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Resource provisioning plays a pivotal role in determining the right amount of infrastructure resource 
to run applications and reduce the monetary cost. A significant portion of production clusters is now 
dedicated to long-running applications (LRAs), which are typically in the form of microservices and 
executed in the order of hours or even months. It is therefore practically important to plan ahead 
the placement of LRAs in a shared cluster for the minimized number of compute nodes required by 
them. Existing works on LRA scheduling are often application-agnostic, without particularly addressing 
the constraining requirements imposed by LRAs, such as co-location affinity constraints and time-varying 
resource requirements. In this paper, we present an affinity-aware resource provisioning approach for 
deploying large-scale LRAs in a shared cluster subject to multiple constraints, with the objective of 
minimizing the number of compute nodes in use. We investigate a broad range of solution algorithms 
which fall into three main categories: Application-Centric, Node-Centric, and Multi-Node approaches, and 
tune them for typical large-scale real-world scenarios. Experimental studies driven by the Alibaba Tianchi 
dataset show that our algorithms can achieve competitive scheduling effectiveness and running time, as 
compared with the heuristics used by the latest work including Medea and LraSched. Best results are 
obtained by the Application-Centric algorithms, if the algorithm’s running time is of primary concern, 
and by Multi-Node algorithms, if the solution quality is of primary concern.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Resource provisioning in large-scale compute clusters is of the 
utmost importance in IT infrastructure capacity management [45]
and critical to the overall stability and performance of a clus-
ter [15]. Virtualization and containerization offer a cost-effective 
solution for server and application consolidation [26,50]. The con-
solidation typically has an objective of minimizing the number of 
occupied hosts (virtual machines or physical servers) needed to 
underpin the workloads. It must take into account the characteris-
tics of workloads and use cases in order to correctly size a cluster 
and minimize the cost of workload deployment.

Traditional workloads in clusters are data analytic batch jobs 
[18,42,54] with short-lived tasks (in the order of seconds). How-
ever, long-running applications (LRAs) – such as latency-sensitive 
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databases, user-facing services, streaming processing frameworks, 
etc. – have now become another main type of workloads sup-
ported by production clusters (Google [47], Microsoft [21], Al-
ibaba [33]). In particular, across six analytics clusters at Microsoft, 
each comprising tens of thousands of machines, at least 10% of 
each cluster’s machines are used for LRAs and two clusters are 
used exclusively for LRAs [21]. In Alibaba, 94.2% of the total CPU 
capacity in a cluster is allocated to LRAs [25]. In fact, microservice 
architecture has been the key enabler to build up large-scale IT 
infrastructures. Each individual microservice – practically instanti-
ated as an LRA that can be independently implemented, built and 
maintained – is hosted in a long-lived container that usually ex-
ecutes for a long time frame (from hours to months) either for 
iterative computations in memory or for handling web requests. 
An LRA often makes use of multiple replicas of it to ensure low 
latency, fault tolerance, and high availability [47,14,1].

While it is appealing to build up complex enterprise IT sys-
tems consisting of a very large number of LRAs, there are many 
challenges associated with co-location, LRA multiplicity and het-
erogeneity. In reservation-based infrastructure, LRAs typically need 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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to reserve multi-dimensional resources ahead of their execution, 
and their resource usage usually has strong temporal patterns. To 
optimize the performance and resilience, an LRA has application-
specific placement preferences or exclusions when it is co-located 
with other LRAs. For instance, some LRAs are often required to be 
co-located to save network bandwidth and reduce latency or to be 
separately placed to reduce resource contention and performance 
interference. The ever-increasing scale of the number of new LRAs 
to be deployed (tens of thousands) and the corresponding affinity 
relationships further complicate resource reservation. In a nutshell, 
a robust and scalable resource provisioning scheme should tackle 
multi-dimensional temporal resource requests and LRA-level affini-
ties, i.e., it should address placement of identical replicas incurred 
by each LRA, resolve replica conflicts stemming from the affinity 
constraints, and handle efficiently large-scale LRA deployment sce-
narios.

To the best of our knowledge, none of the existing studies to 
date addresses all these requirements at the same time, although 
every single requirement might have been considered. Most of the 
existing work (e.g., [54,47,46,43,51]) is application-agnostic and 
only focuses on node-related affinity, neglecting inter-application 
affinity constraints. Kubernetes [1] and Medea [21] address the 
application-related affinity, but do not address the requirement of 
scheduling all LRAs as a global optimization problem: Kubernetes 
schedules one LRA replica (pod) at a decision point, while Medea 
aims at runtime scheduling of relatively small batches of LRAs pe-
riodically. LraSched [11] only addresses the intra-application affin-
ity constraints. Additionally, the capability of handling massive-
scale scheduling problems of these three solutions has not been 
fully investigated.

The problem we study is to minimize the number of com-
pute nodes required for accommodating LRAs in a shared cluster, 
subject to a set of strict resource and affinity constraints. We for-
mulate the problem as an ILP and develop a new system model 
that can be considered as a generalization of the combinatorial op-
timization problems of Vector Bin Packing and Bin Packing with 
Conflicts [16]. Considering the diversity of real-world scenarios 
that gives rise to instances with a variety of characteristics, a fast 
heuristic, successful for one scenario, may perform poorly on an-
other. This motivates us to develop an algorithm suite that can 
be used by practitioners for selecting the best performing heuris-
tics that best fit the specific needs of a given scheduling scenario. 
To illustrate the capabilities of the suite, we perform experiments 
on instances generated from the Alibaba Tianchi dataset [44] and 
compare the winning approaches from our suite with the best per-
forming published algorithms: two heuristics from Medea [21], 
namely TagPopularity and NodeCandidate, as well as a heuristic 
based on the Fitness measure introduced in LraSched [11]. A high-
level summary of the most successful algorithms in our toolkit and 
those published in the literature is presented in Fig. 3, Section 5.

Our suite consists of three groups of algorithms: Application-
Centric, Node-Centric and the Multi-Node approaches. The first 
two algorithm groups stem from the state-of-the-art research on 
Vector Bin Packing and Bin Packing with Conflicts [16]. The third 
algorithm group is particularly successful in the presence of LRA 
replicas and associated affinity restrictions. While Application-
Centric algorithms are recommended when the computation time 
is required to be as small as possible, the Multi-Node algorithms 
deliver solutions of best quality (within only 0.3% deviation from 
the lower bound), with a larger running time. Node-Centric Algo-
rithms place themselves in between, offering a trade-off between 
solution quality and time to find a solution.

To summarize, the main contributions of this paper are as fol-
lows:
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• Formulating a resource provisioning problem to address tem-
poral resource requests and application-level affinity con-
straints (§3);

• Devising an algorithm suite to provide adaptable solutions to 
a variety of real-world scenarios (§4);

• Selecting, via extensive computational experiments, a collec-
tion of best performing algorithms that can effectively handle 
large-scale LRA deployment (§5), focused on the use-case of 
the Alibaba Tianchi dataset [44];

• Elaborating algorithm recommendations providing a trade off 
between computation time and solution quality when con-
fronted with different scenarios (§6).

Our findings can serve as the basis for practitioners and re-
searchers for optimizing the resource provisioning and capacity 
planning to handle large-scale LRA placement in different scenar-
ios.

2. Background and motivation

2.1. Microservice and long-running applications

Cloud services and enterprise IT systems have been experienc-
ing a major shift from monolithic applications that encompass 
the whole functionality within a software package (e.g., the full-
stack LAMP application) to thousands of loosely-coupled microser-
vices that can be independently built and maintained. According to 
Statista survey [2], in 2021, 85% of respondents from large organi-
zations with 5, 000 or more employees stated that they had been 
using microservices in their software development environments.

As a key enabler, microservice architecture is particularly sup-
portive to build extensible and loosely-coupled systems at scale. 
Enterprise microservices can be considered as an important and 
widely popular types of long-running applications (LRAs). They 
are typically hosted in long-lived containers that can run for 
hours, or even months, and consist of a diverse mix of appli-
cations from web servers to databases. Such applications are 
long-standing, user-facing and interactive services, working in 
“request-and-response” manner to serve user requests. Represen-
tative examples of LRAs include streaming processing frameworks 
(Storm [3], Flink [4], Kafka streams [5]), latency-sensitive database 
applications (HBase [6] and MongoDB [37]), and data-intensive in-
memory computing frameworks (Spark [53], Tensorflow [8]).

2.2. Resource provisioning

LRAs need to be deployed into on-premises or cloud infrastruc-
ture. Resource provisioning – one of the key elements in capacity 
management [45] – plays a pivotal role in determining the initial
amount of infrastructure capacity (required resources) that can run 
a collection of applications. Particularly, for a homogeneous com-
puting cluster where each node has the same hardware and the 
same operating system, infrastructure capacity can be regarded as 
the number of compute nodes (bare metal servers or virtual ma-
chines in a virtualized cloud cluster).

Most large-scale infrastructure managers [47,33,13] adopt reser-
vation-based resource requests and resource allocations, i.e., appli-
cation users or developers are required to specify the number of 
resources required (CPU cores, RAM, GPUs, etc.) at the submission 
of the applications. To lower the operational costs, one simple yet 
prevalent task of resource provisioning is to minimize the num-
ber of nodes capable of handling the reservation requests of a 
given set of LRAs. The plan-ahead before LRA deployment and ex-
ecution is of major importance to IT administrators to facilitate 
a better understanding of resource requirement and to resize the 
infrastructure configuration in an economical and environmental-
friendly manner.
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Fig. 1. CPU and memory temporal usage over 12 hours of four anonymous LRAs in Alibaba cluster trace.
2.3. Problem scope and challenges

While runtime LRA scheduling is well addressed by cluster 
schedulers [47,51,34,28], this work focuses on addressing a plan-
ning problem for resource provisioning as we envisage the impor-
tance of pre-execution planning to the cost reduction of infrastruc-
ture management. The resource planner aims to work out the best 
option for deploying the LRAs ahead of their execution, given that 
all information of LRAs to be submitted is foreknown, to ensure a 
predictable LRA execution.

We highlight challenging requirements for the planning prob-
lem we address in this paper.

• [R1] Multi-dimensional and time-varying resource require-
ments. LRAs usually require resources of different types (CPU 
cores, memory, disk, etc.). Additionally, LRAs experience a no-
ticeable temporal resource dynamicity over time. Fig. 1 illus-
trates the dynamicity of CPU and memory usage of multiple 
co-located LRAs over 12 hours, observed from the Alibaba 
Cluster Trace [7]. Such dynamicity can be captured through 
history-based profiling as most LRA workloads run in a re-
curring manner and have strong temporal pattern [17], which 
helps to unlock the potential of accurate requirement models 
and workload co-location in large-scale clusters [33,25,13]. The 
owner of an LRA typically needs to determine the resource de-
mands (e.g., through extracting resource skyline based on the 
resource requirement model) and translate the temporal re-
quirement into resource reservation.

• [R2] Application-level affinity constraints. Affinity constraints 
encompass placement preferences or exclusions between LRAs. 
While node-related affinity specifies which nodes an LRA is 
eligible to be placed on, application-level affinity specifies 
how many replicas of an LRA can be placed jointly given 
the co-located LRAs on a node. These constraints are com-
pletely application-specific. For example, data producing and 
data consuming applications could be co-located on the same 
node for sharing intermediate data to save network bandwidth 
and reduce network latency. To avoid excessive performance 
interference, latency-sensitive streaming applications should 
not be co-located on the same node. However, for some LRAs, 
it is reasonable to co-locate their replicas within the same 
available zone, which would help to ease service management, 
reduce the cost of synchronization or data communication 
between applications. Running applications without satisfying 
such constraints would lead to unexpected application slow-
down or system turbulence. Such affinity requirements are 
usually specified in the configuration (e.g., in a YAML/JSON 
file) to flag LRA-specific performance preferences and QoS re-
quirements, before the deployment requests are submitted to 
the infrastructure manager.
3

• [R3] Large-scale LRA deployment. Launching tens of thousands 
of LRAs has now become the norm rather than the exception 
for cloud service providers in the face of new cluster initializa-
tion. This increases the management complexity of deploying 
large-scale LRAs. Each LRA has its own specific deployment 
and resource requirements (e.g., CPU cores, RAM and persis-
tent storage). Therefore, the infrastructure manager needs to 
be robust and scalable enough to make (near-)optimal deci-
sions, incorporating in the planning a huge number of resource 
and affinity requirements, in the initial deployment stage.

The existing works only partially solve the above research chal-
lenges. Unlike runtime LRA scheduling, that aims to achieve low 
scheduling latency (in the order of seconds or milliseconds), the 
main task of pre-execution planning is to precisely place the LRAs 
and to determine the amount of required resources in the IT in-
frastructure while satisfying all sophisticated specific constraints 
of applications.

Obviously, for the resource planner, it is worth trading the plan-
ning time for solution quality. This trade-off in the planning pro-
cedure is particularly pivotal as low-quality LRA placement may 
incur excessive cost in LRA re-scheduling and container migra-
tion, which is expensive due to the huge amount of state and disk 
data to migrate over the network and unacceptable service down-
time. We believe an optimization-based plan-ahead is a necessary 
and promising means for effective resource provisioning. Our work 
aims at integrating the above requirements into a holistic system 
model, and developing a suite of algorithms able to solve the re-
source provisioning problem and adapt to different scenarios.

3. System model and problem formulation

3.1. System model

Our system consists of compute nodes, which form the set N , 
and LRAs, which form the set L. Additionally, there are affinity re-
strictions for some pairs of LRAs from L.

Compute nodes are identical and their resources are character-
ized by d dimensions. In our basic model, there are two types of 
resources, the number of CPU cores C1 and the number of units of 
memory C2. It can be extended to take into account such charac-
teristics as the size of disk storage or Last-Level Cache, the memory 
bandwidth, the number of GPU, etc. In general, according to [R1]
of the model, a node has d dimensions, with resource capacities 
C1, C2, . . . , Cd .

LRAs differ in a number of parameters. In accordance with [R2], 
each LRA consists of a given number of replicas that run from time 
0 to infinity (or to a given time limit common for all LRAs). An LRA 
i ∈ L has a given size sih (i.e., resource requirement) in dimension 
h, 1 ≤ h ≤ d, and that value is the same for all replicas of that LRA. 
For example, for the basic model, si1 and si2 are the number of 
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Fig. 2. Allocation of three-dimensional LRAs to one node taking into account chang-
ing resource requirements over T time intervals.

CPU cores and the number of units of memory needed by each 
replica of LRA i.

In the basic model, we assume that the sizes of LRAs do not 
change over time. If several replicas of LRAs are allocated to the 
same node, then the total size of allocated replicas in each dimen-
sion cannot exceed the node capacity in that dimension. Thus d
capacity constraints should be satisfied for each node.

In the enhanced model, the profiles of LRAs may change over 
time. They are approximated via piece-wise constant functions. If 
the timeline is split into T time intervals, so that within one inter-
val resource requirements of LRAs do not change, then the original 
d-dimensional problem, with d resource types, is converted into 
the problem of d′ dimensions:

d′ = T × d.

Fig. 2 illustrates allocation of three LRAs to one compute node. 
Each LRA has specific resource requirements for d = 3 resource 
types: memory, CPU and disc space. If application requirements 
are static, then it is sufficient to consider only one fragment of 
Fig. 2: one three-dimensional cube for a node, with LRAs placed 
inside it without overlaps in each dimension. If application require-
ments change in T time intervals, then the memory, CPU and disk 
constraints should be considered for each time interval. For the in-
stance considered in Fig. 2, there is one node and T snapshots of 
that node, with the same three LRAs allocated to the node in each 
of the T snapshots. The resource requirements of the LRAs change, 
but the overall capacity of the node is not exceeded.

Affinity restrictions are defined for pairs of LRAs which replicas 
can be jointly co-located to the same node, but with some limits, 
or for pairs of incompatible LRAs, which cannot be co-located. If 
LRA i is restrictive to LRA j, then there is an integer affinity value
aij which sets up an upper bound on the maximum number of 
replicas of j that can be co-located on a node where at least one 
replica of i is allocated. Thus [R2] of the model is characterized 
by the set of affinity restrictions, represented as a directed graph 
where vertices correspond to LRAs and arcs (i, j) correspond to 
affinity restrictions associated with the values aij .

3.2. Problem formulation

In a feasible solution to the resource provisioning problem, all 
replicas of all LRAs in the given set L should be allocated to a sub-
set of N , without violating affinity restrictions and node capacities 
in each of the d dimensions (or, in general, d′ dimensions). The 
objective is to minimize the total number of nodes in use.

We introduce an Integer Linear Programming (ILP) formulation 
for the resource provisioning problem with constant resource de-
mands. Recall that for the time-varying resource demands, the 
d-dimensional problem is converted into d′-dimensional problem, 
d′ = T d, which implies that d is replaced by d′ in the ILP formula-
tion.

We use the following notations:
4

L for the set of LRAs,
Ri for the set of replicas of an application i ∈L,
N for the set of nodes,
A for the set of pairs (i, j) of applications which

have affinity restrictions aij ,
sih for the size of resource h required by a replica

of application i ∈L, in dimension h, 1 ≤ h ≤ d,
Ch for the capacity of each node in dimension h,

1 ≤ h ≤ d,
aij for the affinity restriction imposed by

application i (how many replicas of j can be
co-located together with a replica of i).

The decision variables take 0 – 1 values:

xirn is equal to 1 if the rth replica of application i
is allocated to node n,

yn is equal to 1 if node n is activated and
accommodates some replica(s),

zin is equal to 1 if at least one replica of
application i is allocated to node n.

Additionally, we compute constants νi for the maximum num-
ber of replicas of application i which can be allocated to one node, 
regardless of affinity restrictions from other applications:

νi = min

{
min

1≤h≤d

{⌊
Ch

sih

⌋}
, |Ri |

}
. (1)

Here |Ri | is the total number of replicas of application i and 
�Ch/sih� is the limitation associated with dimension h if replicas 
of application i are allocated to a node. For example, in the basic 
model with two resource types per node, the ratios �C1/si1� and 
�C2/si2� are related to the CPU and memory limitations for repli-
cas of LRA i. In the enhanced model with time-varying profiles, 
each dimension 1 ≤ h ≤ T d gives rise to a resource restriction in 
the corresponding time interval.

The problem of allocating the replicas of all LRAs to the mini-
mum number of compute nodes without exceeding node capacities 
and violating affinity restrictions of LRAs is modeled as the follow-
ing ILP:

min
∑
n∈N

yn (2a)

s.t.
∑
n∈N

xirn = 1, i ∈ L, r ∈ Ri, (2b)

∑
i∈L

sih

∑
r∈Ri

xirn ≤ Ch yn,

n ∈ N ,1 ≤ h ≤ d, (2c)∑
r∈Ri

xirn ≤ νi zin, i ∈ L,n ∈ N , (2d)

zin ≤
∑

r∈Ri

xirn, i ∈ L,n ∈ N , (2e)

∑
r∈R j

x jrn ≤ aij zin + ν j(1 − zin),

(i, j) ∈ A,n ∈ N , (2f)

xirn, yn, zin ∈ {0,1},
i ∈ L, r ∈ Ri,n ∈ N . (2g)

Objective function (2a) is the total number of activated nodes. 
Constraint (2b) ensures that all replicas of all applications are allo-
cated, while constraint (2c) ensures that the capacity of each node 



C. Mommessin, R. Yang, N.V. Shakhlevich et al. Journal of Parallel and Distributed Computing 177 (2023) 1–16
Algorithm 1 Application-Centric approach.
1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: Select i ∈L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: Set n ← n + 1, N ← N ∪ {n} and activate node n
7: Select n∗ ∈ N , feasible for i, using a predefined rule
8: Allocate the maximum number of replicas of i to n∗
9: Remove i from L

is not exceeded in each dimension. The variables yn and zin are 
linked to xirn by (2c)-(2e), and constraint (2f) guarantees that affin-
ity restrictions are observed.

The resource provisioning problem is NP-hard, as it generalizes 
the combinatorial optimization problems of Vector Bin Packing and 
Bin Packing with Conflicts [16]: the Vector Bin Packing problem oc-
curs when each LRA consists of a single replica and there are no 
affinity restrictions; the Bin Packing with Conflicts occurs when 
d = 1, each LRA consists of a single replica, and affinity values aij
between two conflicting LRAs are restricted to 0.

As we will discuss in §5.1, the presented ILP is capable of solv-
ing medium size instances, with up to 2, 000 two-dimensional 
LRAs. In what follows we elaborate a broad range of heuristic 
methods capable of solving effectively and efficiently LRA schedul-
ing problems typical for real-world massive-scale systems.

4. Our algorithm suite

This section presents an overview of the approaches (§4.1) and 
implementation details for a range of algorithms (§4.2 to §4.4). We 
then discuss the worst-case time complexities of the algorithms 
(§4.5).

4.1. Overview

The heuristics described in this section stem from the vast body 
of research on the Bin Packing Problem and its enhanced versions. 
The methods distinguish in how they order the set of applications 
L, the set of nodes N or the set of application-node pairs. The 
choice of the most promising prioritization rules depends on the 
scenarios to which the method is applied and on the datasets.

All methods consider only feasible allocations of application 
replicas to the nodes, so that the node capacities are not exceeded 
for each of the d resource types in each of the T time intervals, and 
the affinity restrictions for the applications already allocated are 
observed. By allocating replicas to the nodes in a feasible fashion 
we guarantee that requirements [R1]-[R2] are satisfied. To handle 
requirement [R3] we strive to achieve fast running times for our 
heuristics.

Application-Centric approach. This approach considers the appli-
cations one by one in accordance with their ordering in L. For a 
current application, it selects the first feasible node in the ordered 
list N and allocates the maximum number of replicas to that node. 
It then selects the next feasible node from N to continue alloca-
tion of the replicas of the current application. After all replicas of 
the current application are allocated, the algorithm proceeds with 
the next application in L, etc. The rules for ordering L and N are 
formulated in §4.2, using the state-of-the-art findings in the body 
of research on Bin Packing and Vector Bin Packing [16,35,40]. Al-
gorithm 1 outlines the pseudo-code of this approach.

Node-Centric approach. This approach considers the nodes one by 
one in accordance with their numbering in list N . For a current 
node, the algorithm selects from the list of non-allocated applica-
tions the one which is feasible for the current node and has the 
5

Algorithm 2 Node-Centric approach.
1: Activate node n = 1 and set N ← {1}
2: while there are unallocated LRAs do
3: if no i ∈L is feasible for n then
4: Set n ← n + 1, N ← N ∪ {n} and activate node n
5: Select i∗ ∈ L which is feasible for n and delivers the maximum score
6: Allocate the maximum number of replicas of i∗ to n
7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

largest application-node score. The maximum number of replicas of 
that application are allocated to the node. If the node is not fully 
packed, then the application-node scores are recalculated, taking 
into account the residual capacity of the current node, and the ap-
plication delivering the highest score is used for loading the node. 
The process continues until no feasible application for the current 
node can be found on the list L. The algorithm then proceeds with 
the next node in the list, etc. The scoring rules are formulated in 
§4.3, using the findings in the body of research on the Vector Bin 
Packing problem [40]. Algorithm 2 outlines the pseudo-code of this 
approach.

Multi-Node approach. This approach aims to overcome the myopic 
nature of the Application-Centric and Node-Centric algorithms. A 
large set of nodes is activated directly at start, and best allocation 
options are selected across the whole pool of nodes. The algorithm 
either finds a feasible solution or declares a failure, if the number 
of activated nodes is too small to accommodate all applications. 
The proposed approach requires that the desired number of nodes 
is specified as part of the input. The search for a feasible solution 
with the minimum number of nodes is arranged by calling the 
algorithm repeatedly with different trial values for the number of 
nodes, either via binary search, or with the trial value decremented 
in steps.

We distinguish between the following two versions of the 
Multi-Node approach, whose pseudo-codes are given as Algo-
rithms 3 and 4.

• The Multi-Node approach with Replica Spreading is the adap-
tation of the Application-Centric approach. LRAs are also con-
sidered one by one, but instead of allocating the maximum
number of replicas of a current application to the highest pri-
ority node, only one replica is allocated. With replicas spread 
over a large pool of activated nodes, there is more flexibility 
for selecting compatible LRAs for future co-location: affinity 
constraints aij become less restrictive if a small number of 
replicas of i and j are allocated to the same node.

• The Multi-Node approach with Application-Node Matching is 
the adaptation of the Node-Centric approach. At each step the 
score for every feasible application-node pair is computed, and 
the pair with the highest score is selected for extending a 
partial solution. One replica of the selected application is al-
located to the corresponding node, and the scores are recalcu-
lated to define the next most promising application-node pair. 
This approach is more flexible than the original Node-Centric 
approach: it benefits from a larger freedom for selecting the 
most promising application-node pairs, with potentially better 
utilized resources as a result.

4.2. Application-centric algorithms

At the core of the Application-Centric algorithms are the pri-
ority rules for ordering the list of applications L and the list of 
nodes N . Based on the best performing algorithms known for Bin 
Packing, there are three widely accepted possible orderings for the 
nodes N and two orderings for the applications L.
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Algorithm 3 Multi-Node approach with Replica Spreading.
1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: Select i ∈L using a predefined rule
4: while not all replicas of i are allocated do
5: if no node from N can accommodate i then
6: declare a failure and break
7: Select n∗ ∈ N , feasible for i, using a predefined rule
8: Allocate one replica of i to n∗
9: Remove i from L

Algorithm 4 Multi-Node approach with Application-Node Match-
ing.
1: For a given n, activate nodes N = {1, 2, . . . , n}
2: while there are unallocated LRAs do
3: if no pair (i, n) is feasible (i ∈L, n ∈N ) then
4: declare a failure and break
5: Select a feasible pair (i∗, n∗) which delivers the maximum score
6: Allocate one replica of i∗ to n∗
7: if all replicas of i∗ are allocated then
8: Remove i∗ from L

For N , the nodes can be considered (a) in the activation or-
der, (b) in the increasing order of a priority index, or (c) in the 
decreasing order of a priority index. For L, the applications can 
be considered (1) in the order of their numbering, or (2) in the 
decreasing order of a priority index. The priority indices can be de-
fined in multiple ways for the multi-dimensional problem. In the 
remainder of this section, we describe the rules for calculating the 
priority indices of applications, denoted by size measures and used 
for ordering (2) of list L, and the rules for calculating the priority 
indices of nodes, denoted by residual capacity measures and used 
for ordering (b) or (c) of list N .

Depending on how the rules for N are combined with the rules 
for L, the resulting algorithms are classified as (1a) First Fit (FF), 
(1b) Best Fit (BF), (1c) Worst Fit (WF), (2a) First Fit Decreasing 
(FFD), (2b) Best Fit Decreasing (BFD) and (2c) Worst Fit Decreasing 
(WFD).

Applications’ priority indices. In the presence of resource require-
ment in multiple dimensions, one most significant dimension can 
be used for prioritizing the applications. If no dominant dimen-
sion exists, as in the case of the Alibaba Tianchi dataset [44], there 
is a need to compute a combined size measure si for each applica-
tion i ∈ L and to use it as a priority index. Introducing a single 
measure allows us to address efficiently the issues related to re-
quirement [R1].

When dealing with non-comparable sizes sih of LRAs, such as 
the number of CPU cores and memory, the values should be nor-
malized to satisfy s′

ih ∈ [0, 1], which is achieved by setting s′
ih = sih

Ch

in each dimension h, 1 ≤ h ≤ d. With the normalized sizes s′
ih of 

LRAs, the node capacities are set to C ′
h = 1. In what follows, we 

assume that the preprocessing has been done and the normalized 
values are calculated. For simplicity, we drop the prime in the no-
tation.

The two natural combined measures are Average and Max, 
whose corresponding expressions are stated in the first two lines 
of Table 1.

The remaining measures use the following notations:

Wh = ∑
i∈L |Ri | sih for the total demand of all

LRAs in dimension h,
Dh = Wh∑

i∈L|Ri | for the average demand of all

LRAs in dimension h,
λh = Wh∑d

k=1 Wk
for the normalized demand of

all LRAs in dimension h.
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Table 1
Application-Centric size measures si for applications i ∈L.

Average si = 1
d

∑d
h=1 sih

Max si = max1≤h≤d{sih}
Average with exponential weight [40] si = ∑d

h=1 eεDh · sih

Surrogate [12] si = ∑d
h=1 λh sih

Extended Sum [11] si = ∑d
h=1

|Ri |
Wh

sih

The Average measure with exponential weight is one of the best 
performing measures in experiments on Vector Bin Packing, per-
formed by Panigrahy et al. [40]. It is computed as the weighted 
sum of sih-values, with exponential weights depending on average 
demands Dh . Parameter ε is a small number selected appropriately 
for scaling.

The Surrogate measure is a natural extension of the 2-dimen-
sional measure of Caprara and Toth [12]. It is computed as the 
weighted sum of sih-values, with the normalized demands λh used 
for weights.

Finally, the Extended Sum is an adaptation of the measure used 
in LraSched [11]. For application i, it is defined as the sum, over 
all dimensions h, of the demands of all replicas of that application 
|Ri |sih in dimension h normalized by the total demand Wh of all 
applications in that dimension.

Prior research in the area of Bin Packing with Conflicts has dis-
covered the benefits of combining the demand-based measure si

with the conflict-based measure, which takes into account the crit-
icality of an application in terms of interference [38]. Generalizing 
these ideas to affinity restrictions [R2] of our model, we define 
the hybrid demand-affinity measure as the weighted sum of the 
demand-based measure si and the affinity-based measure δi :

s̃i = α
si

s
+ (1 − α)

δi

δ
. (3)

Here si is computed via one of the expressions from Table 1, δi is 
the total number of applications linked with application i in the 
affinity graph, while α ∈ [0, 1] is chosen to give a higher priority 
to application demands or to interference. Scaling is performed for 
handling incomparable parameters, dividing by s and δ, the aver-
age values of si and δi , respectively.

Nodes’ residual capacities. The key characteristics of a partly 
loaded node n ∈ N are residual capacities Cnh , maintained for all 
dimensions h = 1, 2, . . . , d. They are computed as original node ca-
pacities Ch minus the total size of allocated replicas for the same 
dimension h. In the presence of residual capacities in multiple di-
mensions, there is a need to compute a single residual capacity 
measure Cn for each node n ∈ N and to use it as a priority in-
dex.

For each application size measure si from Table 1, we similarly 
define the corresponding node residual capacity measure Cn (see 
Table 2).

4.3. Node-centric algorithms

For the Node-Centric approach, the application-node score for 
application i and node n, denoted by ξin , is computed only for a 
feasible application node pair. The higher the score, the more ben-
eficial it is to allocate replicas of application i to node n, which is 
currently being packed.

We explore in our algorithms the known best-performing 
scores, together with a newly proposed score, denoted by Tight-
Fill, as shown in Table 3.

All four scores select for a current node n the application which 
uses the d resources of the node to the highest extent.
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Table 2
Application-Centric residual capacity measures Cn for node n ∈N .

Average Cn = 1
d

∑d
h=1 Cnh

Max Cn = max1≤h≤d{Cnh}
Average with exponential weight Cn = ∑d

h=1 eεD ′
h · Cnh

Surrogate Cn = ∑d
h=1 λ′

h Cnh

Extended Sum Cn = ∑d
h=1

Cnh
W ′

h

where W ′
h = ∑

n∈N Cnh , D ′
h = W ′

h|N | ,

and λ′
h = W ′

h∑d
k=1 W ′

k

Table 3
Bin-Centric scores ξin for applications i ∈L and nodes n ∈N .

DotProduct [40] ξin = ∑d
h=1 sih Cnh

L2Norm [40] ξin = −∑d
h=1

(
Cnh − sih

)2

Fitness [11] ξin = ∑d
h=1

sih
Wh

· Cnh∑
k∈N Ckh

TightFill ξin = ∑d
h=1

sih

Cnh

• In the DotProduct score this is achieved by prioritizing the 
dimensions for which node n has the largest capacity. An ap-
plication with highest demands in those dimensions is consid-
ered as the best choice.

• In the L2Norm score, the expression is negative so that the 
smallest positive value indicates the best application for node 
n. The preferred application minimizes the difference between 
its size and residual capacity of the node measured via the L2 
norm.

• In the Fitness score, the application demands sih are normal-
ized with respect to Wh , the total demand of all applications 
in dimension h, and the node capacities Cnh are normalized 
with respect to the total free capacity of all nodes in dimen-
sion h, 1 ≤ h ≤ n.

• The TightFill score is a counterpart of DotProduct which ensures 
the tightest usage of the node residual capacity.

4.4. Multi-node algorithms

Recall that multi-node algorithms require a target number of 
nodes as part of the input. The search for a feasible solution with 
the minimum number of nodes is arranged by calling the algo-
rithm repeatedly with different trial values for the number of 
nodes, either via binary search or with the trial value decremented 
in steps.

Multi-Node Algorithms with Replica Spreading. These algorithms 
use the same principles as the Application-Centric algorithms, but 
with the aim of replica spreading across the whole pool of ac-
tivated nodes, reducing this way the restrictions imposed by the 
affinity constraints aij . Among the six Application-Centric algo-
rithms discussed in Section 4.2, only Worst Fit and Worst Fit De-
creasing produce different solutions if n nodes are activated at 
start rather than being activated one by one on the fly. The re-
maining Application-Centric algorithms, First Fit, First Fit Decreas-
ing, Best Fit and Best Fit Decreasing, do not change their behavior 
if a pool of nodes is activated at start. For this reason, we cre-
ate only two algorithms by combining the Multi-Node and the 
Application-Centric approaches, with the shortcut names SpreadWF
and SpreadWFD.

Multi-Node Algorithms with Application-Node Matching. These 
algorithms use the same principles as the Node-Centric algorithms, 
7

Table 4
Algorithms’ time complexity. L is the number of applications, R is the total number 
of all replicas of all applications, n is the given (target) number of nodes.

Application-Centric O (R2 L)

Node-Centric O (RL2)

Multi-Node with Replica Spreading and n nodes O (RLn)

Multi-Node with Application-Node Matching and n nodes O (RL2n)

but on a pool of n activated nodes rather than on single nodes con-
sidered one by one. Each time, the most appropriate application-
node pair is selected among all possible pairs of unallocated ap-
plications and non-fully packed nodes by using the scores defined 
in §4.3 for the Node-Centric approach, and a single replica is allo-
cated. It is expected that the replicas of an application are spread 
broadly across the nodes pool, with less restrictions caused by the 
affinity constraints.

4.5. Time complexity of algorithms

The three introduced approaches, Application-Centric, Node-
Centric and Multi-Node, provide the foundation to build a wide 
range of heuristics. The choice of a specific method, together with 
the most appropriate measures or scores, depends on special fea-
tures of scenarios and datasets, and on limitations on algorithms’ 
running times. Analytical estimates of running times are provided 
in Table 4. Note that the actual performance of the algorithms may 
differ from the theoretical estimates since the worst-case analysis 
takes into account very rare scenarios. It is also noted that the 
running time estimates for the Multi-Node approach are made for 
a single call with a fixed n given as the trial number of nodes. 
These estimates have to be multiplied by the total number of calls 
made by the decrementing method, or by the binary search, to get 
the time complexity of the overall procedure.

The choice of the size measure (Table 1) for si should take into 
account not only its impact on the running time, but also the na-
ture of the dataset. In the presence of a dominating (bottleneck) 
resource type h∗, 1 ≤ h∗ ≤ d, which plays the critical role in ap-
plication allocation, computing of the measure si can be simplified 
by using si = sih∗ instead. For Application-Centric approaches, in-
corporating the hybrid size measure of Eq. (3) on top of one of 
the standard measures from Table 1 can be beneficial if affinity 
constraints are very restrictive, so that many pairs of applications 
are in conflict. Note that Eq. (3) does not affect the asymptotic 
worst-case time complexity, but may slow down the algorithms’ 
performance on large datasets.

5. Performance evaluation

All algorithm codes, scripts for generating the instances, as well 
as additional figures, are publicly available at https://github .
com /DSSGroup -Leeds /LRA -binpacking -expe.

5.1. Experimental settings

Simulation configuration and instance generation. As the pre-
execution planning is independent from the runtime execution of 
LRAs, we adopt simulation-based evaluation to validate the effi-
cacy of different algorithms on a single machine equipped with 
one Intel Xeon Gold 6138 CPU and 64 GB of memory. We sim-
ulate different scales of LRA submission and evaluate how our 
algorithms succeed in LRA allocation onto a mocked compute clus-
ter with identical nodes comprising 64 CPU cores and 128 GB of 
memory.

Our aim is to examine several sets of instances, each set with 
common features and related to a specific scenario, and to select 
the winning algorithms from our suite. The instances stem from 

https://github.com/DSSGroup-Leeds/LRA-binpacking-expe
https://github.com/DSSGroup-Leeds/LRA-binpacking-expe
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Table 5
Summary of generated instances.

Scenario Varied affinity density Varied number of LRAs

|L| 9, 338
10,000
50,000
100,000

|Ri | , sih same as Alibaba [44] similar to Alibaba [44]

affinity density �
1%
5%
10%

0.5%

affinity graph type arbitrary threshold normal arbitrary threshold normal

d = 2
(CPU, memory)

90 instances
without temporal changes

90 instances
without temporal changes

d = 98 × 2
(CPU, memory, 98 time steps)

90 instances
with temporal changes

90 instances
with temporal changes
the dataset published by the Alibaba Tianchi Platform [44]. The 
original dataset contains the data for 9, 338 LRAs with a total of 
68, 224 replicas and 24, 078 affinity restrictions. Each LRA has re-
source requests in two dimensions: CPU cores and memory. LRA 
resource profiles change over time, with recordings known for 98 
time sampling points.

We study two scenarios: one with different densities of affinity 
restrictions and another one with different numbers of LRAs. Our 
aim is to evaluate the impact of these characteristics on the so-
lution quality and the running times of the proposed algorithms. 
Each scenario is subdivided into two sets of instances depending 
on whether LRA resource requests are constant or change over 
time. Each set contains a total of 90 instances:

• three types of affinity graphs (arbitrary, normal, threshold),
• three values of one of the varied parameters (affinity density 

or the number of LRAs),
• 10 instances for each combination.

A summary of the generated instances is presented in Table 5.
In the instances with varied affinity density, represented in the 

second column of Table 5, the number of LRAs |L| is the same as 
in the original Alibaba dataset [44], while the number of affinity 
restrictions, measured as affinity density, is different. The affinity 
density � is defined as the average number of affinity restrictions 
per LRA divided by the total number of LRAs. For example, affinity 
density of 10% means that each LRA has affinity restrictions with 
10% of other LRAs on average. Note that in the original Alibaba 
dataset, the affinity density is lower than 0.05%. However, in prac-
tice, the real graph is system-specific – for those cluster systems 
with sufficient resources, the affinity graph could be sparse due 
to less restrictions on application co-location. In comparison, there 
could be complex dependencies or placement constraints among 
applications in some systems, which lead to denser affinity rela-
tionships in the graph. We therefore select diverse higher density 
values for experiments to investigate the impact of affinity restric-
tions on the solution quality and algorithms’ running times. For 
each LRA, the number of replicas per application |Ri | and resource 
requirements sih are kept unchanged, as in the original Alibaba 
dataset.

In the instances with varied number of LRAs, represented in the 
third column of Table 5, the affinity density is fixed to the same 
value (0.5%), while the number of LRAs |L| is different. We select 
larger instances compared to the Alibaba dataset [44] to explore 
the capabilities of the algorithms for optimizing the performance 
of massive scale systems. The values for the number of replicas 
|Ri | and resource requirements sih are defined using the same 
probability distributions as in the original Alibaba dataset.
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For any type of instance, affinity values aij were generated fol-
lowing the same probability distribution as in the original Alibaba 
dataset.

Consider now the three approaches to graph generation, given 
number |L| of vertices and expected density �. One method for 
generating arbitrary graphs is described by Sadykov and Vander-
beck [41]. The key idea is as follows: starting with a graph with 
no arcs, pairs of nodes are selected at random (with uniform 
distribution) and connected by arcs. Arc generation stops when 
the desired graph density is achieved. Another method generates 
threshold graphs. It is described by Gendreau et al. [22] and elab-
orated further by Bacci and Nicoloso [9] for parameter correction. 
The produced graphs fall into the category of interval graphs and 
they are characterized by a given expected edge density. Note that 
for some optimization problems on graphs, their versions with in-
terval graphs are sometimes easier to solve. We propose the third 
approach to generate so called normal graphs. The resulting graphs 
differ from arbitrary random graphs by the presence of clustered 
nodes and sparingly connected nodes. They also differ from thresh-
old graphs as they generally do not satisfy the strict restrictions of 
interval graphs. The method starts with a graph of |L| vertices and 
no arcs, and then for each vertex i it randomly picks a value pi
following the normal distribution of mean �|L| and standard de-
viation �|L|/2, restricting the value between 0 and |L| − 1. Then 
pi vertices are selected at random using uniform distribution and 
they are used as end-nodes for arcs originating from vertex i.

The resource requirements of each LRA are copied from the Al-
ibaba dataset for all 98 sampling points, if considering the class 
with temporal changes (last row of Table 5), or they are extrapo-
lated if considering the class without temporal changes (penultimate 
row of Table 5): for each LRA i we select the maximum values si1, 
si2 among those provided for the 98 sampling points and round 
them to the next integer.

Evaluation methodology and metrics. We evaluate the effective-
ness and time efficiency of each algorithm.

The effectiveness is measured by recording the number of nodes 
found in a feasible solution and calculating the deviation from the 
lower bound, a “lower-the-better” indicator. Since the total number 
of nodes cannot be smaller than the total demand Wh of all LRAs 
in dimension h divided by the node capacity Ch in that dimension, 
where h = 1, . . . , n, the lower bound is defined as

LB = max
1≤h≤d

{⌈
Wh

Ch

⌉}
. (4)

The time efficiency is measured as the algorithm’s computation 
time, averaged over the 10 instances of a given configuration of 
graph class and density value, or graph class and LRA number.
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Baseline Methods. We mainly have three baselines in the ex-
periments: two heuristics of Medea [21] and one heuristic of
LraSched [11].

The TagPopularity (Medea-TP) heuristic is Application Centric. 
It allocates applications one by one, starting with those having 
the highest interference. This heuristic can be classified as FFD 
with size measure si = δi , the special case of Eq. (3) with α = 0. 
NodeCandidates (Medea-NC) is another version of the Application-
Centric approach, with si-parameters representing the total num-
ber of available nodes in the system which can accommodate a 
replica of i, observing capacity and affinity restrictions:

si =
∑
n∈N

ζin. (5)

Here ζin = 1 if a replica of application i can be allocated to node n
without violating affinity restrictions, and ζin = 0, otherwise. Appli-
cations are allocated one by one, starting with the most restrictive 
ones, i.e., those having the lowest sizes si computed by Eq. (5), 
and sizes of the remaining applications are re-computed after each 
step.

LraSched [11] uses a two-phase approach. The first phase aims 
at maximizing the number of fully allocated LRAs and resource uti-
lization of the given restricted pool of available nodes. The second 
phase aims at minimizing the number of new nodes used to al-
locate remaining LRAs. The second phase employs a Node-Centric 
algorithm with the Fitness score. We denote the algorithm of this 
second phase by LRASched-Fitness.

Algorithm naming. We implemented our algorithms and the three 
baseline algorithms in C++.

The shortcut names of Application-Centric algorithms include 
the ordering rule (§4.2) and the size measure (Table 1). For exam-
ple, WFD-AvgExp denotes the WFD algorithm with the size mea-
sure “average with exponential weight”.

Node-Centric Algorithms with Decreasing Scores are denoted by 
NCD followed by the scoring name (Table 3). “Decreasing score” 
indicates the choice of the largest application-node score in each 
step. For example, NCD-DotProduct denotes the Node-Centric algo-
rithm with decreasing dot-product score.

Considering Multi-Node algorithms, we focus on the versions 
with replica spreading and exclude the versions with application-
node matching from our experiments, as their running times were 
observably too long even for the instances with 9,338 LRAs.

For the replica spreading versions we use prefix Spread in the 
notation, and postfix BinSearch or Decr, depending on the search 
strategy used for multiple calls with different values of the target 
number of nodes.

Binary search strategy narrows down the interval which esti-
mates the minimum number of nodes. It uses Eq. (4) for the initial 
lower bound, and the output of the First Fit (FF) algorithm for 
the initial upper bound. For example, SpreadWFD-Avg-BinSearch de-
notes the spreading version of WFD (with “average” size measure) 
in combination with binary search.

The alternative, Decrementing approach arranges the search by 
decreasing the target number of nodes in steps. For the starting 
point, it uses the same value for the upper bound as binary search. 
In the notation, postfix Decr is followed by the step value. For 
example, SpreadWFD-Avg-Decr2 denotes the spreading version of 
WFD (with “average” size measure) in combination with the decre-
menting approach, which decreases the target number of nodes 
from the best value found so far, in decrements computed as 2% of 
the lower bound.
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Fig. 3. Performance summary of algorithms for instances with 9, 338 LRAs, different 
affinity densities and without temporal changes.

5.2. Capabilities of the ILP model

The instances introduced in Table 5 appeared to be too hard for 
the ILP model formulated in §3.2. Considering smaller instances, 
we have found that solutions can be obtained for medium size 
instances, with up to 2, 000 LRAs having about 15, 500 replicas 
in total. In those instances, LRAs have resource requirements in 
CPU and memory, which do not change over time. This is the two-
dimensional case of the problem under study. Allowing sufficiently 
large computation time, of up to 4 hours, Gurobi solver can find 
solutions within 0.2% from lower bounds.

Clearly, for instances with more than 2, 000 LRAs, heuristics 
should be preferred due to their scalability and flexibility of in-
tegrating with real-life schedulers.

5.3. Results for instances without temporal changes

In this section we discuss the performance of the algorithms 
on two-dimensional instances, which correspond to the penulti-
mate row of Table 5. A high-level overview of the results, averaged 
over all 90 instances with different affinity densities, is illustrated 
in Fig. 3, and the overall shape of the trade-off does not change 
essentially in experiments with temporal changes. The trade-off 
between effectiveness and computation time can help practition-
ers in selecting the algorithm that best fits their requirements.

In the following, we analyze in depth the algorithms’ perfor-
mance on instances with varied affinity density (described in col-
umn 2 of Table 5) and on instances with varied number of LRAs 
(described in column 3 of Table 5). As no major differences were 
observed between the results obtained for the three types of affin-
ity graphs, we report the results for the graphs of arbitrary type, 
unless specified.

Effectiveness. Instances with varied density. In general, all Applica-
tion-Centric algorithms (FF and various versions of FFD, BFD and 
WFD with different size measures) perform similarly, with approxi-
mately 12.1% deviation from the lower bound on average, with two 
exceptions. First, algorithms FFD, BFD and WFD with the “Extended 
Sum” measure are consistently worst-performing, with 15.6% de-
viation on average. Second, WFD-AvgExp has 10.7% deviation on 
average and consistently outperforms all others. The advantage of 
WFD-AvgExp stems from the focus on the most demanding dimen-
sions when selecting the next LRA to be allocated.

Node-Centric algorithms place themselves between WFD-AvgExp
and the other Application-Centric algorithms, with 11.5% deviation 
on average.

The spreading versions of the Multi-Node algorithms are par-
ticularly successful. For example, SpreadWFD-Avg-BinSearch and 
SpreadWFD-Avg-Decr2 achieve 4.5% and 5.4% deviation from the 
lower bound, respectively. Solutions of similar quality are obtained 
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Fig. 4. Different affinity densities under fixed resource requests, |L| = 9,338.
by the versions of SpreadWFD-AvgExp, but at the cost of larger 
computation time (a consequence of computing a more elaborate 
size measure).

We visualize the results of the representatives of each algorithm 
family in Fig. 4, where we also include the summary of the base-
line algorithms. We observe that Medea-NC, with 12.6% deviation, 
is outperformed by all other algorithms (except for algorithms with 
the “ExtendedSum” measure not included in Fig. 4), while Medea-
TP performs similar to the Application-Centric algorithms, with 
12.2% deviation. LRASched-Fitness works similar to other Node-
Centric algorithms, with a slightly smaller execution time. Com-
pared with these baselines, our algorithms of type SpreadWFD-Avg
are 7% closer to the lower bound. This marginal number implies 
about 350 nodes saving, which is of significance for cost-effective 
and energy-efficient datacenters.

Comparing the results for different affinity densities we do not 
observe noticeable differences in the algorithms’ effectiveness. The 
exceptions are SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-Decr2
applied to the instances with threshold graphs, where the devia-
tion from the lower bound increases from 3.6% to 10.5% as the 
graph density increases.
Instances with varied LRA number. As shown in Fig. 5(a), the algo-
rithms’ effectiveness generally improves when the LRA scale in-
creases. With 100, 000 LRAs, FF, BFD-Avg and Medea-TP achieve 
2.5% deviation from the lower bound on average, NCD-DotProduct
and LRASched-Fitness achieve 2.4% deviation, and WFD-AvgExp
reaches 2% deviation.

SpreadWFD-Avg-BinSearch and SpreadWFD-Avg-Decr2 are partic-
ularly successful, achieving 0.9% and 1.8% deviation on average, 
with figures as low as 0.3% for SpreadWFD-Avg-BinSearch when 
applied to instances with 100, 000 LRAs. However, an interesting 
anomaly was observed for smaller instances, with 10, 000 LRAs: 
there were several instances with arbitrary and normal affinity 
graphs for which two SpreadWFD algorithms could not find bet-
ter solutions than FF. Still the performance of SpreadWFD is the 
10
best even on small instances, if averaging the results of multiple 
experiments.

Execution time. Instances with varied density. Fig. 4(b) shows the 
average execution times of the algorithms when applied to the in-
stances with different affinity densities. FFD-based algorithms are 
among the fastest, along with FF and Medea-TP, while BFD-based 
algorithms are slightly slower. All these algorithms merely take less 
than 5 s, 18 s, and 33 s for densities 1%, 5% and 10%, respectively. 
In contrast, WFD-based algorithms are much slower, taking 26 s, 
41 s and 61 s, respectively.

Node-Centric algorithms and LRASched-Fitness are in-between: 
NCD-DotProduct takes 16 s, 34 s and 62 s on average for the three 
densities, while LRASched-Fitness runs a few seconds faster.

Overall, the relative difference in running times between these 
algorithms tends to decrease when the affinity density increases. 
With 10% density, the running times for the WFD-based algorithms 
are similar to LRASched-Fitness and NCD-DotProduct.

The best-performing algorithm SpreadWFD-Avg-BinSearch is un-
surprisingly among the slowest algorithms, taking 225 s, 653 s and 
1214 s on average, when the affinity density grows. This is because 
binary search needs iterative calls of the replica spreading version 
of WFD to find the appropriate number of nodes. Replacing bi-
nary search by iteratively decreasing the number of target nodes 
enables SpreadWFD-Avg-Decr2 to achieve a two-fold speedup, com-
pared with the binary search version.

Medea-NC is the slowest algorithm observed. It takes on average 
512 s, 3, 200 s and 8, 005 s when handling the instances with 1%, 
5% and 10% density. It is worth noticing that, while using fine-
tuned data structure may reduce the running time of Medea-NC, 
its effectiveness would not change and remain inferior to other 
algorithms.
Instances with varied LRA number. Fig. 5(b) shows the average exe-
cution times of the algorithms applied to the instances with dif-
ferent numbers of LRAs, and obviously there is an increasing trend 
when there are more LRAs to be scheduled. The fastest algorithms 
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Fig. 5. Different LRA numbers under fixed resource requests, affinity graph density is 0.5%.
include FF, Medea-TP and BFD-Avg that can solve instances with 
100, 000 LRAs within 8 minutes. In contrast, LRASched-Fitness, NCD-
DotProduct and WFD-AvgExp are much slower, taking about 35, 
45 and 78 minutes on average to do the same task. Spreading 
approaches take even longer time: 2 and 7 hours, respectively. 
Medea-NC was excluded from this series of experiments due to 
overly excessive execution time even for 10, 000 LRAs. Aligned 
with Fig. 3, the results indicate that datacenter operators need to 
thoroughly strike a balance between the targeted solution qual-
ity and the permitted planning time to pinpoint the bespoke op-
tion.

5.4. Results for instances with temporal changes

The instances with time-varying resource requests of applica-
tions are modeled as the problem with d = 98 × 2 dimensions, as 
described in the last row of Table 5. This dimension increase leads 
to a substantial growth of execution time. Medea-NC, LRASched-
Fitness and Node-Centric algorithms such as NCD-DotProduct were 
discarded from the performance comparison for being too compu-
tationally expensive. Again, as no major differences were observed 
between results of the three different affinity graphs, we only re-
port the results for the graphs of arbitrary type, unless specified.

Effectiveness. Instances with varied density. For the majority of the 
algorithms, the change in the affinity density does not signifi-
cantly affect the accuracy of the solutions found, as demonstrated 
in Fig. 6(a). The exceptions occur for the threshold graphs, similar 
to the instances without temporal changes: there is a substantial 
degradation in the performance of the two SpreadWFD algorithms, 
from 2.2% to 10.1% when the affinity density changes from 1% to 
10%. Again, this is because the SpreadWFD algorithms could not 
find better solutions than the given upper bound on several in-
stances with 5% or 10% density, and the solutions from FF were 
used instead.
11
Instances with varied LRA number. As shown in Fig. 7(a), there is a 
negligible discrepancy among the performance of each algorithm 
with different numbers of LRAs, when handling time-varying re-
source requests. For example, with SpreadWFD-Avg-BinSearch, the 
deviation from the lower bound only increases from 3.2% to 3.8%
when the LRA number grows from 10, 000 to 100, 000. Similar 
observations are valid for other algorithms, indicating that the pro-
posed algorithms are successful in large-scale scenarios.

Execution time. Instances with varied density. As shown in Fig. 6(b), 
FF, BFD-Avg and Medea-TP can solve any instance within 45 sec-
onds on average, while WFD-AvgExp finishes within 4 minutes and 
SpreadWFD-Avg-Decr2 within 9 minutes. SpreadWFD-Avg-BinSearch
takes about 18 minutes to solve high density instances with 9, 338
LRAs, which seems to be the best choice of algorithm considering 
its achieved effectiveness of less than 3% deviation from the lower 
bound, on average. It is also worth noticing that, for instances 
with 1% density, the running times of SpreadWFD-Avg-BinSearch
and WFD-AvgExp are similar and almost double the running time 
of SpreadWFD-Avg-Decr2. This is particularly unexpected for WFD-
AvgExp, which involves one call of the application-centric WFD-
algorithm, compared to multiple calls of SpreadWFD-Avg-Decr2.
Instances with varied LRA number. As shown in Fig. 7(b), similar but 
smaller differences in the execution times can be observed un-
der different submission scales, compared with the observations 
in Fig. 6(b). The disparity is due to the computation time of the 
size measures of LRAs with 196 dimensions. Numerically, FF and 
Medea-TP can solve any instance with 100, 000 LRAs in 14 min-
utes on average and BFD-Avg takes 18 minutes. SpreadWFD-Avg-
Decr2, WFD-AvgExp and SpreadWFD-Avg-BinSearch take 2.5, 5 and 
11 hours, respectively, to solve the largest instances. Interestingly, 
SpreadWFD-Avg-Decr2 appears to be the best choice for instances 
with time-varying resource requests, as it achieves effectiveness 
close to the best algorithm, SpreadWFD-Avg-BinSearch, with a 4-
fold speedup in terms of the running time.
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Fig. 6. Different affinity densities under time-varying resource requests, |L| = 9,338.

Fig. 7. Different LRA numbers under time-varying resource requests, affinity graph density is 0.5%.
6. Algorithm recommendations

We recommend Application-Centric algorithms if the compu-
tation time is required to be as small as possible. In that group 
of algorithms, the version of the traditional Bin Packing algorithm 
First Fit (FF), adjusted to handle the problem with replicas and 
affinities, is among the fastest approaches. Its solution quality is 
either similar or just slightly worse than the quality of solutions 
found by other Application-Centric algorithms. Only one published 
algorithm, Medea-TP, achieves comparable computation time and 
solution quality. As we show in §4, Medea-TP belongs to the same 
group of Application-Centric algorithms and differs from FF by an 
additional ordering of LRAs. It appears that, on the instances gen-
12
erated from the Alibaba Tianchi dataset, special ordering does not 
have a significant impact on the quality of the solution and on 
computation time.

We recommend Multi-Node algorithms if the primary aim is 
to find solutions of the best quality, possibly with longer but still 
acceptable computation time (say, up to 30 minutes to allocate 
10, 000 LRAs). An ultimate winner in our experiments is Spread-
WFD-Avg-BinSearch. It uses a special spreading mechanism to allo-
cate replicas of the same LRA across different nodes. The spreading 
mechanism substantially increases the range of nodes suitable for 
co-location of a current application with a broader set of com-
patible LRAs. Additionally, it adopts binary search to identify the 
smallest, but feasible, number of nodes in the solution. None of 
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Fig. 8. Algorithm selection dependent on practitioners’ needs.
the algorithms, either in our suite or among the published ones, 
achieves the same solution quality, namely 0.3% deviation from the 
lower bound, when handling instances with 100, 000 LRAs.

Finally, in-between the two extremes of fastest but less accurate 
algorithms, and slowest but most accurate ones, there are those 
of intermediate running time and intermediate solution quality. 
All Node-Centric algorithms fall into this category, with LRASched-
Fitness and NCD-DotProduct being best performing. Both algorithms 
produce solutions of comparable quality and differ slightly in their 
running times: LRASched-Fitness is faster on instances with affini-
ties, while DotProduct is faster and superior in terms of the solu-
tion quality on instances without affinities.

There is one outlier in the Application-Centric group, WFD-
AvgExp: it performs slower than the majority of Application-Centric 
algorithms and slower than the Node-Centric algorithms but out-
performs all of them in terms of the solution quality. We would 
like to observe that overall the Application-Centric algorithm WFD 
is often overlooked by practitioners and not included in their trials.

Note that we observe that all algorithms become much slower 
for instances with time-varying profiles, and the Node-Centric al-
gorithms become prohibitively slow. Therefore, we narrow down 
our recommendations to Medea-TP and FF (the fastest), Spread-
WFD-Avg-Decr2 (of intermediate running time and solution quality) 
and Spread-WFD-Avg-BinSearch (the best solution quality).

As a summary we present Fig. 8 which highlights our rec-
ommendations for practitioners on selecting the most promising 
solution approach depending on the application scenario and prac-
titioners’ needs. The main question to consider is the acceptable 
computation time. For most of the scenarios the limitations related 
to affinity restrictions do not affect the algorithm choice: generally 
speaking, the density of the affinity restrictions does not change 
the performance of our algorithms essentially. The only exception 
is the group of the Node-Centric algorithms, in which the Dot-
Product version is better suited for solving problems with multiple 
affinity constraints, and the LRASched-Fitness [11] might have ad-
vantages for less restricted problems.

While we provide generic algorithm recommendations, one 
common practice in large-scale system engineering is to further 
conduct trade-off analysis on a case-by-case basis given the re-
quirements of algorithm quality and execution time. Scheduler sys-
tem administrators or developers can first run profile-based testing 
based on sampled data to pick up competitive candidate algo-
rithms and validate in a small-scale test system. This procedure 
can significantly help to understand system behaviors in a con-
trollable manner – Unseen instances are rare as the workload of 
a production system is supposed to be stable, and profiling and 
small scale tests can usually capture most of the workloads and 
13
learn their patterns. Then larger and diverse instances could be 
used to tune the performance of algorithms and figure out the best 
performer before deploying the algorithms into production grade 
systems.

7. Practical considerations

Integration into multi-stage cluster management. While this pa-
per focuses on the algorithmic support for resource provisioning, 
the proposed algorithm suite can be more widely integrated in a 
multi-stage cluster management that consists of cluster initializa-
tion and runtime scheduling.

At the initialization stage, given that the scheduling system 
foreknows all information of LRAs to be submitted, the resource 
planner that runs the algorithm suite can work out the best op-
tion for scheduling the LRAs with the minimal required nodes. 
Horizontal scaling will be consequently used to match the plan-
ning outcome, through elastically sizing the number of bare metal 
servers or virtual machines in the resource pool. Once the cluster is 
initialized for hosting the LRAs, the cluster management will shift 
into the runtime scheduling stage that responds to the new LRA 
submissions and available resource release. Cluster schedulers can 
accept any incoming LRA in the regular round of resource alloca-
tion [47,51,34,28]. Consequently, the admitted LRAs will gradually 
consolidate the nodes in the cluster until there is no room for new 
LRAs and a long waiting queue manifests. Cluster auto-scaling will 
be performed to mitigate the long starvation of the waiting LRAs 
and handle dynamic load spikes. The resource provisioning algo-
rithm will be re-triggered accordingly.

Runtime management considerations. While our algorithm suite 
can provide competitive solutions that minimize the number of 
required computing nodes, the resource provisioning in practice 
usually comes with some resource slack or over-provisioning to 
increase reliability for the unknown and prevent degradation in 
user experience. Based upon the calculation of initial resource pro-
visioning as a guidance, additional resource reservation by system 
operators allows to mitigate uncertainties at runtime such as an 
excessive increase in LRA’s tail latency, out-of-memory problems 
when the LRA’s resource usage fluctuates, failures or stragglers due 
to unexpected data stream coming into the LRA, etc. The reserved 
yet idle resources can be harvested by using a series of system 
optimization techniques including hypervisor or kernel level over-
subscription [51,34,31] and core reassignment mechanism [39].

Other objectives considerations. The scheduling problem formu-
lated in the paper is an attempt to find the minimum number of 
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nodes that accommodate different LRA scales and affinity restric-
tion densities. However, in real scenarios, the compute capability 
is sometimes limited compared to the increasing number of LRAs. 
The Multi-Node algorithms are well suited to address these types 
of problems. They operate with a fixed value n for the number of 
nodes, given as part of the input. In the implementation described 
in §4, a Multi-Node algorithm declares a failure if not all LRAs 
are allocated to the pool of n nodes. However, the LRA allocation, 
available after the algorithm terminates, is an appropriate solu-
tion for the problem with a given node value n. Depending on the 
optimization criterion, one may decide to adopt the Multi-Node Al-
gorithms with Replica Spreading, if the number of accepted LRAs 
is to be maximized, or the Multi-Node Algorithm with Application-
Node Matching if the node utilization is to be maximized.

8. Related work

Cluster management. Resource management systems in shared 
clusters can be divided into two categories: centralized and de-
centralized systems. Centralized approaches assign resources based 
on user requests [54,47,46] or framework offers [27]. Multiple re-
sources are negotiated among diverse applications through a cen-
tral resource manager. To make the procedure fair and avoid re-
source starvation, Dominant Resource Fairness [23], capacity or fair 
scheduling are adopted for resource sharing among multiple jobs. 
Decentralized approaches [43,34,10,30] are developed for clusters 
that expect a high throughput or high cluster utilization. However, 
the goal of these works is to enable sub-second resource allocation 
and task scheduling at runtime without solving a global optimiza-
tion problem with complex placement constraints.

LRA scheduling. YARN [46] mainly supports the affinity constraints 
related to nodes/racks. Borg [47] and ROSE [43] use machine scor-
ing mechanism for matching a specific collection of nodes to the 
requirements of the applications. Graph-based approaches [29,24]
model the scheduling problem as a min-cost max-flow optimiza-
tion over a network. However, they merely consider one dimension 
in the capacity constraint, and affinities to specific machines con-
straints. An attempt to incorporate those additional features in 
Aladdin [49] makes it prohibitive for applying powerful min-cost 
max-flow methods.

Application-level affinity is increasingly important. Kubernetes 
scheduler [1] is responsible for selecting the best node for each 
incoming pod. A pod is referred to as an independent execution 
unit and is equivalent to one replica of an LRA in this paper. A 
ReplicaSet parameter ensures that a specified number of pods are 
running anytime. However, it considers one pod at each scheduling 
round and implements the node selection in a filtering phase. The 
nodes that cannot run the pod are ruled out considering the spec-
ifications in the node/pod affinity. This design leads to one-shot 
resource allocation to a pod rather than considering it as a global 
optimization problem.

Medea [21] formulates the placement problem as an ILP and 
employs heuristics periodically to consider multiple LRAs at once 
at a lower scheduling latency. However, the focus of the authors 
is on scheduling a small batch of LRAs. By contrast, our work ad-
dresses pre-execution resource planning for the whole set of LRAs.

We also refer the reader to thorough surveys on wide-ranging 
Bin Packing algorithm design [16,35,40].

In addition, a huge body of machine learning and reinforce-
ment learning based scheduling techniques offer alternatives for 
scheduling LRAs to mitigate the limitations of manual specification 
and resource estimation – which usually require expert knowledge 
and operational experience – in the process of requirement engi-
neering. LraSched [11] employs online machine learning for auto-
estimating the size of LRAs’ containers and the degree of affin-
ity. Metis [48] and George [32] adopt deep reinforcement learning 
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(DRL) to automatically learn to place LRAs based on observing the 
incurred reward and iteratively improving the scheduling policy. 
However, these works heavily depend on a huge number of high-
quality workload logs, which are feasible for big companies but 
will place a huge obstacle on small businesses and academic or-
ganizations. Due to the exponential space of actions, DRL-based 
solutions are also limited to small-scale optimization problem, and 
thus only applicable to on-the-fly decision making.

Interference-aware LRA runtime management. There is a substan-
tial body of research on interference-aware LRA scheduling and 
runtime management. Paragon [19] and Quasar [20] use multi-
variable statistical classifiers to predict the expected interference 
among co-located LRAs. ROSEQ [51] and Toposch [28,55] devise 
performance-aware scheduling mechanisms that can safely co-
locate batch jobs together with LRAs through elaborately monitor-
ing the runtime performance of the LRAs. Horus [52] and Men-
doza et al. [36] propose interference-aware schedulers for infer-
ence serving or model training, reducing the latency degradation 
from co-location interference or holistic training time. However, 
kernel/application-level counters are leveraged to track the run-
time performance of the LRAs as a whole, without discussing the 
replicas and their impact on the scheduling quality. Overall, the 
focus of these research works prioritize the performance guaran-
tee through effective container isolation and low-cost preemption. 
They are orthogonal to the resource provisioning scheme devel-
oped in this paper and offer supplementary mechanisms in the 
runtime execution stage.

9. Conclusions and future work

Resource provisioning of shared clusters is extremely important 
for minimizing the operating cost and ensuring that the schedul-
ing systems meet both current and future demands. LRA work-
loads add further complexity to resource provisioning since they 
run from hours to months, typically having time-varying resource 
requirements and co-location affinity constraints. Careless or no 
planning often leads to poor utilization and performance of a clus-
ter system.

This paper develops an affinity-aware resource provisioning 
scheme for LRA placement in shared clusters, supported by a new 
system model and an adjustable algorithmic toolkit. The main ben-
efits of that toolkit are as follows.

• Consisting of dozens of algorithms with multiple parameters, 
there are three major approaches which complement each 
other. Their implementation can be streamlined as algorithms’ 
building blocks are of similar nature.

• Application-Centric approach is the most popular one with re-
searchers and practitioners. However, one of its algorithms, 
Worst Fit Decreasing, is broadly overlooked in the literature 
and in practice. Our experiments show that it often outper-
forms all other Application-Centric algorithms in terms of so-
lution quality, and its execution time is comparable to the 
execution times of widely used First Fit Decreasing and Best 
Fit Decreasing algorithms from the same approach. Worst Fit 
Decreasing also outperforms the Node-Centric algorithms but 
at the cost of a slightly longer execution time.

• The third and novel approach is Multi-Bin activation. While it 
involves multiple calls to one of the LRA allocation functions 
of Application-Centric and Node-Centric approaches, individual 
calls are relatively fast. If needed, the algorithm can be termi-
nated earlier, still achieving improved solutions compared to 
the first two approaches.

• The proposed toolkit is comprehensive and, together with 
new approaches, it encompasses a variety of the published 
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algorithms, which can be classified as special cases of the 
Application-Centric and Node-Centric approaches. A system-
atic summary of size measures and score functions, provided 
in this paper, makes the toolkit tunable to fit specific features 
of real-world scenarios. We have illustrated how the tuning 
works based on an Alibaba public dataset and similar work 
could be conducted for any required scenario.

In the future, we plan to investigate automatic algorithm selec-
tion from our algorithm pool and automatic tuning of the selected 
algorithm. We also plan to integrate the proposed heuristics into 
Kubernetes to evaluate how theoretical study can navigate the run-
time execution.
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