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Abstract—Since the Internet of Vehicles (IoV) technology has
recently attracted huge research attention, IoV services that
can collect, process data and further provision services are
increasingly becoming the mainstream. Considering the pro-
cess efficiency, geo-distributed data is typically collected and
exploited on different Clouds, making it significantly essential
for IoV application to be deployed on multiple Clouds whilst
system components still function well and jointly work. In this
paper, we provide a scalable IoV system deployment in the
joint Cloud environment where cloud vendors collaboratively
cooperate as an alliance. In particular, system components are
independently deployed in accordance with the data placement
and resource capacities etc. A multi-replication mechanism is
utilized to achieve the cross-cloud parallel processing, thereby
effectively handling the scalability issues in the massive-scale
vehicle data processing. Furthermore, we adopt the multi-
source data fusion to facilitate the accuracy of IoV data
analytics. We demonstrate the effectiveness of the proposed
approaches through real-world use cases including fleet distri-
bution management and passenger demands prediction.

1. Introduction

The advanced Cloud computing techniques have re-
shaped numerous traditional industries. For instance, the ve-
hicle and transportation industry is significantly influenced
by the Cloud computing and mobile technology. Conse-
quently, Internet-of-Vehicles (IoV) application is increas-
ingly becoming the mainstream solution which leverages the
Cloud datacenter to collect and process vehicle streaming
data and further provide transportation-related services to
users.

Such Cloud-based IoV systems usually consist of mul-
tiple components. Those components work together collab-
oratively to achieve a number of functionalities of a com-
plex system. Traditional solutions to such scenario basically
manage and process the data within a proprietary Cloud
datacenter. For example, Cloud service provider such as
Google [1], Microsoft [2], and AWS [3] proposed their
own IoV-oriented Cloud services. However, in some real-
world cases, different service components and the data store
usually require to be deployed and managed on multiple

Cloud platforms for the performance consideration (e.g.,
reduced latency and increased data transmission rate etc.).

There are three reasons for such deployment – Firstly, it
is very common for multi-organizations to participate in the
business and academic cooperations. It seems inappropriate
to completely deploy a monolithic system within a single
datacenter considering the frequent manifestations of system
failures. Once a critical system component suffers from the
power outage or late-timing failures, the holistic service
chain might be affected, resulting in a service suspension [4]
[5]. Also, organizations have their specialized requirements
and priorities in terms of the provisioned quality of services
(QoS) such as latency, throughput, and reliability, etc.; Sec-
ondly, in the modern real world, environments may change
rapidly and unexpectedly [6] [7]. Meanwhile, the data is
generated everywhere, and the massive amount of data is
collected and stored in geo-distributed Cloud datacenters.
Due to the unaffordable network communication cost, the
widely-distributed data cannot be easily moved across the
Clouds. It is far more cost-effective to properly schedule
computation tasks adjoin to the data; The third reason why
such a large amount of data cannot be physically aggregated
is the data confidentiality. In fact, not all organizations
possess the same wealth of data, and the only means to
access the data is to share collaboratively but restrictedly
over the joint Cloud storage vendors.

In this context, the deployment of IoV systems over joint
Clouds poses a number of challenges – The system must be
deployed to ensure the existing modules to work smoothly
whilst multiple constraints being satisfied. Additionally, to
meet the growing data volume and latency requirements,
the system should be highly scalable to timely handle the
geo-distributed data at scale. Also, those distributed data is
supposed to be flexibly managed for the effective access by
data analysis applications. In this paper, we first introduce an
evolutionary version of our previous CarStream [8] and its
deployment from scalability perspectives over joint Clouds.
To summarize, we make the following contributions:

• A scalable deployment scheme to ensure IoV services
can best fit the circumstance over multiple Clouds with
QoS requirements of multiple organizations satisfied.

• A cross-Cloud parallel processing approach based on
geo-distributed data partitioning which can effectively
promote the scalability of large-scale vehicle data pro-
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cessing.
• A multi-source data fusion that allows for the increased

accuracy and efficiency of machine learning (ML) ap-
plications.

2. Background and Problem
2.1. CarStream System Overview

Numerous IoV systems such as Connected Vehicles [2],
Google Cloud Platform [1], CARASSO [3] and CarStream
are used to schedule tens of thousands of vehicles daily and
are critical for commercial, personal and research pursuits.

Among these systems, CarStream is a representative
Cloud-based IoV management system we design and imple-
ment to serve for a real-world chauffeured car service. The
proposed approaches had been widely-adopted into UCAR
[9]. Regarding the business model within UCAR, passengers
book trips through a car requesting platform and drivers take
orders from passengers through mobile phones. For each
driver, his business-related operations (e.g., taking orders,
changing service status) conducted by a mobile phone will
be uploaded to the server. Besides, to ensure the safety and
quality of the trip services and support timely fleet schedul-
ing and long-time operational management, they deploy an
Onboard Diagnostic (OBD) connector and a data-sampling
device for vehicles. Specifically, the OBD collects parameter
values of vehicle status such as speed, engine RPM, and
vehicle error code at a pre-defined interval (e.g., 5 seconds)
when the vehicle is running, and the collected data are
transmitted back to the backend server through an integrated
wireless-communication module.

In general, CarStream collects, stores, and analyzes these
uploaded data in terms of vehicle and driver management as
a back-end service. As shown in Figure 1, the architecture
of CarStream mainly comprises four modules: (1) data re-
ceiving/dispatching layer; (2) data bus layer; (3) processing
layer; and (4) data management layer. At the first stage,
CarStream was deployed in an individual Cloud. Now it
has been deployed over joint Cloud environment and over
30,000 vehicles distributed among 60 different cities in
China are connected to this system. As a result, it needs
to process nearly 1 billion data instances per day.

2.2. Joint Cloud Environment
Cloud computing has been advanced for over a decade

and can elastically provision flexible resources and au-
tomatic maintenance, thereby tremendously reducing the
operational costs. However, with the resources and data
increasingly being geo-distributed, a given Cloud provider
can hardly deal with such a widely-distributed data storage
and a massive number of user requests unless more infras-
tructures are invested and constructed. It is inconceivable
for any service providers to build a monolithic system at
scale to manage across-region resources including storage
and computational tasks. To this end, the JointCloud archi-
tecture [10] is proposed to tackle this issue inspired by the
flight alliance mechanism. Since different Cloud vendors

Figure 1. An overview of CarStream.

are independently connected, it is critical to activate the
cooperation through a joint collaboration mechanism. In this
context, a cross-Cloud cooperation architecture aims for the
integrated Internet service customization by empowering the
cooperation among multiple Cloud vendors to provide cross-
Cloud services [11]. JointCloud takes the first step towards
providing an evolving ecosystem so that all Cloud providers
can serve the global computation cost-effectively with high
availability and QoS guaranteed.

2.3. Basic Requirements and Principles
System Module Decoupling. Decoupling functional

modules of a large-scale system into different components
plays a significantly important role in the rapid progress
of software systems. This can not only simplify the con-
struction and maintenance of such systems at scale but also
allow for the system evolution of existing components for
the scalability consideration. The system scalability will be
extremely challenging particularly when the business scale
is continuously boosting. To this end, the microservice archi-
tecture [12] is prevalent and urgently desirable to minimize
the negative impact of monolithic applications on the system
development and evolution.

Data Partitioning and Adjoin Processing. To acceler-
ate the data processing, the data is partitioned into different
data shardings [13] and multiple replicas of the same com-
putational task are responsible for separate data shards to
enable the parallelized processing.

Collaborative Data Sharing over Joint Clouds. For
example, the passenger demands prediction [14] would
be improved if multi-source data such as weather data,
trajectory data, and map data were holistically involved.
Therefore, it is necessary to deploy such an information
querying interface under some customized constraints for
Cloud storage.

2.4. Research Questions

The aforementioned discussion raises the following re-
search problems:

• [Q1] How to optimize the process of choosing the best
Cloud datacenter for hosting microservices under multi-
ple constraints including the resource capacity, through-
put, service response latency or other system costs?

• [Q2] How to characterize the geo-distributed data and
effectively schedule the data processing component by
launching and placing the multiple replicas?
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• [Q3] How to exploit multi-source data over joint Cloud
environment to improve the effectiveness of the data
analysis within the IoV system?

3. System Component Deployment
This work involves three organizations. While we

(BUAA) design and implement CarStream to do innova-
tive research about IoV, UCAR hopes it can support their
business efficiently and stably. Besides, OBD devices are
produced by a company named Launch [15] and therefore
the uploaded data will be collected by them first. In this
section, we display the criteria for the component placement
and orchestration and how we deploy the system in practice.

3.1. Criteria for Component Placement
There are a number of system constraints when deploy-

ing different system components with differentiated require-
ments into the joint cloud environments.

• Resource Capacity. The resource capacities of Cloud
providers are heterogeneous in many aspects. The com-
puting machines that constitute the data center cluster are
typically constructed from commodity hardware owing
to significantly reduced merchandising and operational
costs. The configuration diversities among different ma-
chines lead to the huge discrepancies in a cluster. These
diversities can be characterized using dimensions such
as micro-architecture, machine chipset version, CPU and
memory capacities etc. Cloud providers need to be pre-
pared to manage highly heterogeneous workloads that are
served on the top of the shared infrastructure.

• Monetary Costs amd Pricing. The pricing of Cloud ven-
dors is dynamically fluctuated to maximize the revenue
among the competitors. In order to strictly guaranteeing
the system’s performance and customer’s SLA, it is highly
desirable to strike a balance between the performance
and the monetary costs. In fact, the diverse capacities
of the provisioned resource and flexible charging scheme
of joint Cloud providers enable the scalable and cost-
effective deployment of numerous service components.

• Geographical Location. Long-distance will undoubtedly
increase the response latency when invoking remote pro-
cess calls or data queries from a cloud database service
due to the uncertain network transmission. Therefore, the
cross-realm and trans-organizational deployment scheme
and the resultant replication management give rise to the
geographical location and invoking frequency.

• Data Dependence. In general, IoV systems are time-
critical and sensitive to recently generated data. Namely,
the value of data will sharply decrease when time elapses.
In this scenario, the order and dependencies of the real-
time data streaming across multiple clouds have to be
carefully designed. The latency-sensitive online services
are required to be prioritized during the orchestration.

3.2. A Practical Deployment Solution

We deploy the system in a joint cloud environment. As
shown in Figure 2, four cloud environments are involved in

Figure 2. Multi-organization Oriented Deployment Scheme

the deployment. The grey part represents the components
deployed on Azure [16] and responsible by Launch. This
part receives data and dispatches them to core components
of the IoV system. The green, blue and orange parts rep-
resent three variants of CarStream, placing emphasis on
different purposes and are deployed in IDC of UCAR, Azure
and IVIC [17] respectively. The blue part contains some
light components that support stream processing and serves
key operation (e.g., vehicle tracking, trip segmentation) of
UCAR. The green part includes stream-processing subsys-
tem and heavy storage system. Tasks involving sensitive
data and some relatively insignificant business processes are
conducted here. The orange part contains all components of
Carstream and stores all historical data. Lots of innovative
IoV research is evaluated, such as online applications, offline
data analysis, and the mature algorithms and models.

Corresponding to above criteria, we can see the most
crucial business process of this system is deployed on Azure
(i.e., grey and blue parts) due to the high QoS of this cloud
platform. However, since the high charge of Azure, it’s not
necessary to put the whole system on it. Therefore, other
works are conducted in cloud environments based on a
datacenter of UCAR (i.e., green part) and IVIC (i.e., orange
part). Also, what runs on IVIC will not affect the online
business of UCAR, and UCAR can query most data from
local replication directly, avoiding remote invoking from
IVIC. Furthermore, it should be noted that the collected data
are first delivered to UCAR to ensure the temporal value of
real-time data.

4. Data Sharding

4.1. Partitioning for Geo-distributed Data

Stream-processing applications within CarStream usu-
ally have a strictly real-time requirement. However, the
stream-processing component deployed in a single Cloud
face increasing pressure to provision uninterrupted and reli-
able service. The pressure will be exacerbated by the soaring
vehicle number and the resultant growing of the data volume
since the provider cannot easily deal with such issue when
the CPU and memory resources are limited. For example,
the buffered queue length of stream-processing subsystem
during the peak hours even exceeds 3, 300 [8].

To solve this problem, we present a data sharding based
method to accelerate the processing in parallel. As far as
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Figure 3. An example of multi-granularity fleet distribution monitoring.

Figure 4. An illustration of parallel processing in joint cloud environment.

we know, it is observable that in some specific applications,
stream data can be divided into different partitions according
to some features (e.g., geographical location) and those par-
titions can be independently stored and processed in the sub-
sequent procedures. Figure 3 illustrates a real-time snapshot
of the geographical distribution of vehicles in China. Vehi-
cles data from different spacial areas can be collected and
computed independently. Therefore, streaming data belong-
ing to different partitions can be dispatched to the replica of
a processing component in different Clouds. Figure 4 depicts
the proposed stream-processing architecture. Components
that are responsible for the data receiving and dispatching,
stream-processing and the query are separately deployed
into different Cloud infrastructures. It is noteworthy that
multiple replicas of the stream-processing components are
simultaneously deployed and executed in parallel in different
location. There is no inter-communication among them due
to the data partition and grouping strategy. In this con-
text, each stream-processing component will calculate and
maintain the intermediate results locally and those results
are aggregated through the query component by utilizing a
indexing to access and merge valuable data from different
stream-processing sources. In this manner, the scalability
bottleneck during the processing can be greatly mitigated.

4.2. Implementation

Following the aforementioned philosophy, we first parti-
tion the map of China according to multi-granularity grids so
that the fleet data can be monitored and collected at different
zoom levels (see Figure 3). Afterwards, we utilize the data
uploaded by vehicles to compute the number of vehicles
and the cluster centers of vehicles for every grid in real-
time. The whole procedure is depicted in Figure 5.

To parallelize the data processing, we divide the geo-
graphic space of China into three non-overlapping segments
in accordance with the data volume along the grid lines
(represented by the red bold line in Figure 5). The location

Figure 5. An illustration of grid partition.

data of vehicles within each spatial segment are charged
with the corresponding stream-processing component de-
ployed within a specific Cloud provider. The Kafka [18]
software stack is deployed as the data receiving/dispatching
component in another Cloud provider. When receiving a data
package uploading, the dispatching component first extracts
the necessary data fields (vehicle id, timestamps, longitude,
latitude) before constructing a message. It then determines
which spatial partition the message pertains to. Based on
the result, the message will be added subsequently to the
corresponding Kafka topic.

As for three stream-processing component, due to they
are located on three stream-processing clouds, they only
need to pull data from the corresponding topic in the Kafka
and process them based on the original processing logic and
update the results in real-time. However, the scenario raises
the cross-part problem when a vehicle moves from one
spatial segment to another segment. To solve this problem,
we augment a processing logic when dispatching the data.
In particular, if we find out a vehicle is traversing spatial
parts according to its uploading data, we will add this data
package to both the Kafka topic of the old part and the
topic of the new part. This will make sure that the stream-
processing submodule that is responsible for the old one can
recognize the movement of the vehicle. Furthermore, users
and system administrators can leverage the query service to
find out the real-time fleet distribution.

5. ML Application Case Study: Passenger De-
mands Prediciton through Multi-source Data
5.1. Cross-cloud Multi-source Data Fusion

Some applications need to use multi-source data on
multiple clouds. For example, an important work of ma-
chine learning (ML) task is the feature engineering, and
constructing a feature vector may use a wide range of data.
For example, besides vehicle distribution and passenger
demands in adjacent time which are extracted from UCAR
fleet data, a model may also need to make use of the
map and weather information to predict passenger demands
more accurately. However, these data sources are usually
maintained on different clouds and it is unlikely to aggregate
the data together. In this section, we present how to realize
the ML application by utilizing multi-source data in a joint
cloud environment.

Since it is unreasonable to directly put all original data
together, the only way we can do is to extract feature
information from cross-cloud multi-source data and merge
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Figure 6. An illustration of cross-cloud multi-source data fusion.

them. As is shown in Figure 6, we deploy an information
extraction component in every data cloud and a join compo-
nent in application cloud where ML tasks run. For an object
to be classified or regressed, it has some attributes. For
instance, in advertising click-through-rate (CTR) prediction
applications, the object is the possibility of clicking an
advertisement by a user. The corresponding attributes can
be < user id, time, user location, advertisement id >.
On receiving an object from applications, the join compo-
nent dispenses attributes of this object to the corresponding
information extraction service components in different data
clouds (e.g., user cloud, advertisement cloud, map cloud).
Afterwards, it collects the respondent feature information
(e.g., user profiles, advertising properties, POI information
of the location) from each data cloud and merges them into
a feature vector. Finally, The ML application will leverage
these feature vectors for training or predicting. Similarly,
other information can be easily incorporated into this pro-
cedure. For example, if the CTR prediction is permitted to
access an event data cloud, the event information can be
extracted according to user location and time (i.e., what
happens when a user browses an advertisement at a location
at a time).

5.2. Implementation

We implement a passenger demands prediction method
which uses fleet data, weather data and map data alto-
gether. The data is stored in separate data centers and
we deploy the information extraction service component to
each of them respectively. Herein, our aim is to predict
the passenger demands of spatio-temporal areas of cities
(e.g., how many people will hail a vehicle in a specific
geographic area from 9:00 to 9:30). Simply speaking, the
attributes of a spatio-temporal area to be predicted can be
< date, day of week, time slice, city id, region id >.
To construct a feature vector of a spatio-temporal area,
prediction application first delivers the area information to
the join service component. The join service sends spa-
tial attributes of this area (i.e., city id, region id) to the
Cloud storage for the map, sends temporal attributes of this
area (i.e., date, time slice) to Cloud storage for weather,
and sends spatio-temporal attributes of this area (i.e., date,
day of week, time slice, city id, region id) to the Cloud
storage for the fleet respectively. Then information extrac-
tion services within these clouds extract the corresponding

(a) A statistic of the delay in
data processing.

(b) The scalability evaluation of
joint cloud deployment.

Figure 7. System performance.

information from the data sources they own according to
the attributes they received, and return these information
(i.e., weather condition, POI categories, fleet distribution and
temporal-adjacent demands related to this spatio-temporal
area) to the join service, where information is finally merged
to be a feature vector. If it is in the scenario of generating
training data, a label is also attached to this feature vector to
form a training sample, which will be subsequently stored in
a sample database for reuse. Otherwise, a prediction model
will import this feature vector and produce a prediction
result of passenger demands.

6. Evaluation

6.1. Experiment Setup

We set up three groups of experiments: (1) to evaluate
the data transmission performance of practical joint cloud
deployment (see Figure 2), we use real-time vehicle tracking
as the test application to measure the delay of data reach-
ing each cloud. Specifically, we compare the timestamps
between the data being generated and the data entering in-
memory caching platform, before which they go through
buffering platform and stream processing platform; (2) we
use real-time fleet distribution monitoring as the test ap-
plication to test the joint-cloud processing scalability by
increasing the cross-cloud deployment scale of the process-
ing subsystems. Specifically, on one cloud, we deploy the
processing subsystem on one server and increase the number
of servers gradually. Meanwhile, we test the performance
in a joint-cloud environment by increasing the number of
clouds used. By injecting the historical dataset back into
the system with high frequency, we evaluate the relationship
between the throughput and the system scale. The process-
ing subsystem is deployed on a virtualized cluster. Each
server has 16GB memory, a 2-core 2.0 GHz CPU and 2*10
Gbps Emulex NIC; and (3) to measure the effectiveness of
weather information and map information, we first test our
model by only using fleet features (Fb), and then we add
weather features (Fw) and map features (Fm) to this model.

6.2. Result Analysis

End-to-end Delay Evaluation. As Figure 7a shows, the
average delay in IDC and Azure of UCAR is less than 2
seconds, while that in IVIC of BUAA is more than 2 seconds
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TABLE 1. EXPERIMENT RESULTS OF DIFFERENT FEATURES

Features Fb Fb + Fw Fb + Fm Fb + Fw + Fm

MAE 3.38 2.54 2.69 2.23
RMSE 8.06 6.98 7.45 5.62

since the data received by IVIC are reposted by IDC of
UCAR. Such delay is acceptable by both UCAR and BUAA.

Throughput Evaluation of Multi-replica Processing.
The result reported in Figure 7b shows a near linear joint-
cloud scalability of the processing subsystem. This perfor-
mance can be attributed to three reasons: the distributed
design of the processing platform, the naturally distributed
characteristic of the vehicle data, and little communication
between clouds responsible for processing.

Effectiveness Evaluation of Multi-source Data. The
result reported in Table 1 shows the new features diminish
the mean absolute error (MAE)1 and root mean squared
error (RMSE)2 in prediction, and weather features are more
effective than map features. Since the revenues of different
features are different, we should balance the revenue and
the cost of introducing a new data source in practice.

7. Related Work
The Internet of vehicles has become an important devel-

opment direction of the automobile industry, and cloud data
processing center is the technical core. Microsoft launched
cloud service platform of the Internet of things (IoT). One
of the main services is IoV services [2], including on-
board lifecycle management services, information services,
vehicle driving auxiliary services, advanced navigation ser-
vices, etc. Similarly, Google launched Connected Vehicle
Platform [1], which are able to handle extremely rich driv-
ing the predefined data types, including vehicle location,
vehicle condition, environmental information, and sensor
data. Amazon Web Services also provides a cloud platform
for IoT [19], the platform integrates Lambda, Kinesis, S3,
Machine Learning, DynamoDB, CloudWatch, and Elastic-
search, supporting stream processing, data analysis, platform
monitoring, etc. In addition, traditional vehicle manufactur-
ers are also actively developing IoV systems and providing
in-car services [3], [20]. In contrast, Baidu [21] and Apple
[22] provide onboard services in relatively easy ways by
connecting mature mobile applications to vehicles directly.

8. Conclusion

In this paper, we present a scalable deployment and
evolution of an Internet-of-Vehicles service over the joint
cloud. A multi-organization oriented deployment scheme,
a cross-cloud parallel processing mechanism, and a cross-
cloud data fusion method are described in detail. We have
experimented with real-world data and our study shows our
exploratory approaches is effective in joint cloud scenarios.

1. https://en.wikipedia.org/wiki/Mean absolute error

2. https://en.wikipedia.org/wiki/Root-mean-square deviation

Regarding the future works, we plan to study more auto-
matic and intelligent deployment mechanisms in joint cloud
scenarios.
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