
2024 IEEE International Conference on Joint Cloud Computing (JCC)

PrecisionProbe: Non-intrusive Performance Analysis
Tool for Deep Learning Recommendation Models

Weiyu Peng, Jinghao Wang, Tianyu Wo, Renyu Yang
School of Software, Beihang University

{pengwy, wang jinghao, woty, renyuyang}@buaa.edu.cn

Abstract—Deep learning recommendation models (DLRM) ex-
ploit user behaviors such as clicks, browse footprints, preferences,
etc. for improved personalized experiences. However, in the face
of the exponential growth of user data, such models require
increasing GPU resources that are unaffordable and insufficient
in a computing cluster. To improve GPU utilization and facilitate
the advances of GPU scheduling algorithms, we present Preci-
sionProbe, a non-intrusive monitoring and analysis tool that can
run upon Kubernetes and conduct sophisticated analytics of GPU
resource utilization without altering the existing training code.
PrecisionProbe captures fine-grained GPU metrics at the level of
individual model layers and allows for a precise understanding
of resource consumption patterns by exploring such detailed
metrics. The mechanism is crucial for devising effective GPU
scheduling algorithms, particularly tailored for DLRM training
jobs dependent upon consumption patterns. Experimental results
show that the recommendation models, as opposed to CV and
NLP models, utilize less FP32 processing but have higher mem-
ory interaction frequencies. These findings indicate the unique
resource needs of recommendation systems and necessitate the
need of performance analytic using PrecisionProbe.

Index Terms—Deep Recommendation Training, Kubernetes,
Performance Analysis, Cloud Computing

I. INTRODUCTION

Deep learning recommendation models (DLRMs) are the
key driving force behind many application domains including
e-commerce, online search, video, and advertising, etc. These
systems can help to alleviate information overload, aid users
in finding relevant information, and boost traffic and revenue
for service providers. Personalized recommendations offer
valuable insights into user behavior, and thus can enable
precise decision-making and strategy optimization.

Despite the abundance of CPU and memory resources,
GPU accelerators remain the critical bottleneck of training
deep learning models [1]. The increasing data volumes and
complexity of deep recommendation models are facing non-
negligible challenges of resource management in a GPU
cluster. In reality, These models often involve complex datasets
and large embedding layers[2], and hence require substantial
memory and hinder data processing. Improving cluster ef-
ficiency and accessibility is imperative for making effective
resource management and job scheduling.

In this paper, we introduce PrecisionProbe, a non-intrusive
software tool for comprehensive performance analysis of DL-
RMs to navigate the complexity of model training and resource
management. At the core of PrecisionProbe is capturing and

exploring fine-grained GPU metrics at the model layer level,
without altering the underlying deep learning framework.
Based on the performance tracing and profiling, we present
an in-depth analysis of GPU resource consumption patterns
across different layers within deep recommendation models.
Doing so can dig out the GPU resource requirements of
large embedding layers and unleash the potential of pattern-
aware GPU scheduling. We conduct an experimental study
to compare deep recommendation models with other models
from other domains, such as computer vision (CV) and natural
language processing (NLP). The results reveal the detailed
memory and bandwidth-intensive characteristics of DLRMs
and identify potential bottlenecks of training DLRMs.

II. BACKGROUND AND MOTIVATION

The increasing volume of data and continuous advance-
ments in deep learning models have introduced significant
challenges in the allocation of computational resources. As
a result, the efficient management and scheduling of these
computational tasks have become crucial. A recent survey
on deep learning workload scheduling [1] highlights several
key objectives for scheduling algorithms, with the analysis of
resource consumption being particularly critical. Therefore,
there is an urgent need for a fine-grained analysis of GPU
resource utilization.

GPU performance analysis has been widely studied in
various computing domains [3], [4], categorized into micro-
level and macro-level analysis, each offering different insights
into GPU performance. Micro-analysis tools are utilized to
dissect GPU performance at the hardware level during program
execution. These tools often operate within the context of
program execution and are based on sampling techniques. Ad-
ditionally, there are methodologies designed to provide a top-
down analysis of performance for GPU-accelerated jobs [5].
While these approaches facilitate a granular examination of
GPU resource consumption patterns, they typically necessitate
intrusive code modifications. Moreover, the analysis can be
quite complex, with a primary focus on hardware-level details.

Macro-analysis tools, such as the roofline model [6], eval-
uate the theoretical performance limits of applications on a
given platform, identifying performance bottlenecks. While
widely used for analyzing deep learning models, the roofline
model is limited to calculating performance upper bounds and
does not provide detailed metrics on resource utilization during

©2024 IEEE



Figure 1: Overview of PrecisionProbe

training. Extensive research on GPU utilization during deep
learning model training [7] has focused on models like VGG,
ResNet, and LSTM on heterogeneous GPUs. However, many
studies are outdated, based on older GPU generations, and few
offer comprehensive analyses of GPU resource consumption
patterns in deep recommendation model training.

To address these limitations, we introduce PrecisionProbe,
a tool for analyzing GPU resource consumption patterns in
deep recommendation models. PrecisionProbe provides pre-
cise measurements of key GPU usage metrics throughout the
training process, aiding the development of GPU scheduling
algorithms. We collect comprehensive, non-intrusive data on
critical GPU resources, including Streaming Multiprocessors
(SM) occupancy and floating-point (FP32) operations. Our
experiments reveal unique GPU resource consumption patterns
in deep recommendation models, facilitating the design of
more effective GPU scheduling algorithms.

III. OUR APPROACH

A. Overview

PrecisionProbe is a non-intrusive tool that captures detailed,
fine-grained GPU metrics at the individual model layer level. It
is designed to operate seamlessly on the Kubernetes platform,
leveraging Prometheus for a comprehensive analysis of GPU
resource utilization patterns. This sophisticated tool enables
such analysis without the need for refactoring the underlying
deep learning framework.

Figure 1 provides an overview of PrecisionProbe. Upon
the completion of processing for each layer in the deep
recommendation model, PyTorch Hooks registered after each
layer transmit messages to PrecisionProbe. Subsequently, Pre-
cisionProbe collects data via the HTTP API provided by
Prometheus. The collected data are then processed and stored
in the database.

B. Details

GPU utilization is a crucial metric that provides a snapshot
of the GPU’s operational status, but it can offer a misleading
broad view. For instance, if one Streaming Multiprocessor
(SM) within the GPU is active 100% of the time, the reported
GPU utilization might incorrectly suggest full engagement,
even if other SM units are idle. Relying solely on GPU
utilization can thus lead to underutilization and inefficiency.

To address this, PrecisionProbe examines multiple GPU
resources, selecting key metrics that together offer a more

Table I: Metrics collected by the system.

Metric

GPUUtil, GPUMem, DRAMActive, FP32Active, SMActive, SMOccupancy

Table II: Result Table Definition

Field Type Description

job id varchar(500) unique identifier of the job
host name varchar(100) host name of the job
ip varchar(100) IP address of the host
forward bool forward inference flag
layer varchar(100) the name of the layer
cpu num float job’s requested CPU cores num
data num bigint the number of collected data
gpu util float average GPU Utilization
gpu mem float average GPU memory usage
dram active float average DRAM active rate
fp32 active float average FP32 active rate
sm active float average SM active rate
sm occupancy float average SM occupancy rate

nuanced and comprehensive view of how deep learning models
utilize GPU resources. Table I presents the metrics collected
by PrecisionProbe from DCGM(NVIDIA Data Center GPU
Manager), offering detailed insights into GPU performance
during training:

• GPUUtil: Indicates GPU utilization, showing the percent-
age of active kernel functions.

• GPUMem: Represents GPU memory usage, related to
the model’s parameter size and data volume.

• DRAMActive: Reflects the ratio of cycles where the
device memory interface is active.

• FP32Active: Shows the ratio of cycles where the FP32
pipeline is active.

• SMActive: Indicates the ratio of cycles where an SM has
at least one active warp.

• SMOccupancy: Describes the ratio of warps residing on
a single SM.

PrecisionProbe operates as a non-intrusive tool that doesn’t
require modifications to deep recommendation models’ frame-
works. It provides an HTTP interface to externally access the
model’s current operational status, enabling the extraction of
real-time data on model execution. Key fields in the request
body detail the model’s execution status, including training
progress, job tracking, propagation phase, layer information,
and timestamps for layer execution.

To implement this, PyTorch Hooks are registered before and
after targeted layers to capture performance data at critical
junctures. As the model undergoes each forward and back-
ward propagation cycle, these Hooks trigger PrecisionProbe
to retrieve detailed information on GPU resource utilization,
ensuring a thorough and uninterrupted assessment of GPU
resources throughout the training phases.

Upon receiving requests, PrecisionProbe retrieves six key
metrics from Prometheus based on timestamps. The retrieved
data, along with task-specific information such as task name,
Pod name, GPU UUID, epoch, batch, and layer numbers, are
stored in a database. Given that PyTorch Hooks are invoked



(a) An overview of GPU utilization in
each layer in DLRM.

(b) Fine-grained performance analysis for
each layer in DLRM.

Figure 2: Performance analysis of DLRM.

during each forward and backward propagation, data collection
can be extensive. To mitigate data volume, PrecisionProbe first
queries existing GPU metric results for the current layer. If the
new results are similar to previous ones, they are not persisted.
Only one data set per layer is stored, reducing data volume
by approximately 90% and improving query efficiency. For
comparative analysis, PrecisionProbe calculates and stores the
average values of the metrics for each model layer in the
result table (Table II). If no existing information is found for
a specific layer, a new record is created and initialized. The
metrics are updated incrementally to maintain accuracy and
efficiency.

IV. EVALUATION

A. Evaluation Setup

We deployed PrecisionProbe on a Kubernetes cluster con-
figured with Prometheus 2.34.0, Kubernetes 1.26.9, Go 1.20,
CUDA 12.2, and NVIDIA Driver 535.104.05. To analyze
the GPU resource consumption of DLRM [2], we used a
node equipped with an NVIDIA Tesla V100 32GB GPU and
256GB of memory. The model comprises a bottom MLP with
three layers (512, 512, 64 nodes) and a top MLP with four
layers (1024, 1024, 1024, 1 node), totaling 514.5M parameters.
We used a dataset of 2048K samples in 1K mini-batches,
with each sample having 8 categorical and 512 continuous
features. Categorical features utilize an embedding table with
1M vectors of dimension 64, while continuous features form
a vector of dimension 512. We compared DLRM’s GPU
resource consumption with ResNeXt [8] and GPT-2 [9] in the
same environment.

B. Detailed Performance Analysis at Fine-Grained Level

We conducted a fine-grained performance analysis of
DLRM, focusing on the Linear, ReLU, EmbeddingBag, Sig-
moid, and MSELoss layers.

Figure 2a shows GPU utilization for each layer during
forward and backward propagation. EmbeddingBag layers
consume the most GPU resources during forward propagation
due to large-scale sparse matrix computations. Sigmoid and
MSELoss layers consume the least GPU resources as they do
not require intensive GPU computations. Figure 2b provides

Figure 3: Comparison between models

Table III: Overview of GPU resource consumption

Model Parameters GPU Utilization Memory Used

DLRM 514M 65.26% 24.87GB
ResNeXt 460M 94.92% 21.12GB
GPT-2 461M 85.8% 18.08GB

detailed GPU resource utilization patterns, including DRA-
MActive, FP32Active, SMActive, and SMOccupancy metrics.
EmbeddingBag layers show high SMActive and SMOccu-
pancy, indicating substantial parallel computations and mem-
ory accesses. They also frequently transfer data between the
GPU and DRAM, as shown by the DRAMActive metric. This
is due to large-scale sparse matrix operations that require
significant GPU resources.

During backward propagation, the high resource usage of
EmbeddingBag layers is notable. This is likely due to gradient
accumulation, which involves combining gradients of input
samples and accessing embedding vectors for each sample.

C. GPU Resource Consumption Pattern

We tested ResNeXt and GPT-2 with PrecisionProbe to com-
pare their GPU resource consumption with DLRM. Table III
shows the models, their parameters, and overall GPU resource
consumption. Models were adjusted to have similar parameter
sizes and used GPUs with approximately 20GB of memory.
DLRM has lower GPU utilization than ResNeXt and GPT-2.
DLRM’s large embedding layers process extensive categorical
features, making it memory-capacity and bandwidth-intensive.
Thus, at similar parameter levels, DLRM consumes more
memory resources and relatively less GPU utilization.

Figure 3 shows the GPU resource utilization of DLRM,
ResNeXt, and GPT-2. DLRM has similar DRAMActive levels
as ResNeXt and GPT-2 but consumes less computational GPU
resources, highlighting its memory-intensive nature. Memory
operations like data transfer occupy a significant portion of
DLRM’s GPU usage. Insufficient memory can lead to under-
utilized GPU computing resources, causing an imbalance in
GPU utilization.

V. RELATED WORK

A. GPU Performance Analysis

GPU performance analysis can be categorized into micro-
scopic, examining hardware events related to kernel invoca-
tions, and macroscopic, looking at overall system utilization.

Microscopic tools like HPCToolkit[10] analyze GPU perfor-
mance by attributing metrics to calling contexts for both CPUs



and GPUs. It uses a wait-free data structure to monitor and
attribute GPU performance, creating detailed call path profiles
for GPU computations. [11] measures GPU kernel executions
using hardware performance counters and collects call path
traces. [5] extended it with the CUPTI interface for top-
down performance analysis. Macroscopic tools like roofline[6]
describe application performance by connecting processor
performance to off-chip memory usage, measuring traffic
between caches and memory, allows determination of DRAM
bandwidth requirements based on operational intensity. Yang
et al. proposed a new methodology to give a hierarchical
roofline performance analysis for deep learning models[3]. The
sparsity roofline reveals the intricate connection between the
arrangement of sparse elements, precision, and the efficiency
of inference[12].

However, these studies do not detail the entire process. Our
PrecisionProbe provides a macroscopic view of GPU resource
utilization during deep learning model training, capturing
detailed metrics like SMOccupancy and FP32Active.

B. Performance Analysis of Deep Learning Models

Analyzing GPU utilization during deep learning training
is crucial as models scale. [13] examined the impact of
different GPU architectures on CNNs. [14] proposed GENIE
to predict diverse deep learning workloads. [7] designed an
interference-aware execution framework for GPU applications.
[15] evaluated a deep learning application for statistical tem-
perature downscaling. [16] proposed a framework to enhance
the training speed of the Wide & Deep model.

These works focused on GPU utilization, memory usage,
DRAM data transfer frequency, and network bandwidth. Sim-
ilar to these studies, our PrecisionProbe focuses on GPU
resource consumption patterns for deep learning recommen-
dation models. We capture detailed GPU resource metrics
such as SMOccupancy and FP32Active, tracking these metrics
throughout the entire training process.

VI. CONCLUSION

We introduced PrecisionProbe, a non-intrusive tool for
analyzing fine-grained GPU resource utilization during the
training of deep learning recommendation models. The tool
collects comprehensive metrics throughout each epoch, pro-
viding detailed insights into the GPU resource utilization
patterns of each layer.Our testing of PrecisionProbe on the
Deep Learning Recommendation Model revealed distinct con-
sumption patterns across layers. Linear layers showed the
highest GPU utilization, while MSELoss and Sigmoid layers
had lower utilization. EmbeddingBag layers were particu-
larly computation-intensive but engaged in fewer floating-
point operations (FLOPs) compared to other layers.The de-
tailed analysis of GPU resource utilization metrics provided
by PrecisionProbe will aid future research and development
of scheduling algorithms tailored for deep recommendation
models.

ACKNOWLEDGMENT

This work is supported in part by National Key
R&D Program of China (2022YFB4502003), by the Fun-
damental Research Funds for the Central Universities
(501QYJC2023121001). For any correspondence, please refer
to Renyu Yang (renyuyang@buaa.edu.cn).

REFERENCES

[1] W. Gao, Q. Hu, Z. Ye, P. Sun, X. Wang, Y. Luo, T. Zhang, and Y. Wen,
“Deep learning workload scheduling in gpu datacenters: Taxonomy,
challenges and vision,” arXiv preprint arXiv:2205.11913, 2022.

[2] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

[3] C. Yang, Y. Wang, T. Kurth, S. Farrell, and S. Williams, “Hierarchi-
cal roofline performance analysis for deep learning applications,” in
Intelligent Computing: Proceedings of the 2021 Computing Conference,
Volume 2. Springer, 2021, pp. 473–491.

[4] T. Miao, Q. Wu, T. Liu, P. Cui, R. Ren, Z. Li, and G. Xie, “Md-roofline:
A training performance analysis model for distributed deep learning,”
in 2022 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2022, pp. 1–8.

[5] K. Zhou, M. W. Krentel, and J. Mellor-Crummey, “Tools for top-down
performance analysis of gpu-accelerated applications,” in Proceedings
of the 34th ACM International Conference on Supercomputing, 2020,
pp. 1–12.

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[7] S. Kim and Y. Kim, “Interference-aware execution framework with co-
scheml on gpu clusters,” Cluster Computing, vol. 26, no. 5, pp. 2577–
2589, 2023.

[8] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[11] K. Zhou, L. Adhianto, J. Anderson, A. Cherian, D. Grubisic, M. Krentel,
Y. Liu, X. Meng, and J. Mellor-Crummey, “Measurement and analysis of
gpu-accelerated applications with hpctoolkit,” Parallel Computing, vol.
108, p. 102837, 2021.

[12] C. Shinn, C. McCarthy, S. Muralidharan, M. Osama, and J. D. Owens,
“The sparsity roofline: Understanding the hardware limits of sparse
neural networks,” arXiv preprint arXiv:2310.00496, 2023.

[13] S. Dong, X. Gong, Y. Sun, T. Baruah, and D. Kaeli, “Characterizing the
microarchitectural implications of a convolutional neural network (cnn)
execution on gpus,” in Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, 2018, pp. 96–106.

[14] Z. Chen, W. Quan, M. Wen, J. Fang, J. Yu, C. Zhang, and L. Luo,
“Deep learning research and development platform: Characterizing and
scheduling with qos guarantees on gpu clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 1, pp. 34–50, 2019.

[15] S. Kum, S. Oh, J. Yeom, and J. Moon, “Optimization of edge resources
for deep learning application with batch and model management,”
Sensors, vol. 22, no. 17, p. 6717, 2022.

[16] Y. Zhang, L. Chen, S. Yang, M. Yuan, H. Yi, J. Zhang, J. Wang, J. Dong,
Y. Xu, Y. Song et al., “Picasso: Unleashing the potential of gpu-centric
training for wide-and-deep recommender systems,” in 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 2022,
pp. 3453–3466.


