
2024 IEEE International Conference on Joint Cloud Computing (JCC)

RESCAPE: A Resource Estimation System for
Microservices with Graph Neural Network and

Profile Engine
Jinghao Wang∗, Guangzu Wang†, Tianyu Wo∗, Xu Wang∗, Renyu Yang∗

∗School of Software, Beihang University, †School of Computer Science and Engineering, Beihang University
{wang jinghao, wang guangzu, woty, xuwang, renyuyang}@buaa.edu.cn

Abstract—Microservice architecture has become a prevalent
paradigm for constructing scalable and flexible cloud-native
applications by leveraging the abundant resources of the cloud.
However, the topological complexity of microservices poses sig-
nificant challenges to resource management frameworks that
rely on container orchestration. It is paramount to optimize
resource utilization within cloud computing clusters while re-
ducing operational costs for service providers. To this end, we
present RESCAPE, a framework designed to effectively predict
the resource demands of variable microservice workloads. It
is instrumental for downstream optimization tasks, particularly
heterogeneous resource scheduling, aiming to enhance resource
utilization and efficiency. Experiments, based on open-source mi-
croservice benchmarks such as DeathStarBench and HPC-AI500,
demonstrate an average absolute percentage error (MAPE) of
7.9% when forecasting resource needs for the subsequent times-
tamp. This indicates an adequate precision for microservices’
resource estimation.

Index Terms—Microservice, Resource Estimation, GNN

I. INTRODUCTION

In recent years, cloud computing has been increasingly
utilized in various scenarios, such as the Internet of Things
(IoT) and smart cities, due to the abundant resources it offers.
Microservice architecture has also been introduced to address
the growing complexity of program size and business logic
in these contexts [1]. Concurrently, the demand for speed and
agility in the software development industry has catalyzed the
shift from monolithic to microservice architecture applications
[2].

Microservices are lightweight, self-contained applications.
As depicted in Figure 1, in a microservices architecture, the
original monolithic application is decomposed into several
lightweight, distributed services that operate collaboratively.
Each service provides a specific function and operates inde-
pendently from the others [3], allowing for the use of different
programming languages and independent deployment through
a container orchestration system.

Despite the convenience of building and deploying appli-
cations, the microservices architecture complicates resource
management as each component requests resources inde-
pendently in large-scale cloud computing clusters. Resource
scheduling is typically augmented by predicting future demand
to prepare for allocation, thereby preventing service Quality
of Service (QoS) degradation. Meanwhile, communications

Figure 1: Monolithic vs. Microservices Architecture

between services via API endpoints in real applications intro-
duce non-trivial topological dependencies and blocking effects
[4], complicating resource estimation compared to traditional
monolithic applications [5].

We present RESCAPE, a data-driven, deep learning pre-
diction system for microservices resource estimation. It per-
forms online profiling for runtime metrics and further extracts
graphical features to adapt to variations in real workloads.
The structured data is fed into a deep model offline to predict
the resource requirements for each service. The framework
can be implemented as an API Gateway function or a plugin
for the container orchestration engine in production so that
the demand for resources can be anticipated upon the arrival
of a user request [6]. Then, downstream optimization tasks
like resource scheduling can utilize the prediction to make
better solutions, enhancing resource utilization and lowering
service operating costs of a cloud computing cluster. We
evaluated RESCAPE on the Deathstar [7] and HPC-AI500
[8] microservices benchmarks. Experimental results show that
RESCAPE can support heterogeneous microservice resource
metrics collection and prediction with a 7.9% average absolute
percentage error in predicting the resources required at the next
timestamp.

In general, we make the following contributions:
• We propose a system for predicting the microservices

resource requirements through online profiling and offline
training, which is generalizable with varying workloads
taken into consideration. (Section III-C1);

• We develop an algorithm to extract microservices features
into graph-structured data with profiling metrics and
traces. (Section III-C2);

©2024 IEEE



• We design a GNN-RNN combined deep learning model,
which not only perceives historical resource usage but is
also aware of spatial relationships in the microservices
topology. (Section III-C3).

II. BACKGROUND AND MOTIVATION

A. Resource Prediction for Runtime Application

Compared to running a monolithic application on a sin-
gle machine, resource scheduling and workload assignment
are critical when operating a large number of workloads in
clusters. Effective resource allocation in such environments
can significantly increase overall resource utilization [9], [10].
In this context, resource prediction is an industry standard
that aids scheduling by formulating a more concrete resource
allocation problem.

One common approach to predicting runtime performance
involves static code analysis, which includes parsing source
code or binary compilation files and constructing internal
representations such as Abstract Syntax Trees (ASTs) [11]
and Directed Acyclic Graphs (DAGs) [12] to identify critical
paths and instruction components. This method then predicts
performance metrics based on the program’s control flow
and architectural parameters of the target machine. Another
approach relies on dynamic runtime metrics to forecast re-
source usage. This involves a system with integrated workload
profiling, data collection and processing, model training, and
prediction [4], [13], [14]. It deploys workloads in a cluster, ex-
tracts performance metrics such as response time, throughput,
and resource utilization from application logs and hardware
monitoring, and designs a model to learn from historical
resource utilization data through feature engineering [15]. The
system operates on the cluster management node to assist with
resource allocation decisions.

B. MicroService Resource Estimation

Resource estimation becomes more complex with microser-
vices due to the increased requirements for guaranteed Qual-
ity of Service (QoS) [15], which necessitates finer-grained
resource management, typically at the service pod level.
Additionally, microservices communicate with each other to
respond to fluctuating request flows, introducing call depen-
dencies and network effects.

Static resource estimation methods are limited in this con-
text because microservices have loosely coupled codebases,
and the number of target machines can be vast. The predom-
inant approach for estimating microservice runtime resource
usage has shifted towards dynamic analysis systems with data-
driven models. However, these systems face challenges as
workloads vary significantly, and a single deep model may
not generalize well across all application scenarios. Moreover,
many current deep models for resource estimation fail to
consider a crucial feature: the topology of microservice calls.

C. Motivation

Our design of RESCAPE is rooted in the existing dynamic
analysis approach, which we have expanded to construct

a versatile pipeline for resource estimation of microservice
workloads. The system is capable of adapting to diverse
workloads by profiling and gathering data at the pod level,
without requiring prior knowledge of the microservices’ im-
plementation specifics. Concurrently, it employs Deep Neural
Networks (DNNs) for prediction, alleviating the need for so-
phisticated feature engineering in previous work and address-
ing the microservice topology within the deep model training
and prediction processes.Designed for easy integration into
existing container orchestration systems, RESCAPE enables
real-time resource estimation and allocation, enhancing the
efficiency and cost-effectiveness of microservice deployments.

III. OVERVIEW OF RESCAPE

A. Key Idea

RESCAPE is a resource estimation system designed to
enable rapid adaptation to any microservice workloads. This
is primarily achieved by implementing an online profiling and
offline data processing pipeline to train a deep model for pre-
diction. RESCAPE constructs a deep model that integrates the
Graph Attention Mechanism (GAT) into traditional Recurrent
Neural Networks (RNNs) for better capturing the topological
features between microservices within a time series prediction
framework.

B. RESCAPE Architecture

Figure 2 provides a high-level overview of the RESCAPE
architecture, inspired by Seer[13]. RESCAPE operates by
deploying microservices workloads onto a container orches-
tration engine. It then initiates simulated clients to generate re-
quests directed at the exposed endpoints of the microservices.
Utilizing a distributed tracing system, RESCAPE constructs
the call graph topology of the microservices. Concurrently, it
gathers time series data from the monitoring metrics server for
offline training of the deep learning model. In the production
environment, the model operates as a service within the
container orchestration engine, ready to receive user requests
and perform online inference in real-time.

C. Key Techniques of RESCAPE

1) Workload Profiling: As discussed in Section II, our
work targets microservices deployed in container orchestration
engines, and we note the variability that real workloads have.
Therefore, the rapid deployment of new workloads is essential
for online profiling.

RESCAPE assumes that the code repository for a specific
workload has been provisioned, and the Dockerfile for image
building is available, which is necessary for running any
workload on a container orchestration system. To achieve
this, we allocate a custom resource in Kubernetes, which
orchestrates the creation and management of Kaniko[16] pods
for image building and pushing. We then deploy the workload
by submitting a YAML file to the Kubernetes API Server.
The API Server receives the request and stores the resource
contents in etcd[17], a distributed key-value store for reliable
data storage in distributed systems. After storing the resource



Figure 2: RESCAPE Architecture

contents, the API Server creates the desired number of pod in-
stances and schedules them onto specific nodes for execution.
Once the binding is successful, the image is pulled from the
repository, and each service operates within a container.

The simulated user clients receive lists of exposed microser-
vices endpoints and employ a randomized level of concur-
rency to send requests over a specified period. Monitoring
metrics data are periodically extracted using Prometheus[18]
and stored in a time-series database. At the end of the
request simulation, we fetch the performance metrics data
for each microservice through PromQL query and aggregation
operations within the database.

2) Microservice Call Graph Modelling: The topology of
a microservice application, denoted as G, can be described
using a set of nodes V , representing the microservices, and
edges E, representing the communication between them.

G = (V,E) (1)

A microservice application consists of a number n of
microservices, each of which can be represented by a unique
identity string. Let the set S of strings be composed of these
identity strings. This set S can be mapped to the domain of
natural numbers N through a function f , thereby defining the
set of microservice nodes V .

S
f→V

V = {i | i ∈ N}
(2)

The CPU and GPU resource utilization vector of the afore-
mentioned microservice application is defined as the concate-
nation of sequentially spliced resource utilization values cit and
git for each microservice i at timestamp t, indexed by a natural
number, where n is the cardinality of the set of microservice
nodes V .

cGt = {c1t , c2t , ..., cit, ..., cnt }
gGt = {g1t , g2t , ..., git, ..., gnt }

(3)

The topology of a microservice application is derived from
the chain of invocation relationships along the traces. When a
service request (Request) arrives at the microservice’s service
gateway (API Gateway), the gateway distributes the request

Figure 3: Media Microservice Trace

to the downstream service, which goes on to request other
services.

.
As shown in Figure 3, using a portion of a social media

microservice application as an example, when a user posts
a personal tweet on social media, the service request arrives
at the service gateway. The downstream services (MediaNg-
inxService) first obtain user ID data from the user information
service (UserService), then package the data and send it to the
push service (PostService), and finally store the user’s post
information in the database (UserPostDBStore). The chain of
calls is formed and marked by orange highlighted nodes.

For microservices that engage in upstream and downstream
calling relationships, an ordered pair representing a call from
an upstream to a downstream microservice is added to the set
of edges E, denoted as calls, to signify the presence of a
calling relationship.

E = {(i, j) | i, j ∈ V ∧ i calls j} (4)

Given the sequential nature of microservice invocations,
it is evident that the variation in resource utilization among
microservices is not only influenced by their own historical
resource utilization patterns, but also by the patterns exhibited
by the microservices that are invoked before and after them.
Therefore, it is crucial to incorporate the graph structure
information of the microservices into the design of the deep
learning model for resource prediction.



3) GAT-RNN Combined Deep Estimation: The task of
resource prediction involves learning a mapping function f
that maps the historical resource usage sequence Whistory of a
microservice onto its future resource usage sequence Wfuture.

Whistory
f→Wfuture (5)

where Whistory and Wfuture are sets of resource utilization
vectors characterizing microservice applications with a certain
topology at a series of timestamps.

Whistory = {XG
t−T+1, X

G
t−T+2, . . . , X

G
t−1, X

G
t }

Wfuture = {XG
t+1, X

G
t+2, . . . , X

G
t+T ′−1, X

G
t+T ′}

XG
t = {cGt , gGt }

(6)

Let XG
t denote the resource utilization vector of the mi-

croservice application with topology G at time t. The vector
cGt represents the CPU resource utilization, while gGt signifies
the GPU resource utilization. T represents the length of the
historical time series used for prediction, and T ′ denotes the
length of the predicted future time series.

In this context, Recurrent Neural Networks (RNNs) [19]
are commonly utilized to address problems where both inputs
and outputs are consecutive sequences, with the sequences
exhibiting variable lengths, such as those encountered in time
series analysis.

However, it is known that RNNs have a limited ability to
retain information over extended periods and struggle with
processing extremely long input sequences [20]. This limita-
tion arises because the output at each time step is contingent
upon the input from the preceding time step, which can lead
to a loss of information as the sequence length increases.

Figure 4: LSTM Neural Cell

Therefore, we adopt variants of RNNs, such as the Long
Short-Term Memory Network (LSTM) [20] and the Gated
Recurrent Unit (GRU) [21], to address the issue of long-
term dependencies in input sequences. Unlike standard RNNs,
which have a very simple structure within each neural mod-
ule (or block), LSTMs and GRUs offer more sophisticated
mechanisms for memory retention. As depicted in Figure 4,
the LSTM design incorporates ”neural cells” and intracellular
functional structures that are inspired by real-life tasks, result-
ing in a more complex structure within the blocks. The GRU

simplifies the neural architecture by eliminating the separate
cell state and merging the forgetting and input gates. However,
both models facilitate the preservation and flow of information
across a greater number of timesteps compared to standard
RNNs.

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(7)

Assuming that the time series of microservice resource
usage is predicted using RNN variant models, the input vector
is constructed by aggregating resource utilization data across
all microservices. This process effectively treats the recurrent
network’s propagation as a series of linear regressions, en-
abling global resource utilization at each moment to contribute
to the computation of the next hidden state.

Figure 5: Tensors Propagation Abstract

As depicted in Figure 5, the solid gray lines depict the actual
propagation of vectors, whereas the solid red lines represent
the scenario where all global microservice features contribute
to computing the predicted resource utilization of a particular
microservice.

However, the correlation of resource utilization among
microservices is primarily driven by upstream and downstream
invocations, rather than global interactions. Extracting and
utilizing the rich correlational information encoded in the
microservices’ topological graph structure is crucial for accu-
rate hidden state computation and propagation. Incorporating
an attention mechanism during the processing of resource
utilization vectors allows the model to focus on relevant
upstream and downstream microservices, thereby enhancing
prediction accuracy.

To effectively process the graph-structured information of
microservices, we introduce the Graph Attention Network



(GAT) [22]. GAT is composed of multiple Graph Attention
Layers (GALs), each designed to enhance the expressiveness
of the node representations by applying a weight matrix W to
each node. Given the input feature values of the nodes as h⃗,
where N is the number of nodes and F is the dimensionality of
the node features, after propagating through the graph attention
layer, a new feature vector h⃗′ is produced. This vector retains
the same number of nodes N , but the dimensionality of the
node features is transformed to F ′.

h⃗ = {h⃗1, h⃗2, . . . , h⃗N}, h⃗i ∈ RF

h⃗′ = {h⃗′
1, h⃗′

2, ..., h⃗′
N}, h⃗′

i ∈ RF ′ (8)

eij represents the importance of node i to node j. Theoret-
ically the weights from any node in the graph to the central
node can be computed, but to simplify the computation, GAT
restricts the nodes to the node itself and its one-hop neighbors.

eij = LeakyReLu(aT [Wh⃗i,Wh⃗j])

αij = softmax(eij) =
exp(eij)∑

j∈Ni
exp(eij)

h⃗′
i = σ(

∑
j∈Ni

αij h⃗j)

(9)

Figure 6: Graph Attention Network

To improve the generalization ability of the attention mech-
anism, GAT can use a multi-head attention layer consisting of
K groups of mutually independent single attention layers. The
formula of the final attention layer is shown below, where αk

ij

denotes the weight coefficient computed by the kth group of
attention mechanisms and W k is the weight coefficient of the
kth module.

h⃗′
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kh⃗j) (10)

As we describe microservices as nodes and callups be-
tween upstream and downstream microservices as edges for
the time series prediction task, the time series processing
of each microservice remains independent when using RNN
models. However, there is an execution relationship between
the microservices; thus, the time series information of the
neighbor nodes in the graph is valuable for predicting its
own sequence. Consequently, GAT aggregates features from

Figure 7: GAT-RNN cell

Figure 8: GAT-RNN Network

neighboring nodes to the central node, learning feature repre-
sentations using information from the local graph.

As depicted in Figure 7, we integrate GAT into the recurrent
basic block (Recurrent Cell) of the RNN to form a new basic
block (GRU/LSTM Cell). This enables the model to learn the
time series information of each microservice node while con-
sidering the graph structure among the microservices. For each
basic block, the hidden state hT−1 of the previous timestamp is
forwarded into the GAT as a feature vector. Based on the graph
structure information G of the microservice workloads, the
input feature vector is processed with the multi-head attention
mechanism to obtain the enhanced feature vector h′

T−1 with
graph structure information. The enhanced feature vector is
then input into the GRU/LSTM Cell to continue propagation
or for resource prediction.

As shown in Fig. 8, we stack two layer of recurrent cell to
construct a bi-directional recurrent neural network, with the
same set of time series data respectively entering two layers
of Recurrent Cell forward and reversely. The hidden state of
the last cell in the two layers are concatenated to input into a
fully connected layer, which outputs the final prediction result.

IV. EVALUATION SETUP

A. Clusters

We build RESCAPE on our cloud computing clusters
based on Kubernetes 1.22, which consists of 4 worker nodes
connected through an 800 Gbps network. Each worker node
runs the Ubuntu 22.04 operating system, has an 80-core Intel
Xeon Platinum 8163 CPU at 2.50GHz, 4 x 32GB NVIDIA
Tesla V100 GPUs, and 256GB of DDR4 RAM. We deploy
the necessary plugins and dependencies, such as Prometheus,
DCGM-Exporter, and Jaeger Operator, for collecting runtime
metrics and distributed tracing.



B. Data

We evaluate RESCAPE using the open-source microservice
benchmarks DeathStarBench and HPC AI500 [8], which
encompass services that require heterogeneous computational
resources. We deploy the selected benchmark assembly by
submitting a YAML file to the API Server via kubectl. The
constructed clients send requests with a randomized con-
currency level (80-220) every minute for 12 hours to the
API endpoints exposed by the microservices. After all the
requests are processed, the performance metrics data for each
microservice is collected in the format shown in Table I.

Table I: MS Metric

Metric Name Value Description

timestamp 0 Sampled timestamps
ms name 99f2e7b501f50db9 Raw id of the ms
ms id 0 Numbered id of the ms
cpu utilization 0.12992 CPU utilization for ms
gpu utilization 0 GPU utilization for ms

The timestamps range from 0 to 1440 (12 hours of data
collected, sampled at 30-second intervals). During the col-
lection process, the string value ms name of each original
microservice is mapped to a natural number ms id, enabling
the sequential numbering of microservices.

To analyze the call dependencies between microservices,
we query and aggregate the microservice traces to obtain the
structural data of each microservice call graph, as shown in
Table II.

Table II: MS CallGraph

Metric Name Value Description

timestamp 163 Sampled timestamps
trace id 015101cd1591939 Callup raw id
um 35114acfb54c54fb Upstream ms raw id
dm b65fdc9bfef6b497 Downstream ms raw id
um id 5 Numbered id of the um
dm id 29 Numbered id of the dm

We constructed the edge set of microservices based on
the upstream and downstream microservice names (um, dm).
Using the data from the microservice node set and edge set,
we revised the topological graph structure.

C. Models

We compare the following models for the resource estima-
tion task in RESCAPE:

FC is a baseline regression model used for resource estimation,
similar to some related works.

GRU & LSTM are RNN-based models. This test group
indicates whether RNN models can perceive the characteristics
of the microservice resource utilization time-series data, and
which RNN class model is more capable of handling long-term
dependencies.

GAT-GRU & GAT-LSTM is our design to introduce the GAT
into RNN models to process the hidden state. It is expected

that the combined models perform better estimation based on
the perception of graphical call-up information.

We use a consistent hyperparameter setting for the models,
with 4 hidden layers and 48 hidden units, to avoid affecting
the prediction accuracy due to the depth of the network.
Meanwhile, the size of the hidden layers is set to a lower value
to avoid overfitting and speed up the training process. The GAT
combined with the RNN models has identical parameters of 4
multi-heads. Additionally, we introduce a sliding window for
the input and output sequences. A sequence of resource utiliza-
tion for the next 3 timestamps is predicted using a sequence of
10 historical timestamps as input to the model. The windows
of the history and future are shifted by one simultaneously,
continuing to extract inputs in the history window to predict
the resource utilization in the future window. This strategy
effectively enriches the predicted historical information, delays
overfitting during training, and enhances the generalization
ability of the model.

D. Metrics

We use three different metrics to assess the difference
between the actual and predicted values of resource utiliza-
tion. The actual value of resource utilization is denoted as
y = {y1, y2, . . . , yn}, and the predicted value of resource
utilization is expressed as ŷ = {ŷ1, ŷ2, . . . , ŷn}, where n is
the number of samples.

a) Mean Absolute Error (MAE): represents the average
of the absolute errors between the predicted values and the
true values. This metric provides an intuitive measure of the
error magnitude.

MAE =
1

n

n∑
i=1

|ŷi − yi| (11)

b) Mean Absolute Percentage Error (MAPE): indicates
the average of the absolute errors of the predicted values
from the true values as a percentage. This metric is sensitive
to relative errors and is suitable for variables with large
magnitudes of differences.

MAPE =
1

n

n∑
i=1

| ŷi − yi
yi

| ∗ 100% (12)

c) Mean Squared Error (MSE): represents the average of
the squared errors between the predicted values and the true
values. Due to the squaring of errors, this metric is suitable for
normalized data values and is particularly sensitive to larger
errors.

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (13)

V. EXPERIMENTAL RESULTS

We train the models for 50 epochs with a batch size of
48 on an Intel Core i7-8750H CPU @ 2.20GHz and an
NVIDIA GTX2060 GPU, running Ubuntu 22.04 LTS. The



Table III: Results of Experiment

Timestamps MAE MAPE MSE
30s 60s 90s 30s 60s 90s 30s 60s 90s

FC 10.110 9.6000 9.8800 132.03 101.60 82.450 1.6500 1.5900 1.7200
GRU 5.9130 6.7920 7.3490 15.717 18.626 21.625 0.6750 0.8860 1.0280
LSTM 6.5940 7.1440 7.5770 22.235 22.260 21.543 0.8040 0.9420 1.0570
GAT-GRU 3.9030 5.1600 5.9530 7.9420 11.700 15.049 0.3320 0.5530 0.7190
GAT-LSTM 4.1320 5.2830 6.0460 15.831 16.297 17.038 0.3580 0.5680 0.7290

(a) GRU (b) GAT-GRU

Figure 9: Comparison of the Truth and Prediction

Adam optimizer is used with a base learning rate of 0.001.
After the training process is completed, the models (FC, GRU,
LSTM, GAT-GRU, and GAT-LSTM) are evaluated on the
designated test set, with the results for each metric shown
in Table III.

The experimental results clearly demonstrate that the FC
model exhibits the poorest performance across all evaluation
metrics. Transitioning from the FC model to the RNN models
results in a noticeable improvement in prediction accuracy. To
illustrate this, the prediction and actual CPU utilization curves
for the microservice with msid 0, using the GRU model, are
plotted as shown in Figure 9a.

Introducing the GAT model to process the hidden states of
the RNN models further enhances prediction accuracy. This
indicates that the graph attention mechanism effectively ex-
tracts graph structure information from microservices, aiding
in future resource utilization predictions. The prediction and
actual CPU utilization curves for the microservice with msid
0 using the GAT-GRU model are shown in Figure 9b.

Comparative analysis between the two RNN models reveals
that GRU provides better predictions for subsequent times-
tamps, achieving a mean absolute percentage error (MAPE)
of 7.9%. Additionally, GRU has fewer parameters compared
to LSTM, making GAT-GRU a more suitable model for
microservice resource estimation.

VI. RELATED WORK

The runtime resource estimation for programs typically
employs two dominant techniques for building prediction
models: static code analysis and dynamic runtime performance
analysis. The former extracts features from the static source

code, while the latter, which RESCAPE adopts, examines
dynamic runtime performance metrics.

Dynamic analysis primarily involves several steps: profil-
ing workloads, collecting and processing data, and training
and evaluating models. This approach is supported by the
work of J. Rahman and P. Lama [15]. Using the SockShop
benchmark on Kubernetes [23], collecting metrics data by
sending simulated service requests to various microservices.
However, their work was limited to constructing simple re-
gression and DNN models to predict end-to-end latency for
microservices, failing to account for the topological features of
microservices. Moreover, generalizing these prediction models
to other microservice workloads in production environments
is challenging.

In response, other studies have integrated the entire process
into a unified system and introduced deep models to better
address the spatial and temporal characteristics of microservice
runtime metrics data.

Seer [13] utilizes distributed tracing to incorporate spa-
tial features of microservices into input metric sequences.
Leveraging this tracing for graph information and prediction
with a CNN-RNN model shows promise. However, passive
tracing collection may lead to incomplete graphs, and the
sequential presentation of topology could lack full context due
to small CNN filters. In contrast, RESCAPE actively queries
all exposed microservices APIs during workload profiling to
complete the topology and utilizes graph neural networks,
which are well-suited for processing graph-structured data.

DeepRest[14] build the microservice resource estimation as
a function of api gateway, and fuse the callup graph with
a feature extractor that labels every possible execution path.



It introduce a feasible algorithm for capture graph structure
information. However, constructing such an extensive feature
space is unnecessary when only a subset of execution paths
is relevant for API microservice endpoints. In this regard,
RESCAPE builds the graph based on actual flow paths and
dynamically scales the feature space according to the nodes
and edges using graph neural networks.

Nodens [4] utilizes bandwidth occupation to construct the
microservice topology, allowing for refined modeling of block-
ing effects and queuing workload distribution forecasts via
regression. Though it enhances metric monitoring, manual
feature engineering is still required for microservice call graph
dependencies. In contrast, RESCAPE automates this feature
extraction and learning from aspects like queue occupancy and
blocking effects using a neural network.

VII. CONCLUSION

We present RESCAPE, a robust data-driven system for
precise microservice resource estimation. It adapts to variable
workloads using online profiling and offline training, lever-
aging temporal and graphical profiling metrics to enhance
prediction accuracy. RESCAPE can be deployed as an API
Gateway function or as a container orchestration engine plu-
gin, optimizing resource allocation in real time.

Our contributions include integrating a predictive system for
microservice resource requirements, leveraging online profil-
ing and offline training to adapt to varying workloads. We
introduce algorithms to convert microservice features into
structured data, improving prediction accuracy. Additionally,
we present a GNN-RNN model that analyzes historical usage
and spatial relationships between services, enhancing resource
management in cloud ecosystems. Evaluated using the Death-
star and HPC-AI500 benchmarks, RESCAPE achieved a
7.9% average absolute percentage error in forecasting resource
needs. These findings demonstrate the system’s potential to
significantly improve resource utilization and reduce opera-
tional costs in cloud computing clusters.

ACKNOWLEDGMENT

This work is supported in part by National Key
R&D Program of China (2022YFB4502003), by the Fun-
damental Research Funds for the Central Universities
(501QYJC2023121001). For any correspondence, please refer
to Renyu Yang (renyuyang@buaa.edu.cn).

REFERENCES

[1] L. Chen, Y. Xu, Z. Lu, J. Wu, K. Gai, P. C. K. Hung,
and M. Qiu, “Iot microservice deployment in edge-cloud hybrid
environment using reinforcement learning,” IEEE Internet of Things
Journal, vol. 8, pp. 12 610–12 622, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:226579924

[2] X. He, T. Wang, L. Liu, J. Li, Z. Su, Y. jun Guo, Z. Tu, H. Xu,
and Z. Wang, “Rescureservice: A benchmark microservice system
for the research of mobile edge and cloud computing,” ArXiv, vol.
abs/2212.11758, 2022. [Online]. Available: https://api.semanticscholar.
org/CorpusID:254974305

[3] P. Jamshidi, C. Pahl, N. das Chagas Mendonça, J. Lewis, and
S. Tilkov, “Microservices: The journey so far and challenges
ahead,” IEEE Softw., vol. 35, pp. 24–35, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:25437582

[4] J. Shi, H. Zhang, Z. Tong, Q. Chen, K. Fu, and M. Guo,
“Nodens: Enabling resource efficient and fast qos recovery of
dynamic microservice applications in datacenters,” in USENIX
Annual Technical Conference, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:259859065

[5] L. Bao, C. Q. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling
and workflow scheduling of microservice-based applications in clouds,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, pp.
2114–2129, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:86671914

[6] X. He, Z. Tu, X. Xu, and Z. Wang, “Re-deploying microservices in edge
and cloud environment for the optimization of user-perceived service
quality,” in International Conference on Service Oriented Computing,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
204945669

[7] DeathStarBench. https://github.com/delimitrou/DeathStarBench.
[8] HPC AI500. https://www.benchcouncil.org/aibench/hpcai500/index.

html.
[9] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and

F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in USENIX Annual Technical Conference, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:58014231

[10] G. Fan, L. Chen, H. Yu, and W. Qi, “Multi-objective optimization
of container-based microservice scheduling in edge computing,”
Comput. Sci. Inf. Syst., vol. 18, pp. 23–42, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:229654000

[11] K. Meng and B. Norris, “Mira: A framework for static performance
analysis,” 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 103–113, 2017. [Online]. Available: https://api.
semanticscholar.org/CorpusID:3440922

[12] V. K and M. Purnaprajna, “Performance estimation on heterogeneous
systems: Making the most of static analysis,” 2020 7th International
Conference on Signal Processing and Integrated Networks (SPIN),
pp. 435–440, 2020. [Online]. Available: https://api.semanticscholar.org/
CorpusID:216043125

[13] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:102347800

[14] K.-H. Chow, U. Deshpande, S. Seshadri, and L. Liu, “Deeprest: deep
resource estimation for interactive microservices,” Proceedings of the
Seventeenth European Conference on Computer Systems, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:247765661

[15] J. Rahman and P. Lama, “Predicting the end-to-end tail latency of
containerized microservices in the cloud,” 2019 IEEE International
Conference on Cloud Engineering (IC2E), pp. 200–210, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:96438130

[16] kaniko. https://github.com/GoogleContainerTools/kaniko.
[17] etcd. https://etcd.io.
[18] Prometheus. https://prometheus.io/.
[19] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly

detection for multivariate time series through stochastic recurrent
neural network,” Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:196175745

[20] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W.-K. Wong, and W. chun
Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Neural Information Processing Systems,
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
6352419

[21] J. Chung, Çaglar Gülçehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence modeling,”
ArXiv, vol. abs/1412.3555, 2014. [Online]. Available: https://api.
semanticscholar.org/CorpusID:5201925

[22] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio’, and
Y. Bengio, “Graph attention networks,” ArXiv, vol. abs/1710.10903,
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
3292002

[23] SockShop. https://microservices-demo.github.io.


