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Abstract —Virtualization is one of the main technologies 
currently used to deploy computing systems due to the high 
reliability and rapid crash recovery it offers in comparison to 
physical nodes. These features are mainly achieved by cont-
inuously producing snapshots of the status of running virtual 
machines. In earlier works, the snapshot of each individual VM is 
performed independently, ignoring the memory similarities betw-
een VMs within the cluster. When the size of the virtual cluster 
becomes larger or snapshots are frequently taken, the size of sna-
pshots can be extremely large, consuming large amount of stor-
age space. In this paper, we introduce an innovative snapshot
approach for virtual cluster that exploits shared memory pages 
among all the component VMs to reduce the size of produced 
snapshot and mitigate the I/O bottleneck. The duplicate memory 
pages are effectively discovered and stored only once when the 
snapshot is taken. In addition, our approach can be not only 
applied to the stop-copy snapshot but also to the pre-copy 
mechanism as well. Experiments on both snapshot methods are 
conducted and the result shows our method can reduce the total 
memory snapshot files by an average of 30% and reach 63% 
reduction of the snapshot time compared with the default KVM 
approach with little overhead of rollback time.

Keywords —Cloud computing, Virtual Cluster, Snapshot, Memory 
Deduplication 

I. INTRODUCTION

In recent years, Cloud computing has experienced rapid 
growth as it promises to reduce the maintenance and 
management costs. Virtualization is prevailing and becomes 
one of the main technologies used for improving resource 
utilization with minimal management effort in Cloud 
datacenters [1]. The applications are encapsulated into virtual 
machines (VMs) sharing the same underlying physical 
infrastructure. In particular, with the prevalence of Cloud 
computing and cluster paradigm [21], VMs distributed on 
different physical machines can be connected and coordinated 
within a virtual machine cluster (VMC) by leveraging virtual 
network construction techniques. In this way, heavy tasks and 
distributed applications can run on the VMC which provides 
an isolated, scalable execution environment. For example, 
Amazon EC2 [18] provides load-balanced web farm which 
can dynamically add or remove VMs in a VMC in order to 
maximize the resource utilization. In addition, with the 
benefits (fast development, re-usability) from SOA, many 
online applications are composed of a large number of 
individual services as well as data components encapsulated 
into isolated VMs. The holistic virtual machine cluster is 

integrated to provide high-level functionalities. However, 
there are lots of challenges need to be handled. Due to the 
frequent failures occurred in the individual components, the 
system tends to crash frequently. Distributed snapshot [15-16]
is a critical technique to improve the system reliability for 
distributed applications. It saves all the running states of 
virtual cluster, including the CPU, memory, disk, network and 
other devices states etc. Once a system failure or error occurs,
the system can be resumed to a recorded state according to the 
snapshot file rather than to the initial state, thus reducing the 
loss of outage. In particular, the distributed snapshot should be 
performed periodically during the failure-free execution for 
the trusted systems. Hence, how to efficiently resume the 
whole virtual cluster system is a harsh question to be answered 
[13].

Different approaches have been proposed to produce the 
snapshot for a distributed virtual cluster. VNSnap [15], 
Emulab [16] and HotSnap [17] are presented with the aim to 
support snapshots for a closed VMs network. However, those 
works focus on how to preserve and coordinate the global 
consistency of the VM executions and communication states. 
Additionally, those snapshot approaches are conducted for 
each individual VM independently without considering shared 
resources, which is inefficient and produces a great amount of 
data redundancy. In fact, as the VMs in a VMC are usually 
deployed with the same OS and applications, many memory 
pages, libraries and application codes are shared. The same 
content pages shared by different VMs are typically saved 
redundantly during each individual VM snapshots. Consequ-
ently, the storage cost for snapshot files will increase 
significantly especially when conducting frequent and 
periodical snapshots for a large cluster. Furthermore, the 
storage redundancy may incur extremely fierce disk I/O 
operations, which leads to a relatively long snapshot time. 

To mitigate the frequent disk I/O and reduce the large
amount of reduplicative data stored in the snapshot system, we 
introduce a collaborative snapshot approach for virtual cluster 
in this paper. In our approach, the snapshot for each VM is 
taken by exploiting shared memory pages among all
components in VMs. More specifically, a hash-based memory 
de-duplication method is adopted in which most of the same 
content pages can be detected and stored for only once. It is 
beneficial not only to the stop-copy snapshot mechanism but 
the pre-copy live VM snapshot as well. Moreover, we classify 
memory pages into different categories and present 
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corresponding storage strategies respectively with a distributed 
file storage schema, avoiding the bottleneck problem in single 
node storage. The redundant data will not be stored twice and 
the states of virtual cluster can be roll-backed precisely. We 
perform experiments on KVM to evaluate the efficiency of our 
work in terms of the snapshot file size, the snapshot time, roll-
back time as well as the overhead brought to applications. The 
experimental results demonstrate that the total memory 
snapshot files can be reduced by average 30% and at least 
63% reduction of the snapshot time compared with the default 
KVM approach with a little overhead roll-back time. In 
particular, the main contributions of this paper are: 

� A memory de-duplicated approach which can 
efficiently detect the same memory pages among 
VMs in virtual cluster. 

� An effective distributed snapshot storage mechanism 
based on different categories of memory page to 
reduce the size of produced snapshot files. 

The remaining sections are structured as follows: Section 2 
presents the methodology. Section 3 describes the performed 
approaches and implementations; Section 4 shows the 
experimental results; Section 5 discusses related work; finally, 
Section 6 presents the conclusions and discusses future work. 

II. METHODOLOGY

The principle of the memory snapshot is to save the 
overall memory pages of the VM to the disk. Our main idea is 
to conduct memory de-duplication while taking snapshots, 
which guarantee the pages with same content will be stored 
entirely only once. The whole process is illustrated in Fig. 1. 
To achieve the memory de-duplication among VMs in a 
virtual cluster, not only the snapshot procedure but also the 
storage format should be proposed. 

A. Memory Pages Identification 
In order to de-duplicate the redundant memory pages 

among all the memory, identical pages need to be initially 
recognized. However, the total amount of memory pages is si-
gnificantly large due to the huge impact of the memory size of 
each VM as well as the number of VMs in the virtual cluster. 
Therefore, to discover the pages with same content efficiently 
from a great amount of pages is significantly essential. We
firstly compare the hash value of two pages. If their values are 
the same, the second step is taken for the further comparison 
of the overall memory page contents byte by byte. Otherwise, 

the step above can be omitted. The reason for this is because 
two pages can be determined discrepant if their hash values 
are different. Although there is a chance that pages with 
identical hash value may be different, the probability of this 
phenomenon is quite low, only accounting for less than 1% 
which can be nearly neglected for the sake of efficiency 
improvement.

B. Hash Router Mechanism  
We design a hash router mechanism implemented by a

global hash table shared by all the hosts to store all saved page 
information. The information includes the hash value and the 
corresponding file name that actually store the memory page 
and the offset in the file, through which we can get the page 
content. Before a page being saved, we calculate the hash 
value and then search the hash table using the calculated hash 
value to find whether there has already been an identical value 
or not. If not found, we update the table by adding the 
corresponding information.  

 Furthermore, the size of the hash table will drastically 
increase with the proceeding of the snapshot. Due to the fact 
that the hash information is shared by all hosts, if each of these 
hosts keeps a copy of the hash table, the memory consumed 
for the hash table will be exorbitant which will bring about 
additional overhead to keep the consistency among all hash 
tables. Another alternative is to maintain the hash table on a 
single host. In this case, all the query and update requests will 
be sent and accumulated onto this host, giving rise to severe 
request bottleneck and great resource overhead. To solve the 
problem, we separate the holistic hash table into several sub-
tables distributed on different hosts. Each host shares a 
Bulletin Board which records the sub-tables distribution 
information and an example can be illustrated in Table 1. 

C. An Effective Distributed Storage Format
Without the consideration of de-duplication, the contents 

of the shared memory page will be separately stored in one or 
more locations spreading among different VM snapshot files. 
It will create a great amount of redundant disk space which 
leads to a relatively low efficiency. Therefore it is necessary to 
design a novel storage format to store the memory state in 
order to reduce the size of produced snapshots. Usually the 
shared memory will only be stored in certain snapshot file and 
other snapshot files which shares the same memory page just 
need to store the relevant reference information including both 
the storage file name and offset address. Through this indexed 
information, the content can be easily found and a tremendous 
disk reduction can be reached because the reference 
information only occupies 16 Bytes in comparison with 4KB 
holistic memory page size. The proposed storage approach can 
be illustrated in Fig. 2.  

Figure 1. Memory deduplication scenario

TABLE I.       BULLETIN BOARD EXAMPLE.

Hash Value Host Address
0x00000000~0x3fffffff Host1 192.168.1.101
0x40000000~0x7fffffff Host2 192.168.1.102
0x80000000~0xcfffffff Host3 192.168.1.103
0xd0000000~0xffffffff Host4 192.168.1.104
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Based on our previous observations, we firstly analyze 
and classify memory pages into three categories: single-byte 
duplicate pages, ordinary duplicate pages or new pages. The 
first type is the one in which all the bytes are the repeated 
contents while the ordinary duplicate page refers to the page 
whose content can be found the same as a specified page that 
has been saved before. If the page is neither a single-byte 
duplicate page nor a duplicate page, it can be marked as a new 
page. We have designed different storage strategy for different 
page types. More concretely, only the repeated byte needs to 
be stored for the single-byte duplicated page. As for the 
duplicate pages, the index information rather than the page 
content will be stored which can significantly reduce the disk 
space consumed. The whole page content has to be saved to 
the snapshot file with respect to the new page. In addition, the 
flag which indicates the type of pages is stored together with 
page content to ensure the correctness and efficiency of roll-
back operations. More specifically, the format of storage strat-
egy can be demonstrated in Fig. 3. RAM_SAVE_FLAG_CO-
MPRESS, ADDRESS and PAGE represent the byte-duplicate 
page, same-content page and new page respectively.  

Our memory de-duplication approach can be applied to 
not only stop-copy snapshot but the pre-copy snapshot as well.
There are some differences between these two snapshot ways 

in terms of the storage schema. In stop-copy way, all the VM 
memory pages are only saved once when taking snapshot. In 
contrast, in pre-copy snapshot, the dirty pages need to be 
stored more than once due to the iterations before the dirty 
pages are eventually synchronized. During this synchroniz-
ation, the memory page tends to become dirty many times. If 
the snapshot is performed and written into different file block 
every iteration round, extremely large disk space and plenty of 
time have to be spared when saving all the states for each 
round. Instead, we just conduct memory de-duplication for the 
first iteration and save the holistic memory page directly for 
time saving. Once pages modified in the next few iterations, 
the latest disk space will be overwritten and re-used. In this 
way, both the time and space consumed will be cut down 
significantly. 

III. IMPLEMENTATION 

In this section we present how we implement the 
proposed methods mentioned in the last section.  

We implement a collaborative snapshot prototype based 
on memory de-duplication by extending KVM snapshot 
mechanism. The architecture of our snapshot system can be 
observed in Fig. 4. The virtual cluster is combined with 
several VMs which spread over different physical machines. 
The snapshot module and roll-back module are implemented 
in the QEMU, which runs in the user space.  

As shown in Fig. 4, the system is composed of four 
components: memory snapshot module, memory de-
duplication module, communication module and storage 
module. As the global hash table is distributed among different 
hosts, query operations for hash table on remote hosts are 
achieved via socket mechanism. This work is fulfilled by 
communication module which accepts the hash value passed 
from the memory snapshot module and subsequently searches 
the corresponding host. Moreover, the memory de-duplication 
module determines the data that is needed to be stored in the 
snapshot file based on the search result send by the 
communication module. The more detailed process for the 
distributed snapshot can be illustrated as follows: The first 
step is that a snapshot synchronization command is sent to all 
the VMs in the virtual cluster (operation 1) followed by the 
communication establishment (operation 2). Afterward, the 
memory snapshot module begins to traverse the whole VM
memory pages, computes each hash value and sends the hash 
value to the communication module (operation 3). After the 
completion of searching hash table, the result will be send to 

Figure 4. System Architecture

Figure 2. Memory snapshot storage mechanism

Figure 3. Memory snapshot storage format
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the memory de-duplication module which will produce the 
data according to the result (operation 4). The memory de-
duplication module will subsequently send the data to its 
storage module to complete the storage for the page (operation 
5). 

As the hash table is distributed on multiple hosts 
mentioned in Section 2, the query requests for the hash table 
are sent through socket mechanism. For each hash sub-table, 
there is a socket server thread serving for it. The socket server 
thread receives the search request and returns the result after 
searching the local hash sub-table. 

According to the range of hash value and the number of 
hosts, the entire hash table is divided into several sub-tables 
with equal size. The Bulletin Board records the distribution of 
the hash table which has been discussed in Section II. Upon 
receiving a query request, the thread in communication 
module will look up the bulletin board to find the destination 
host where the sub-hash table is maintained.

Based on our snapshot design and mechanism, the roll-
back of the virtual cluster can be conducted when system 
resuming. As all the raw page data is stored in its snapshot file, 
the roll-back daemon read the snapshot file sequentially. 
According to the format illustrated in Figure 3, we can extract 
the page address, type flag as well as the content from the file. 
For a single-byte duplicate page, the page is loaded by filling 
the whole page. But for the duplicated page, we firstly get the 
page reference by reading the next 16 bytes and calculate 
corresponding location. Afterwards, the page content can be 
loaded by reading the next 4096 bytes. 

IV. EXPERIMENTS AND EVALUATION

Our approach can be applied to both stop-and-copy 
snapshot and live snapshot. We conducted a set of experiments 
to demonstrate the efficiency of the system design.  

A. Experimental Environment 
We conduct the experiments on three physical servers 

and each of them is configured with 8 core Intel(R) Core(TM) 
i7 CPU 2.93GHz processor and 16GB memory. The servers 
are connected via switched Gigabit Ethernet. All the servers 
are used to be a nfs server where the VM images and snapshot 
files is located. Two of them are utilized to run VMs and take 
snapshot. The operating system on physical servers is 
debian6.0 with 2.6.32-5-amd64 kernel. In addition, we allocate 
1GB memory for each virtual machine and adopt qemu-kvm-
0.12.5 as the virtual machine manager. We set up the 
experiments in different scales: 2, 4, 6, 8, and 10 virtual 
machines in a virtual cluster over the servers respectively. 
Each VM has its isolated memory snapshot file stored in nfs 
servers. 

Three typical workloads are capsulated into the virtual 
machines and used as the benchmarks to measure the perform-
ance of different snapshot mechanisms:

Idle workload means the VM does nothing except for the 
tasks inside OS itself after it booting up. 

Kernel Compilation is a development workload involv-
ing memory and disk I/O operations. We compile the Linux 
2.6.32 kernel along with all modules. 

Distcc [14] is a compilation tool that distributes the 
compilation tasks across the VMs in the virtual cluster. It is 
composed of one Distcc client and a couple of servers. The 
client distributes the tasks to servers, which will complete the 
tasks and send the results to client. We use Distcc to compile 
the Linux kernel with all modules. 

We compare our stop-and-copy snapshot method with the 
default snapshot of KVM, and compare the live snapshot 
method with VNSnap[15]. The comparisons are made in the 
following three aspects: the size of snapshot files, snapshot 
time and roll-back time.  

B. Impact on Stop-copy Snapshot 
In this experiment, we compare our method with the 

default snapshot of QEMU/KVM. The virtual cluster 
snapshots are conducted when the cluster is idle and running a 
Distcc compilation tasks. The time to complete the snapshot 
and the memory snapshot file size of each VM are recorded.
We perform these experiments several times to collect and 
calculate the average value in order to reduce error margins.

Fig. 5 describes the reduction ratio of the snapshot file 
under different cluster scales in idle status and Distcc 
benchmark running scenarios respectively. Apparently, a 
significant reduction on snapshot size can be achieved using 
our approach and the reduction rate is enlarged with the 
increase of VM number. The reason for this is because the 
larger the VM number of the cluster is, the higher probability 
of finding the same-content pages in other VMs will have. The
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reduction percentage can even reach about 34% when ten 
VMs are co-allocated. In addition, the reduction degree in idle 
case is larger than that of the workload executed case in all 
VM scales. This is due to the fact that a large amount of free 
pages contribute to efficient snapshot compression. This also 
indicates that it is better to take snapshot when the whole 
cluster is in idle for the space reduction consideration. 

As shown in the Fig. 6, the snapshot time taken by our 
method is reduced by at least 63% compared with that by 
default approach no matter which scenario the experiment is 
conducted and the reduction rate even increases very 
dramatically when the virtual cluster scales up. There are 
several reasons to explain this phenomenon. Firstly, the 
default method saves the memory state in its image file. Due 
to the qcow2 format used in the VM image, two levels of 
tables will be traversed when data is written to the image file,
producing a non-negligible time overhead. In contrast, in our 
proposed approach, the VM memory state is saved in a 
separate binary file where the data can be stored directly. Fur-
thermore, the data stored in memory snapshot file by our 
snapshot method is much less than the default method owing 
to the de-duplication strategy, which will eventually result in 
the less I/O disk operations. The overhead brought by extra 
memory de-duplication can be omitted considering the 
tremendous time saving. 

Fig. 7 shows that our method has an slight overhead on 
rollback time than the default method but it can be limited into 
few seconds. This overhead is mainly brought by locating the 
reduplicate pages. When the VMs number increases, the rate 
of reduplicate pages becomes higher, resulting in a slightly 
obvious rollback overhead.

It can be also observed that there are still some discrep-
ancies between the cluster in idle and the cluster running 
Distcc, although they share an extremely similar trend. 
Obviously, both the snapshot time and rollback time are longer 
when running the Distcc benchmark. It is mainly because that 
free pages of VMs when running application are much less 
and the size of its snapshot file is larger compared with the one 
in idle case which will bring about a longer snapshot and 
rollback time. Additionally, we can draw a conclusion that the 
effect of memory de-duplication in idle cluster outperforms
the cluster running Distcc. This suggests that snapshot should 
be taken when VMs are idle if possible. 

C. Impact on  Live Snapshot 
To demonstrate the efficiency of our method on live 

snapshot, we implement the strategy of VNSnap and compare 
our method against it with respect to the time it consumes. We 
also take the live snapshots to the virtual cluster in two 
scenarios: the idle cluster and the cluster running a Distcc 
compile task. 

The snapshot time consumption can be observed in Fig. 8. 
The VMs running applications usually have a longer snapshot 
time than the idle VMs because of the longer memory iteration 
copy time to synchronize the memory states. In particular, in 
each scenario, as the live snapshot mechanism of both our 
method and VNSnap approach is based on pre-copy live 
migration, the snapshot time is mainly determined by the 
memory iterate copy time which leads to a very similar time 
consumption. Nevertheless, a marginal overhead is generated 
by adopting our approach when taking snapshot time because 
duplicated pages discovery and page contents replacement will 
take some time. However, this slight overhead can be tolerated 
considering the greatly reduced disk capacities by data de-
duplication in comparison with the VNSnap schema. 

D. Impact on Performance 
Figure 7 depicts the compilation time during continuous 

distributed snapshot as the number of VMs in the virtual 
cluster increases. It is observable that the completion time 
increases if the snapshot is conducted. The increment is 
derived from the snapshot overhead such as I/O operations and 
CPU utilization as well as the VM downtime brought by 
taking snapshot. Compared with VNSnap approach, the 
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compilation time is slightly reduced in our approach despite of 
the marginal decrement.  

V.RELATED WORK

Since the emergence of virtualization technology, as one of 
the most important features of VMs, snapshot has received a lot 
of attention in the research community. There has been a large 
amount of work on virtual VM snapshot. The Linux Logical 
Volume Manager [9] provides a limited form of copy-on-write 
snapshots of a block store. Parallax [3] significantly improves 
on this design by providing limitless lightweight copy-on-write 
snapshots at the block level. The Andrew File System [7]
allows one snapshot at a time to exist for a given volume. In 
addition, distributed snapshot has been widely studied in the 
previous works. The earlier works mainly focus on the 
distributed snapshot protocol to preserve the consistency of 
system. VNSnap[15] leverages Xen’s live migration function 
to minimize system downtime when taking snapshots, and 
instantiate a distributed snapshot algorithm to enforce causal 
consistency across the VM snapshots. Dejavu[12] uses a new 
runtime mechanism for transparent incremental check-pointing 
that captures the least amount of state needed to maintain 
global consistency and provides a novel communication 
architecture that enables transparent migration. In contrast to 
optimize the snapshot protocol, we implement a collaborative 
snapshot approach for virtual machine cluster with memory de-
duplication. 

Eunbyung Park[5] presents a technique for fast and space-
efficient check-pointing of virtual machines by eliminating 
redundant data and storing only a subset of the VM’s memory 
pages. At a checkpoint, these pages are excluded from the 
checkpoint image. Lei [17] proposed a HotSnap which focuses 
on system downtime and TCP backoff duration reduction.
Traditional snapshot technique for single VM eliminates the 
redundant data just by compressing all the single-byte duplicate 
pages. Lots of work about memory redundancy and sharing had 
been conducted [6, 8, 10, 11, 19] but the traditional distributed 
snapshot does not consider the memory similarity across the 
virtual machines and the snapshot for each VM is proceeded 
independently. Renyu [20] discussed the performance interfere-
ence without solving the memory sharing problems in co-
allocated virtual cluster. In our work, a memory de-duplication 
operation is added to the above traditional snapshot procedure. 

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a virtual cluster snapshot approach that 
considers shared resources in order to reduce redundant data 
and mitigate the IO overhead. Our approach identifies 
redundant memory pages across the entire virtual cluster and 
maintains references to duplicated pages using a hash router 
mechanism to perform memory de-duplication. By doing 
memory de-duplication when taking snapshots of VMs in the 
cluster, the total size of memory snapshot files are reduced 
effectively. We implement the approach on QEMU/KVM 
platform with not only stop-copy snapshot method but also pre-
copy snapshot method. The experiment results reveal that we 
can reduce the total memory snapshot files by average 30% and 
reach 63% reduction of the snapshot time compared with the 
default KVM approach. As future work, we are planning to 
optimize the pre-copy snapshot by memory locality prediction 

in order to conducting snapshot intelligently while further 
improving the performance.
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