of LRAs |L| is the same as
in the original Alibaba dataset [44], while the number of affinity
restrictions, measured as affinity density, is different. The affinity
density � is defined as the average number of affinity restrictions
per LRA divided by the total number of LRAs. For example, affinity
density of 10% means that each LRA has affinity restrictions with
10% of other LRAs on average. Note that in the original Alibaba
dataset, the affinity density is lower than 0.05%. However, in prac-
tice, the real graph is system-specific – for those cluster systems
with sufficient resources, the affinity graph could be sparse due
to less restrictions on application co-location. In comparison, there
could be complex dependencies or placement constraints among
applications in some systems, which lead to denser affinity rela-
tionships in the graph. We therefore select diverse higher density
values for experiments to investigate the impact of affinity restric-
tions on the solution quality and algorithms’ running times. For
each LRA, the number of replicas per application |Ri | and resource
requirements sih are kept unchanged, as in the original Alibaba
dataset.

In the instances with varied number of LRAs, represented in the
third column of Table 5, the affinity density is fixed to the same
value (0.5%), while the number of LRAs |L| is different. We select
larger instances compared to the Alibaba dataset [44] to explore
the capabilities of the algorithms for optimizing the performance
of massive scale systems. The values for the number of replicas
|Ri | and resource requirements sih are defined using the same
probability distributions as in the original Alibaba dataset.
8

For any type of instance, affinity values aij were generated fol-
lowing the same probability distribution as in the original Alibaba
dataset.

Consider now the three approaches to graph generation, given
number |L| of vertices and expected density �. One method for
generating arbitrary graphs is described by Sadykov and Vander-
beck [41]. The key idea is as follows: starting with a graph with
no arcs, pairs of nodes are selected at random (with uniform
distribution) and connected by arcs. Arc generation stops when
the desired graph density is achieved. Another method generates
threshold graphs. It is described by Gendreau et al. [22] and elab-
orated further by Bacci and Nicoloso [9] for parameter correction.
The produced graphs fall into the category of interval graphs and
they are characterized by a given expected edge density. Note that
for some optimization problems on graphs, their versions with in-
terval graphs are sometimes easier to solve. We propose the third
approach to generate so called normal graphs. The resulting graphs
differ from arbitrary random graphs by the presence of clustered
nodes and sparingly connected nodes. They also differ from thresh-
old graphs as they generally do not satisfy the strict restrictions of
interval graphs. The method starts with a graph of |L| vertices and
no arcs, and then for each vertex i it randomly picks a value pi
following the normal distribution of mean �|L| and standard de-
viation �|L|/2, restricting the value between 0 and |L| − 1. Then
pi vertices are selected at random using uniform distribution and
they are used as end-nodes for arcs originating from vertex i.

The resource requirements of each LRA are copied from the Al-
ibaba dataset for all 98 sampling points, if considering the class
with temporal changes (last row of Table 5), or they are extrapo-
lated if considering the class without temporal changes (penultimate
row of Table 5): for each LRA i we select the maximum values si1,
si2 among those provided for the 98 sampling points and round
them to the next integer.

Evaluation methodology and metrics. We evaluate the effective-
ness and time efficiency of each algorithm.

The effectiveness is measured by recording the number of nodes
found in a feasible solution and calculating the deviation from the
lower bound, a “lower-the-better” indicator. Since the total number
of nodes cannot be smaller than the total demand Wh of all LRAs
in dimension h divided by the node capacity Ch in that dimension,
where h = 1, . . . , n, the lower bound is defined as

LB = max
1≤h≤d

{⌈
Wh

Ch

⌉}
. (4)

The time efficiency is measured as the algorithm’s computation
time, averaged over the 10 instances of a given configuration of
graph class and density value, or graph class and LRA number.

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Baseline Methods. We mainly have three baselines in the ex-
periments: two heuristics of Medea [21] and one heuristic of
LraSched [11].

The TagPopularity (Medea-TP) heuristic is Application Centric.
It allocates applications one by one, starting with those having
the highest interference. This heuristic can be classified as FFD
with size measure si = δi , the special case of Eq. (3) with α = 0.
NodeCandidates (Medea-NC) is another version of the Application-
Centric approach, with si-parameters representing the total num-
ber of available nodes in the system which can accommodate a
replica of i, observing capacity and affinity restrictions:

si =
∑
n∈N

ζin. (5)

Here ζin = 1 if a replica of application i can be allocated to node n
without violating affinity restrictions, and ζin = 0, otherwise. Appli-
cations are allocated one by one, starting with the most restrictive
ones, i.e., those having the lowest sizes si computed by Eq. (5),
and sizes of the remaining applications are re-computed after each
step.

LraSched [11] uses a two-phase approach. The first phase aims
at maximizing the number of fully allocated LRAs and resource uti-
lization of the given restricted pool of available nodes. The second
phase aims at minimizing the number of new nodes used to al-
locate remaining LRAs. The second phase employs a Node-Centric
algorithm with the Fitness score. We denote the algorithm of this
second phase by LRASched-Fitness.

Algorithm naming. We implemented our algorithms and the three
baseline algorithms in C++.

The shortcut names of Application-Centric algorithms include
the ordering rule (§4.2) and the size measure (Table 1). For exam-
ple, WFD-AvgExp denotes the WFD algorithm with the size mea-
sure “average with exponential weight”.

Node-Centric Algorithms with Decreasing Scores are denoted by
NCD followed by the scoring name (Table 3). “Decreasing score”
indicates the choice of the largest application-node score in each
step. For example, NCD-DotProduct denotes the Node-Centric algo-
rithm with decreasing dot-product score.

Considering Multi-Node algorithms, we focus on the versions
with replica spreading and exclude the versions with application-
node matching from our experiments, as their running times were
observably too long even for the instances with 9,338 LRAs.

For the replica spreading versions we use prefix Spread in the
notation, and postfix BinSearch or Decr, depending on the search
strategy used for multiple calls with different values of the target
number of nodes.

Binary search strategy narrows down the interval which esti-
mates the minimum number of nodes. It uses Eq. (4) for the initial
lower bound, and the output of the First Fit (FF) algorithm for
the initial upper bound. For example, SpreadWFD-Avg-BinSearch de-
notes the spreading version of WFD (with “average” size measure)
in combination with binary search.

The alternative, Decrementing approach arranges the search by
decreasing the target number of nodes in steps. For the starting
point, it uses the same value for the upper bound as binary search.
In the notation, postfix Decr is followed by the step value. For
example, SpreadWFD-Avg-Decr2 denotes the spreading version of
WFD (with “average” size measure) in combination with the decre-
menting approach, which decreases the target number of nodes
from the best value found so far, in decrements computed as 2% of
the lower bound.
9

Fig. 3. Performance summary of algorithms for instances with 9, 338 LRAs, different
affinity densities and without temporal changes.

5.2. Capabilities of the ILP model

The instances introduced in Table 5 appeared to be too hard for
the ILP model formulated in §3.2. Considering smaller instances,
we have found that solutions can be obtained for medium size
instances, with up to 2, 000 LRAs having about 15, 500 replicas
in total. In those instances, LRAs have resource requirements in
CPU and memory, which do not change over time. This is the two-
dimensional case of the problem under study. Allowing sufficiently
large computation time, of up to 4 hours, Gurobi solver can find
solutions within 0.2% from lower bounds.

Clearly, for instances with more than 2, 000 LRAs, heuristics
should be preferred due to their scalability and flexibility of in-
tegrating with real-life schedulers.

5.3. Results for instances without temporal changes

In this section we discuss the performance of the algorithms
on two-dimensional instances, which correspond to the penulti-
mate row of Table 5. A high-level overview of the results, averaged
over all 90 instances with different affinity densities, is illustrated
in Fig. 3, and the overall shape of the trade-off does not change
essentially in experiments with temporal changes. The trade-off
between effectiveness and computation time can help practition-
ers in selecting the algorithm that best fits their requirements.

In the following, we analyze in depth the algorithms’ perfor-
mance on instances with varied affinity density (described in col-
umn 2 of Table 5) and on instances with varied number of LRAs
(described in column 3 of Table 5). As no major differences were
observed between the results obtained for the three types of affin-
ity graphs, we report the results for the graphs of arbitrary type,
unless specified.

Effectiveness. Instances with varied density. In general, all Applica-
tion-Centric algorithms (FF and various versions of FFD, BFD and
WFD with different size measures) perform similarly, with approxi-
mately 12.1% deviation from the lower bound on average, with two
exceptions. First, algorithms FFD, BFD and WFD with the “Extended
Sum” measure are consistently worst-performing, with 15.6% de-
viation on average. Second, WFD-AvgExp has 10.7% deviation on
average and consistently outperforms all others. The advantage of
WFD-AvgExp stems from the focus on the most demanding dimen-
sions when selecting the next LRA to be allocated.

Node-Centric algorithms place themselves between WFD-AvgExp
and the other Application-Centric algorithms, with 11.5% deviation
on average.

The spreading versions of the Multi-Node algorithms are par-
ticularly successful. For example, SpreadWFD-Avg-BinSearch and
SpreadWFD-Avg-Decr2 achieve 4.5% and 5.4% deviation from the
lower bound, respectively. Solutions of similar quality are obtained

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Fig. 4. Different affinity densities under fixed resource requests, |L| = 9,338.
by the versions of SpreadWFD-AvgExp, but at the cost of larger
computation time (a consequence of computing a more elaborate
size measure).

We visualize the results of the representatives of each algorithm
family in Fig. 4, where we also include the summary of the base-
line algorithms. We observe that Medea-NC, with 12.6% deviation,
is outperformed by all other algorithms (except for algorithms with
the “ExtendedSum” measure not included in Fig. 4), while Medea-
TP performs similar to the Application-Centric algorithms, with
12.2% deviation. LRASched-Fitness works similar to other Node-
Centric algorithms, with a slightly smaller execution time. Com-
pared with these baselines, our algorithms of type SpreadWFD-Avg
are 7% closer to the lower bound. This marginal number implies
about 350 nodes saving, which is of significance for cost-effective
and energy-efficient datacenters.

Comparing the results for different affinity densities we do not
observe noticeable differences in the algorithms’ effectiveness. The
exceptions are SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-Decr2
applied to the instances with threshold graphs, where the devia-
tion from the lower bound increases from 3.6% to 10.5% as the
graph density increases.
Instances with varied LRA number. As shown in Fig. 5(a), the algo-
rithms’ effectiveness generally improves when the LRA scale in-
creases. With 100, 000 LRAs, FF, BFD-Avg and Medea-TP achieve
2.5% deviation from the lower bound on average, NCD-DotProduct
and LRASched-Fitness achieve 2.4% deviation, and WFD-AvgExp
reaches 2% deviation.

SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-Decr2 are partic-
ularly successful, achieving 0.9% and 1.8% deviation on average,
with figures as low as 0.3% for SpreadWFD-Avg-BinSearch when
applied to instances with 100, 000 LRAs. However, an interesting
anomaly was observed for smaller instances, with 10, 000 LRAs:
there were several instances with arbitrary and normal affinity
graphs for which two SpreadWFD algorithms could not find bet-
ter solutions than FF. Still the performance of SpreadWFD is the
10
best even on small instances, if averaging the results of multiple
experiments.

Execution time. Instances with varied density. Fig. 4(b) shows the
average execution times of the algorithms when applied to the in-
stances with different affinity densities. FFD-based algorithms are
among the fastest, along with FF and Medea-TP, while BFD-based
algorithms are slightly slower. All these algorithms merely take less
than 5 s, 18 s, and 33 s for densities 1%, 5% and 10%, respectively.
In contrast, WFD-based algorithms are much slower, taking 26 s,
41 s and 61 s, respectively.

Node-Centric algorithms and LRASched-Fitness are in-between:
NCD-DotProduct takes 16 s, 34 s and 62 s on average for the three
densities, while LRASched-Fitness runs a few seconds faster.

Overall, the relative difference in running times between these
algorithms tends to decrease when the affinity density increases.
With 10% density, the running times for the WFD-based algorithms
are similar to LRASched-Fitness and NCD-DotProduct.

The best-performing algorithm SpreadWFD-Avg-BinSearch is un-
surprisingly among the slowest algorithms, taking 225 s, 653 s and
1214 s on average, when the affinity density grows. This is because
binary search needs iterative calls of the replica spreading version
of WFD to find the appropriate number of nodes. Replacing bi-
nary search by iteratively decreasing the number of target nodes
enables SpreadWFD-Avg-Decr2 to achieve a two-fold speedup, com-
pared with the binary search version.

Medea-NC is the slowest algorithm observed. It takes on average
512 s, 3, 200 s and 8, 005 s when handling the instances with 1%,
5% and 10% density. It is worth noticing that, while using fine-
tuned data structure may reduce the running time of Medea-NC,
its effectiveness would not change and remain inferior to other
algorithms.
Instances with varied LRA number. Fig. 5(b) shows the average exe-
cution times of the algorithms applied to the instances with dif-
ferent numbers of LRAs, and obviously there is an increasing trend
when there are more LRAs to be scheduled. The fastest algorithms

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Fig. 5. Different LRA numbers under fixed resource requests, affinity graph density is 0.5%.
include FF, Medea-TP and BFD-Avg that can solve instances with
100, 000 LRAs within 8 minutes. In contrast, LRASched-Fitness, NCD-
DotProduct and WFD-AvgExp are much slower, taking about 35,
45 and 78 minutes on average to do the same task. Spreading
approaches take even longer time: 2 and 7 hours, respectively.
Medea-NC was excluded from this series of experiments due to
overly excessive execution time even for 10, 000 LRAs. Aligned
with Fig. 3, the results indicate that datacenter operators need to
thoroughly strike a balance between the targeted solution qual-
ity and the permitted planning time to pinpoint the bespoke op-
tion.

5.4. Results for instances with temporal changes

The instances with time-varying resource requests of applica-
tions are modeled as the problem with d = 98 × 2 dimensions, as
described in the last row of Table 5. This dimension increase leads
to a substantial growth of execution time. Medea-NC, LRASched-
Fitness and Node-Centric algorithms such as NCD-DotProduct were
discarded from the performance comparison for being too compu-
tationally expensive. Again, as no major differences were observed
between results of the three different affinity graphs, we only re-
port the results for the graphs of arbitrary type, unless specified.

Effectiveness. Instances with varied density. For the majority of the
algorithms, the change in the affinity density does not signifi-
cantly affect the accuracy of the solutions found, as demonstrated
in Fig. 6(a). The exceptions occur for the threshold graphs, similar
to the instances without temporal changes: there is a substantial
degradation in the performance of the two SpreadWFD algorithms,
from 2.2% to 10.1% when the affinity density changes from 1% to
10%. Again, this is because the SpreadWFD algorithms could not
find better solutions than the given upper bound on several in-
stances with 5% or 10% density, and the solutions from FF were
used instead.
11
Instances with varied LRA number. As shown in Fig. 7(a), there is a
negligible discrepancy among the performance of each algorithm
with different numbers of LRAs, when handling time-varying re-
source requests. For example, with SpreadWFD-Avg-BinSearch, the
deviation from the lower bound only increases from 3.2% to 3.8%
when the LRA number grows from 10, 000 to 100, 000. Similar
observations are valid for other algorithms, indicating that the pro-
posed algorithms are successful in large-scale scenarios.

Execution time. Instances with varied density. As shown in Fig. 6(b),
FF, BFD-Avg and Medea-TP can solve any instance within 45 sec-
onds on average, while WFD-AvgExp finishes within 4 minutes and
SpreadWFD-Avg-Decr2 within 9 minutes. SpreadWFD-Avg-BinSearch
takes about 18 minutes to solve high density instances with 9, 338
LRAs, which seems to be the best choice of algorithm considering
its achieved effectiveness of less than 3% deviation from the lower
bound, on average. It is also worth noticing that, for instances
with 1% density, the running times of SpreadWFD-Avg-BinSearch
and WFD-AvgExp are similar and almost double the running time
of SpreadWFD-Avg-Decr2. This is particularly unexpected for WFD-
AvgExp, which involves one call of the application-centric WFD-
algorithm, compared to multiple calls of SpreadWFD-Avg-Decr2.
Instances with varied LRA number. As shown in Fig. 7(b), similar but
smaller differences in the execution times can be observed un-
der different submission scales, compared with the observations
in Fig. 6(b). The disparity is due to the computation time of the
size measures of LRAs with 196 dimensions. Numerically, FF and
Medea-TP can solve any instance with 100, 000 LRAs in 14 min-
utes on average and BFD-Avg takes 18 minutes. SpreadWFD-Avg-
Decr2, WFD-AvgExp and SpreadWFD-Avg-BinSearch take 2.5, 5 and
11 hours, respectively, to solve the largest instances. Interestingly,
SpreadWFD-Avg-Decr2 appears to be the best choice for instances
with time-varying resource requests, as it achieves effectiveness
close to the best algorithm, SpreadWFD-Avg-BinSearch, with a 4-
fold speedup in terms of the running time.

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Fig. 6. Different affinity densities under time-varying resource requests, |L| = 9,338.

Fig. 7. Different LRA numbers under time-varying resource requests, affinity graph density is 0.5%.
6. Algorithm recommendations

We recommend Application-Centric algorithms if the compu-
tation time is required to be as small as possible. In that group
of algorithms, the version of the traditional Bin Packing algorithm
First Fit (FF), adjusted to handle the problem with replicas and
affinities, is among the fastest approaches. Its solution quality is
either similar or just slightly worse than the quality of solutions
found by other Application-Centric algorithms. Only one published
algorithm, Medea-TP, achieves comparable computation time and
solution quality. As we show in §4, Medea-TP belongs to the same
group of Application-Centric algorithms and differs from FF by an
additional ordering of LRAs. It appears that, on the instances gen-
12
erated from the Alibaba Tianchi dataset, special ordering does not
have a significant impact on the quality of the solution and on
computation time.

We recommend Multi-Node algorithms if the primary aim is
to find solutions of the best quality, possibly with longer but still
acceptable computation time (say, up to 30 minutes to allocate
10, 000 LRAs). An ultimate winner in our experiments is Spread-
WFD-Avg-BinSearch. It uses a special spreading mechanism to allo-
cate replicas of the same LRA across different nodes. The spreading
mechanism substantially increases the range of nodes suitable for
co-location of a current application with a broader set of com-
patible LRAs. Additionally, it adopts binary search to identify the
smallest, but feasible, number of nodes in the solution. None of

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16

Fig. 8. Algorithm selection dependent on practitioners’ needs.
the algorithms, either in our suite or among the published ones,
achieves the same solution quality, namely 0.3% deviation from the
lower bound, when handling instances with 100, 000 LRAs.

Finally, in-between the two extremes of fastest but less accurate
algorithms, and slowest but most accurate ones, there are those
of intermediate running time and intermediate solution quality.
All Node-Centric algorithms fall into this category, with LRASched-
Fitness and NCD-DotProduct being best performing. Both algorithms
produce solutions of comparable quality and differ slightly in their
running times: LRASched-Fitness is faster on instances with affini-
ties, while DotProduct is faster and superior in terms of the solu-
tion quality on instances without affinities.

There is one outlier in the Application-Centric group, WFD-
AvgExp: it performs slower than the majority of Application-Centric
algorithms and slower than the Node-Centric algorithms but out-
performs all of them in terms of the solution quality. We would
like to observe that overall the Application-Centric algorithm WFD
is often overlooked by practitioners and not included in their trials.

Note that we observe that all algorithms become much slower
for instances with time-varying profiles, and the Node-Centric al-
gorithms become prohibitively slow. Therefore, we narrow down
our recommendations to Medea-TP and FF (the fastest), Spread-
WFD-Avg-Decr2 (of intermediate running time and solution quality)
and Spread-WFD-Avg-BinSearch (the best solution quality).

As a summary we present Fig. 8 which highlights our rec-
ommendations for practitioners on selecting the most promising
solution approach depending on the application scenario and prac-
titioners’ needs. The main question to consider is the acceptable
computation time. For most of the scenarios the limitations related
to affinity restrictions do not affect the algorithm choice: generally
speaking, the density of the affinity restrictions does not change
the performance of our algorithms essentially. The only exception
is the group of the Node-Centric algorithms, in which the Dot-
Product version is better suited for solving problems with multiple
affinity constraints, and the LRASched-Fitness [11] might have ad-
vantages for less restricted problems.

While we provide generic algorithm recommendations, one
common practice in large-scale system engineering is to further
conduct trade-off analysis on a case-by-case basis given the re-
quirements of algorithm quality and execution time. Scheduler sys-
tem administrators or developers can first run profile-based testing
based on sampled data to pick up competitive candidate algo-
rithms and validate in a small-scale test system. This procedure
can significantly help to understand system behaviors in a con-
trollable manner – Unseen instances are rare as the workload of
a production system is supposed to be stable, and profiling and
small scale tests can usually capture most of the workloads and
13
learn their patterns. Then larger and diverse instances could be
used to tune the performance of algorithms and figure out the best
performer before deploying the algorithms into production grade
systems.

7. Practical considerations

Integration into multi-stage cluster management. While this pa-
per focuses on the algorithmic support for resource provisioning,
the proposed algorithm suite can be more widely integrated in a
multi-stage cluster management that consists of cluster initializa-
tion and runtime scheduling.

At the initialization stage, given that the scheduling system
foreknows all information of LRAs to be submitted, the resource
planner that runs the algorithm suite can work out the best op-
tion for scheduling the LRAs with the minimal required nodes.
Horizontal scaling will be consequently used to match the plan-
ning outcome, through elastically sizing the number of bare metal
servers or virtual machines in the resource pool. Once the cluster is
initialized for hosting the LRAs, the cluster management will shift
into the runtime scheduling stage that responds to the new LRA
submissions and available resource release. Cluster schedulers can
accept any incoming LRA in the regular round of resource alloca-
tion [47,51,34,28]. Consequently, the admitted LRAs will gradually
consolidate the nodes in the cluster until there is no room for new
LRAs and a long waiting queue manifests. Cluster auto-scaling will
be performed to mitigate the long starvation of the waiting LRAs
and handle dynamic load spikes. The resource provisioning algo-
rithm will be re-triggered accordingly.

Runtime management considerations. While our algorithm suite
can provide competitive solutions that minimize the number of
required computing nodes, the resource provisioning in practice
usually comes with some resource slack or over-provisioning to
increase reliability for the unknown and prevent degradation in
user experience. Based upon the calculation of initial resource pro-
visioning as a guidance, additional resource reservation by system
operators allows to mitigate uncertainties at runtime such as an
excessive increase in LRA’s tail latency, out-of-memory problems
when the LRA’s resource usage fluctuates, failures or stragglers due
to unexpected data stream coming into the LRA, etc. The reserved
yet idle resources can be harvested by using a series of system
optimization techniques including hypervisor or kernel level over-
subscription [51,34,31] and core reassignment mechanism [39].

Other objectives considerations. The scheduling problem formu-
lated in the paper is an attempt to find the minimum number of

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
nodes that accommodate different LRA scales and affinity restric-
tion densities. However, in real scenarios, the compute capability
is sometimes limited compared to the increasing number of LRAs.
The Multi-Node algorithms are well suited to address these types
of problems. They operate with a fixed value n for the number of
nodes, given as part of the input. In the implementation described
in §4, a Multi-Node algorithm declares a failure if not all LRAs
are allocated to the pool of n nodes. However, the LRA allocation,
available after the algorithm terminates, is an appropriate solu-
tion for the problem with a given node value n. Depending on the
optimization criterion, one may decide to adopt the Multi-Node Al-
gorithms with Replica Spreading, if the number of accepted LRAs
is to be maximized, or the Multi-Node Algorithm with Application-
Node Matching if the node utilization is to be maximized.

8. Related work

Cluster management. Resource management systems in shared
clusters can be divided into two categories: centralized and de-
centralized systems. Centralized approaches assign resources based
on user requests [54,47,46] or framework offers [27]. Multiple re-
sources are negotiated among diverse applications through a cen-
tral resource manager. To make the procedure fair and avoid re-
source starvation, Dominant Resource Fairness [23], capacity or fair
scheduling are adopted for resource sharing among multiple jobs.
Decentralized approaches [43,34,10,30] are developed for clusters
that expect a high throughput or high cluster utilization. However,
the goal of these works is to enable sub-second resource allocation
and task scheduling at runtime without solving a global optimiza-
tion problem with complex placement constraints.

LRA scheduling. YARN [46] mainly supports the affinity constraints
related to nodes/racks. Borg [47] and ROSE [43] use machine scor-
ing mechanism for matching a specific collection of nodes to the
requirements of the applications. Graph-based approaches [29,24]
model the scheduling problem as a min-cost max-flow optimiza-
tion over a network. However, they merely consider one dimension
in the capacity constraint, and affinities to specific machines con-
straints. An attempt to incorporate those additional features in
Aladdin [49] makes it prohibitive for applying powerful min-cost
max-flow methods.

Application-level affinity is increasingly important. Kubernetes
scheduler [1] is responsible for selecting the best node for each
incoming pod. A pod is referred to as an independent execution
unit and is equivalent to one replica of an LRA in this paper. A
ReplicaSet parameter ensures that a specified number of pods are
running anytime. However, it considers one pod at each scheduling
round and implements the node selection in a filtering phase. The
nodes that cannot run the pod are ruled out considering the spec-
ifications in the node/pod affinity. This design leads to one-shot
resource allocation to a pod rather than considering it as a global
optimization problem.

Medea [21] formulates the placement problem as an ILP and
employs heuristics periodically to consider multiple LRAs at once
at a lower scheduling latency. However, the focus of the authors
is on scheduling a small batch of LRAs. By contrast, our work ad-
dresses pre-execution resource planning for the whole set of LRAs.

We also refer the reader to thorough surveys on wide-ranging
Bin Packing algorithm design [16,35,40].

In addition, a huge body of machine learning and reinforce-
ment learning based scheduling techniques offer alternatives for
scheduling LRAs to mitigate the limitations of manual specification
and resource estimation – which usually require expert knowledge
and operational experience – in the process of requirement engi-
neering. LraSched [11] employs online machine learning for auto-
estimating the size of LRAs’ containers and the degree of affin-
ity. Metis [48] and George [32] adopt deep reinforcement learning
14
(DRL) to automatically learn to place LRAs based on observing the
incurred reward and iteratively improving the scheduling policy.
However, these works heavily depend on a huge number of high-
quality workload logs, which are feasible for big companies but
will place a huge obstacle on small businesses and academic or-
ganizations. Due to the exponential space of actions, DRL-based
solutions are also limited to small-scale optimization problem, and
thus only applicable to on-the-fly decision making.

Interference-aware LRA runtime management. There is a substan-
tial body of research on interference-aware LRA scheduling and
runtime management. Paragon [19] and Quasar [20] use multi-
variable statistical classifiers to predict the expected interference
among co-located LRAs. ROSEQ [51] and Toposch [28,55] devise
performance-aware scheduling mechanisms that can safely co-
locate batch jobs together with LRAs through elaborately monitor-
ing the runtime performance of the LRAs. Horus [52] and Men-
doza et al. [36] propose interference-aware schedulers for infer-
ence serving or model training, reducing the latency degradation
from co-location interference or holistic training time. However,
kernel/application-level counters are leveraged to track the run-
time performance of the LRAs as a whole, without discussing the
replicas and their impact on the scheduling quality. Overall, the
focus of these research works prioritize the performance guaran-
tee through effective container isolation and low-cost preemption.
They are orthogonal to the resource provisioning scheme devel-
oped in this paper and offer supplementary mechanisms in the
runtime execution stage.

9. Conclusions and future work

Resource provisioning of shared clusters is extremely important
for minimizing the operating cost and ensuring that the schedul-
ing systems meet both current and future demands. LRA work-
loads add further complexity to resource provisioning since they
run from hours to months, typically having time-varying resource
requirements and co-location affinity constraints. Careless or no
planning often leads to poor utilization and performance of a clus-
ter system.

This paper develops an affinity-aware resource provisioning
scheme for LRA placement in shared clusters, supported by a new
system model and an adjustable algorithmic toolkit. The main ben-
efits of that toolkit are as follows.

• Consisting of dozens of algorithms with multiple parameters,
there are three major approaches which complement each
other. Their implementation can be streamlined as algorithms’
building blocks are of similar nature.

• Application-Centric approach is the most popular one with re-
searchers and practitioners. However, one of its algorithms,
Worst Fit Decreasing, is broadly overlooked in the literature
and in practice. Our experiments show that it often outper-
forms all other Application-Centric algorithms in terms of so-
lution quality, and its execution time is comparable to the
execution times of widely used First Fit Decreasing and Best
Fit Decreasing algorithms from the same approach. Worst Fit
Decreasing also outperforms the Node-Centric algorithms but
at the cost of a slightly longer execution time.

• The third and novel approach is Multi-Bin activation. While it
involves multiple calls to one of the LRA allocation functions
of Application-Centric and Node-Centric approaches, individual
calls are relatively fast. If needed, the algorithm can be termi-
nated earlier, still achieving improved solutions compared to
the first two approaches.

• The proposed toolkit is comprehensive and, together with
new approaches, it encompasses a variety of the published

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
algorithms, which can be classified as special cases of the
Application-Centric and Node-Centric approaches. A system-
atic summary of size measures and score functions, provided
in this paper, makes the toolkit tunable to fit specific features
of real-world scenarios. We have illustrated how the tuning
works based on an Alibaba public dataset and similar work
could be conducted for any required scenario.

In the future, we plan to investigate automatic algorithm selec-
tion from our algorithm pool and automatic tuning of the selected
algorithm. We also plan to integrate the proposed heuristics into
Kubernetes to evaluate how theoretical study can navigate the run-
time execution.

CRediT authorship contribution statement

Clément Mommessin: Conceptualization, Methodology, Soft-
ware, Visualization, Writing – original draft. Renyu Yang: Concep-
tualization, Investigation, Methodology, Project administration, Vi-
sualization, Writing – original draft. Natalia V. Shakhlevich: Fund-
ing acquisition, Methodology, Supervision, Writing – review &
editing. Xiaoyang Sun: Visualization, Writing – review & editing.
Satish Kumar: Writing – review & editing. Junqing Xiao: Writing
– review & editing. Jie Xu: Funding acquisition, Supervision, Writ-
ing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code are shared within the github repository
given in the manuscript

Acknowledgments

This work was supported by UK EPSRC Grant (EP/T01461X/1),
Turing Pilot Project and Turing PDEA Scheme funded by UK Alan
Turing Institute. Experiments were undertaken on ARC4, part of
the High Performance Computing facilities at the University of
Leeds, UK. Clément Mommessin and Renyu Yang are co-first au-
thors with equal contribution.

References

[1] Kubernetes, kubernetes .io /docs /concepts.
[2] Statista survey, https://www.statista .com /statistics /1236823 /microservices -

usage -per-organization -size/.
[3] Storm, storm .apache .org.
[4] Flink, flink.apache .org.
[5] Kafka stream, kafka .apache .org.
[6] HBase, hbase .apache .org.
[7] Alibaba cluster tracegithub .com /alibaba /clusterdata .
[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., Tensorflow: a system for large-scale machine learning,
in: Proc. of USENIX OSDI, 2016, pp. 265–283.

[9] T. Bacci, S. Nicoloso, On the benchmark instances for the bin packing with con-
flicts, arXiv preprint, arXiv:1706 .03526.

[10] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou, Apollo:
scalable and coordinated scheduling for cloud-scale computing, in: Proc. of
USENIX OSDI, 2014, pp. 285–300.

[11] B. Cai, Q. Guo, J. Yu, LraSched: admitting more long-running applications
via auto-estimating container size and affinity, Comput. J. 65 (9) (2022)
2377–2391, https://doi .org /10 .1093 /comjnl /bxab072.

[12] A. Caprara, P. Toth, Lower bounds and algorithms for the 2-dimensional vector
packing problem, Discrete Appl. Math. 111 (3) (2001) 231–262.
15
[13] Y. Cheng, Z. Chai, A. Anwar, Characterizing co-located datacenter workloads: an
Alibaba case study, in: Proc. of ACM APSys, 2018, pp. 1–3.

[14] L. Cherkasova, W. Tang, S. Singhal, Providing high availability using lazy repli-
cation, ACM Trans. Comput. Syst. 10 (4) (1992) 360–391.

[15] L. Cherkasova, W. Tang, S. Singhal, An SLA oriented capacity planning tool for
streaming media services, in: Proc. of IEEE DSN, 2004, pp. 743–752.

[16] E.G. Coffman, J. Csirik, G. Galambos, S. Martello, D. Vigo, Bin packing approx-
imation algorithms: survey and classification, in: Handbook of Combinatorial
Optimization, 2013, pp. 455–531.

[17] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini,
Resource central: understanding and predicting workloads for improved re-
source management in large cloud platforms, in: Proc. of ACM SOSP, 2017,
pp. 153–167.

[18] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[19] C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for heterogeneous
datacenters, ACM SIGPLAN Not. (2013) 77–88.

[20] C. Delimitrou, C. Kozyrakis, Quasar: resource-efficient and QoS-aware cluster
management, ACM SIGPLAN Not. (2014) 127–144.

[21] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao, Medea: scheduling
of long running applications in shared production clusters, in: Proc. of EuroSys,
2018, pp. 1–13.

[22] M. Gendreau, G. Laporte, F. Semet, Heuristics and lower bounds for the bin
packing problem with conflicts, Comput. Oper. Res. 31 (3) (2004) 347–358.

[23] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant
resource fairness: fair allocation of multiple resource types, in: Proc. of USENIX
NSDI, 2011.

[24] I. Gog, M. Schwarzkopf, A. Gleave, R.N. Watson, S. Hand, Firmament: fast, cen-
tralized cluster scheduling at scale, in: Proc. of USENIX OSDI, 2016, pp. 99–115.

[25] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, Y. Bao, Who limits the
resource efficiency of my datacenter: an analysis of Alibaba datacenter traces,
in: Proc. of ACM IWQoS, 2019, pp. 1–10.

[26] L. Helali, M.N. Omri, A survey of data center consolidation in cloud computing
systems, Comput. Sci. Rev. 39 (2021) 100366.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S.
Shenker, I. Stoica, Mesos: a platform for fine-grained resource sharing in the
data center, in: Proc. of USENIX NSDI, 2011.

[28] C. Hu, J. Zhu, R. Yang, H. Peng, T. Wo, S. Xue, X. Yu, J. Xu, R. Ranjan, Toposch:
latency-aware scheduling based on critical path analysis on shared YARN clus-
ters, in: Proc. of IEEE CLOUD, 2020, pp. 619–627.

[29] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg, Quincy:
fair scheduling for distributed computing clusters, in: Proc. of ACM SOSP, 2009,
pp. 261–276.

[30] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G.M. Fumarola,
S. Heddaya, R. Ramakrishnan, S. Sakalanaga, Mercury: hybrid centralized and
distributed scheduling in large shared clusters, in: Proc. of USENIX ATC, 2015,
pp. 485–497.

[31] S. Kim, H. Kim, J. Lee, J. Jeong, Group-based memory oversubscription for vir-
tualized clouds, J. Parallel Distrib. Comput. 74 (4) (2014) 2241–2256.

[32] S. Li, L. Wang, W. Wang, Y. Yu, B. Li, George: learning to place long-lived con-
tainers in large clusters with operation constraints, in: Proc. of ACM SoCC,
2021, pp. 258–272.

[33] Q. Liu, Z. Yu, The elasticity and plasticity in semi-containerized co-locating
cloud workload: a view from Alibaba trace, in: Proc. of ACM SoCC, 2018,
pp. 347–360.

[34] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, C. Kozyrakis, Heracles: improv-
ing resource efficiency at scale, in: Proc. of ACM ISCA, 2015, pp. 450–462.

[35] S. Martello, P. Toth, Bin-packing problem, in: Knapsack Problems: Algorithms
and Computer Implementations, Wiley, 1990, pp. 221–245.

[36] D. Mendoza, F. Romero, Q. Li, N.J. Yadwadkar, C. Kozyrakis, Interference-aware
scheduling for inference serving, in: Proc. of MLSys, 2021, pp. 80–88.

[37] MongoDB, www.mongodb .com.
[38] A.E.F. Muritiba, M. Iori, E. Malaguti, P. Toth, Algorithms for the bin packing

problem with conflicts, INFORMS J. Comput. 22 (3) (2010) 401–415.
[39] A. Ousterhout, J. Fried, J. Behrens, A. Belay, H. Balakrishnan, Shenango: achiev-

ing high CPU efficiency for latency-sensitive datacenter workloads, in: Proc. of
NSDI, 2019, pp. 361–378.

[40] R. Panigrahy, K. Talwar, L. Uyeda, U. Wieder, Heuristics for Vector Bin Packing,
Microsoft Research.

[41] R. Sadykov, F. Vanderbeck, Bin packing with conflicts: a generic branch-and-
price algorithm, INFORMS J. Comput. 25 (2) (2013) 244–255.

[42] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, C. Curino, Apache Tez:
a unifying framework for modeling and building data processing applications,
in: Proc. of ACM SIGMOD, 2015, pp. 1357–1369.

[43] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, C. Li, ROSE: cluster
resource scheduling via speculative over-subscription, in: Proc. of IEEE ICDCS,
2018, pp. 949–960.

[44] Alibaba Tianchi Dataset, https://tianchi .aliyun .com /dataset /dataDetail ?dataId =
6287 &lang =en -us.

[45] L.Q. Torres, D. Colish, SRE best practices for capacity management, in: Proc. of
USENIX PATRONS, 2020, p. 49.

http://kubernetes.io/docs/concepts
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
http://storm.apache.org
http://flink.apache.org
http://kafka.apache.org
http://hbase.apache.org
http://github.com/alibaba/clusterdata
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib46502A5D79AB6F847B027D5376476664s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib46502A5D79AB6F847B027D5376476664s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9528D32FD047CED79DF5273CAA6FFA0s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9528D32FD047CED79DF5273CAA6FFA0s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9528D32FD047CED79DF5273CAA6FFA0s1
https://doi.org/10.1093/comjnl/bxab072
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib57340A250B8F4740B8CDFB94D5CB3A95s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib57340A250B8F4740B8CDFB94D5CB3A95s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib03311D5954143207AB80FFE4AA0B01F0s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib03311D5954143207AB80FFE4AA0B01F0s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib1D0EFF55E54E701AB5CEDF672C3C6241s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib1D0EFF55E54E701AB5CEDF672C3C6241s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib7B5BAA4243E2DB3D1C304E60A5E15A9Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib7B5BAA4243E2DB3D1C304E60A5E15A9Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib11B53B06A2F8683FBEDEB03931FA8C5Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib11B53B06A2F8683FBEDEB03931FA8C5Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib11B53B06A2F8683FBEDEB03931FA8C5Fs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib4DFB65D4124D7EEB0A2D3A1D29E4E440s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib4DFB65D4124D7EEB0A2D3A1D29E4E440s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibCC25C2D4D140F4678BCBC4328003C64As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibCC25C2D4D140F4678BCBC4328003C64As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib760707A8FDF3C6B4A62044A3CEB0804Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib760707A8FDF3C6B4A62044A3CEB0804Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib760707A8FDF3C6B4A62044A3CEB0804Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibD897D97AB08ECE2FE13DD9866F1C3A58s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibD897D97AB08ECE2FE13DD9866F1C3A58s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib436F290D893C6832D96AC67A03AA2A22s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib436F290D893C6832D96AC67A03AA2A22s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib436F290D893C6832D96AC67A03AA2A22s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib337061E9D088F0D38A77468B3CA21098s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib337061E9D088F0D38A77468B3CA21098s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA479396119DA90EA629DB338395DAD4As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA479396119DA90EA629DB338395DAD4As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA479396119DA90EA629DB338395DAD4As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibE3F5E72B456D20EC68FEC30CDB509380s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibE3F5E72B456D20EC68FEC30CDB509380s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibA9B1A285A2182568A1332BD4D88BC8B3s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0ACB607991993A2E937FB5B5ED3B52CAs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0ACB607991993A2E937FB5B5ED3B52CAs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0ACB607991993A2E937FB5B5ED3B52CAs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib50945C63DEF233E4641AC3EE0BDC4B2Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib50945C63DEF233E4641AC3EE0BDC4B2Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib50945C63DEF233E4641AC3EE0BDC4B2Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0C189389732E81C128F53B9914BAA6ADs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0C189389732E81C128F53B9914BAA6ADs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0C189389732E81C128F53B9914BAA6ADs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib0C189389732E81C128F53B9914BAA6ADs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF4AA2079853ECDB755207030B144BDEDs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF4AA2079853ECDB755207030B144BDEDs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF1D98E9008EF65288AD7B13C92499FC6s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF1D98E9008EF65288AD7B13C92499FC6s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF1D98E9008EF65288AD7B13C92499FC6s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib229783244278E8D9FA2D9873D7C78F83s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib229783244278E8D9FA2D9873D7C78F83s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib229783244278E8D9FA2D9873D7C78F83s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib3DC1A543ECCD253ECA1C575BF1B7EE51s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib3DC1A543ECCD253ECA1C575BF1B7EE51s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib1AAED44176702D362EA959EB1B368D45s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib1AAED44176702D362EA959EB1B368D45s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibBF4312DE181E4FEA1CA3A8DE23EE53CBs1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibBF4312DE181E4FEA1CA3A8DE23EE53CBs1
http://www.mongodb.com
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib83EF30F567C27CCA3A25B6919C158089s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib83EF30F567C27CCA3A25B6919C158089s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib6EEBB44F1ECAC70CF97A9C3A74B10068s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib6EEBB44F1ECAC70CF97A9C3A74B10068s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib6EEBB44F1ECAC70CF97A9C3A74B10068s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib2FC7047B68BB711147A163F43736C9B4s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib2FC7047B68BB711147A163F43736C9B4s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib7E2F9B14C50F0B038116D3B7481A6251s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib7E2F9B14C50F0B038116D3B7481A6251s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib7E2F9B14C50F0B038116D3B7481A6251s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib9765EA9D07D689439B5CFEF9EE9347A8s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib9765EA9D07D689439B5CFEF9EE9347A8s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib9765EA9D07D689439B5CFEF9EE9347A8s1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=6287&lang=en-us
https://tianchi.aliyun.com/dataset/dataDetail?dataId=6287&lang=en-us
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibD108C19E0C9A8E5FA1A0BC4AF083FCC1s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibD108C19E0C9A8E5FA1A0BC4AF083FCC1s1

C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
[46] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: yet another re-
source negotiator, in: Proc. of ACM SoCC, 2013, pp. 1–16.

[47] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: Proc. of ACM Eurosys, 2015,
pp. 1–17.

[48] L. Wang, Q. Weng, W. Wang, C. Chen, B. Li, Metis: learning to schedule long-
running applications in shared container clusters at scale, in: SC20, IEEE, 2020,
pp. 1–17.

[49] H. Wu, W. Zhang, Y. Xu, H. Xiang, T. Huang, H. Ding, Z. Zhang, Aladdin: opti-
mized maximum flow management for shared production clusters, in: Proc. of
IEEE IPDPS, 2019, pp. 696–707.

[50] R. Yang, J. Xu, Computing at massive scale: scalability and dependability chal-
lenges, in: 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE), IEEE, 2016, pp. 386–397.

[51] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen, H. Peng, J. Xu, C. Li,
Performance-aware speculative resource oversubscription for large-scale clus-
ters, IEEE Trans. Parallel Distrib. Syst. 31 (7) (2020) 1499–1517.

[52] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, P. Garraghan, Horus:
interference-aware and prediction-based scheduling in deep learning systems,
IEEE Trans. Parallel Distrib. Syst. 33 (1) (2022) 88–100.

[53] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, et al., Apache Spark: a unified engine for big
data processing, Commun. ACM 59 (11) (2016) 56–65.

[54] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, J. Xu, Fuxi: a fault-tolerant resource
management and job scheduling system at Internet scale, in: Proc. of VLDB
Endowment, 2014, pp. 1393–1404.

[55] J. Zhu, R. Yang, X. Sun, T. Wo, C. Hu, H. Peng, J. Xiao, A.Y. Zomaya, J. Xu,
Qos-aware co-scheduling for distributed long-running applications on shared
clusters, IEEE Trans. Parallel Distrib. Syst. 33 (12) (2022) 4818–4834.

Clement Mommessin is currently a post-doc in
the University of Leeds, UK. He is working on schedul-
ing for large-scale distributed systems, and simulation
applied to platforms such as parallel and distributed
machines in the HPC (High Performance Computing)
or Cloud/Edge Computing domains. He graduated as
a Ph.D. in computer science in December 2020 for
which he worked under the supervision of Denis Trys-
tram and Giorgio Lucarelli, in the DATAMOVE team of

the Laboratoire d’Informatique de Grenoble. He held an internship in the
MCS division of the Argonne National Laboratory in the US under the su-
pervision of Matthieu Dreher, Tom Peterka and Bruno Raffin.

Renyu Yang is an EPSRC-funded Research Fellow
with the University of Leeds, UK. He was previously
with Alibaba Group China and Edgetic Ltd. UK, having
industrial experience in building large-scale resource
scheduling systems. His research interests include re-
liable resource management, distributed systems and
applied machine learning. He is a member of IEEE.

Natalia V. Shakhlevich is currently a senior lec-
turer with the University of Leeds, UK. Her research
interests are in the area of Deterministic schedul-
ing theory, combinatorial optimization, computational
complexity.

Xiaoyang Sun is currently a PhD student with Uni-
versity of Leeds, UK. He received MSc degree from
Beihang University, China in 2018. He was previously
a software engineer in Alibaba Group, working on
real-time systems and large-scale cluster scheduling.
His research interests include distributed systems and
data analytics, etc.

Satish Kumar is a Research Fellow in the Dis-
tributed Systems and Services Research Group at the
School of Computing, University of Leeds, Leeds, UK.
Prior to that, he was a PhD student at the School of
Computer Science, University of Birmingham. Before
his PhD study, he was a Lecturer at IMS College Ghazi-
abad and Teaching Associate (guest faculty) at Gautam
Buddha University, Greater Noida, India.

Junqing Xiao is currently a software engineer with
Alibaba Group. He obtained an MSc degree from Bei-
hang University in 2018. His research interests include
distributed systems and data center resource manage-
ment.

Jie Xu is the Chair Professor of Computing at Uni-
versity of Leeds, the leader for a Research Peak of
Excellence at Leeds, Director of UK EPSRC WRG e-
Science Center, Executive Board Member of UK Com-
puting Research Committee (UKCRC), and Chief Sci-
entist of BDBC, Beihang University, China. He has
worked in the field of dependable distributed com-
puting for over 30 years. He is a Steering/Executive
Committee member for numerous IEEE conferences

including SRDS, ISORC, HASE, SOSE and is a co-founder for IEEE IC2E,
DAPPS, JCC, etc. He has led or co-led many research projects to the value
of over $30M, and published in excess of 400 academic papers, book chap-
ters and edited books. He is a Fellow of the Alan Turing Institute.
16

http://refhub.elsevier.com/S0743-7315(23)00032-1/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibC96552E240AFD642BC34EC32CCC5D51Es1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib73C16A857B000FA87113CCCD8E261AB2s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib73C16A857B000FA87113CCCD8E261AB2s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib73C16A857B000FA87113CCCD8E261AB2s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib35F578430448AB8C03BA1E022ECAA57As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib35F578430448AB8C03BA1E022ECAA57As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib35F578430448AB8C03BA1E022ECAA57As1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibBF4A56510AA492DC311892C30BB7E286s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibBF4A56510AA492DC311892C30BB7E286s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibBF4A56510AA492DC311892C30BB7E286s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib138A40767DA447EAE66863EB07ED0198s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib138A40767DA447EAE66863EB07ED0198s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib138A40767DA447EAE66863EB07ED0198s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibB1F24387F648190AE1AE0D5192382F27s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibB1F24387F648190AE1AE0D5192382F27s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibB1F24387F648190AE1AE0D5192382F27s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib25DBBC41E04134EFC78881D42F8768F1s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib25DBBC41E04134EFC78881D42F8768F1s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib25DBBC41E04134EFC78881D42F8768F1s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF718B1438612B90FB4C5E013248E4986s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF718B1438612B90FB4C5E013248E4986s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bibF718B1438612B90FB4C5E013248E4986s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib856560B4EA67E0B41E3B0B56CE7CA21Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib856560B4EA67E0B41E3B0B56CE7CA21Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib856560B4EA67E0B41E3B0B56CE7CA21Ds1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib3D67C099B82F12A452ACE8343ED3AF75s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib3D67C099B82F12A452ACE8343ED3AF75s1
http://refhub.elsevier.com/S0743-7315(23)00032-1/bib3D67C099B82F12A452ACE8343ED3AF75s1

	Affinity-aware resource provisioning for long-running applications in shared clusters
	1 Introduction
	2 Background and motivation
	2.1 Microservice and long-running applications
	2.2 Resource provisioning
	2.3 Problem scope and challenges

	3 System model and problem formulation
	3.1 System model
	3.2 Problem formulation

	4 Our algorithm suite
	4.1 Overview
	4.2 Application-centric algorithms
	4.3 Node-centric algorithms
	4.4 Multi-node algorithms
	4.5 Time complexity of algorithms

	5 Performance evaluation
	5.1 Experimental settings
	5.2 Capabilities of the ILP model
	5.3 Results for instances without temporal changes
	5.4 Results for instances with temporal changes

	6 Algorithm recommendations
	7 Practical considerations
	8 Related work
	9 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

