
VMCSnap: Taking Snapshots of Virtual Machine
Cluster with Memory Deduplication

Yumei Huang, Renyu Yang, Lei Cui, Tianyu Wo, Chunming Hu, Bo Li
School of Computer Science and Engineering

Beihang University
Beijing, China

{huangym, yangry, cuilei, woty, hucm, libo}@ act.buaa.edu.cn

Abstract —Virtualization is one of the main technologies
currently used to deploy computing systems due to the high
reliability and rapid crash recovery it offers in comparison to
physical nodes. These features are mainly achieved by cont-
inuously producing snapshots of the status of running virtual
machines. In earlier works, the snapshot of each individual VM is
performed independently, ignoring the memory similarities betw-
een VMs within the cluster. When the size of the virtual cluster
becomes larger or snapshots are frequently taken, the size of sna-
pshots can be extremely large, consuming large amount of stor-
age space. In this paper, we introduce an innovative snapshot
approach for virtual cluster that exploits shared memory pages
among all the component VMs to reduce the size of produced
snapshot and mitigate the I/O bottleneck. The duplicate memory
pages are effectively discovered and stored only once when the
snapshot is taken. In addition, our approach can be not only
applied to the stop-copy snapshot but also to the pre-copy
mechanism as well. Experiments on both snapshot methods are
conducted and the result shows our method can reduce the total
memory snapshot files by an average of 30% and reach 63%
reduction of the snapshot time compared with the default KVM
approach with little overhead of rollback time.

Keywords —Cloud computing, Virtual Cluster, Snapshot, Memory
Deduplication

I. INTRODUCTION

In recent years, Cloud computing has experienced rapid
growth as it promises to reduce the maintenance and
management costs. Virtualization is prevailing and becomes
one of the main technologies used for improving resource
utilization with minimal management effort in Cloud
datacenters [1]. The applications are encapsulated into virtual
machines (VMs) sharing the same underlying physical
infrastructure. In particular, with the prevalence of Cloud
computing and cluster paradigm [21], VMs distributed on
different physical machines can be connected and coordinated
within a virtual machine cluster (VMC) by leveraging virtual
network construction techniques. In this way, heavy tasks and
distributed applications can run on the VMC which provides
an isolated, scalable execution environment. For example,
Amazon EC2 [18] provides load-balanced web farm which
can dynamically add or remove VMs in a VMC in order to
maximize the resource utilization. In addition, with the
benefits (fast development, re-usability) from SOA, many
online applications are composed of a large number of
individual services as well as data components encapsulated
into isolated VMs. The holistic virtual machine cluster is

integrated to provide high-level functionalities. However,
there are lots of challenges need to be handled. Due to the
frequent failures occurred in the individual components, the
system tends to crash frequently. Distributed snapshot [15-16]
is a critical technique to improve the system reliability for
distributed applications. It saves all the running states of
virtual cluster, including the CPU, memory, disk, network and
other devices states etc. Once a system failure or error occurs,
the system can be resumed to a recorded state according to the
snapshot file rather than to the initial state, thus reducing the
loss of outage. In particular, the distributed snapshot should be
performed periodically during the failure-free execution for
the trusted systems. Hence, how to efficiently resume the
whole virtual cluster system is a harsh question to be answered
[13].

Different approaches have been proposed to produce the
snapshot for a distributed virtual cluster. VNSnap [15],
Emulab [16] and HotSnap [17] are presented with the aim to
support snapshots for a closed VMs network. However, those
works focus on how to preserve and coordinate the global
consistency of the VM executions and communication states.
Additionally, those snapshot approaches are conducted for
each individual VM independently without considering shared
resources, which is inefficient and produces a great amount of
data redundancy. In fact, as the VMs in a VMC are usually
deployed with the same OS and applications, many memory
pages, libraries and application codes are shared. The same
content pages shared by different VMs are typically saved
redundantly during each individual VM snapshots. Consequ-
ently, the storage cost for snapshot files will increase
significantly especially when conducting frequent and
periodical snapshots for a large cluster. Furthermore, the
storage redundancy may incur extremely fierce disk I/O
operations, which leads to a relatively long snapshot time.

To mitigate the frequent disk I/O and reduce the large
amount of reduplicative data stored in the snapshot system, we
introduce a collaborative snapshot approach for virtual cluster
in this paper. In our approach, the snapshot for each VM is
taken by exploiting shared memory pages among all
components in VMs. More specifically, a hash-based memory
de-duplication method is adopted in which most of the same
content pages can be detected and stored for only once. It is
beneficial not only to the stop-copy snapshot mechanism but
the pre-copy live VM snapshot as well. Moreover, we classify
memory pages into different categories and present

2014 IEEE 8th International Symposium on Service Oriented System Engineering

978-1-4799-3616-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SOSE.2014.45

314

corresponding storage strategies respectively with a distributed
file storage schema, avoiding the bottleneck problem in single
node storage. The redundant data will not be stored twice and
the states of virtual cluster can be roll-backed precisely. We
perform experiments on KVM to evaluate the efficiency of our
work in terms of the snapshot file size, the snapshot time, roll-
back time as well as the overhead brought to applications. The
experimental results demonstrate that the total memory
snapshot files can be reduced by average 30% and at least
63% reduction of the snapshot time compared with the default
KVM approach with a little overhead roll-back time. In
particular, the main contributions of this paper are:

� A memory de-duplicated approach which can
efficiently detect the same memory pages among
VMs in virtual cluster.

� An effective distributed snapshot storage mechanism
based on different categories of memory page to
reduce the size of produced snapshot files.

The remaining sections are structured as follows: Section 2
presents the methodology. Section 3 describes the performed
approaches and implementations; Section 4 shows the
experimental results; Section 5 discusses related work; finally,
Section 6 presents the conclusions and discusses future work.

II. METHODOLOGY

The principle of the memory snapshot is to save the
overall memory pages of the VM to the disk. Our main idea is
to conduct memory de-duplication while taking snapshots,
which guarantee the pages with same content will be stored
entirely only once. The whole process is illustrated in Fig. 1.
To achieve the memory de-duplication among VMs in a
virtual cluster, not only the snapshot procedure but also the
storage format should be proposed.

A. Memory Pages Identification
In order to de-duplicate the redundant memory pages

among all the memory, identical pages need to be initially
recognized. However, the total amount of memory pages is si-
gnificantly large due to the huge impact of the memory size of
each VM as well as the number of VMs in the virtual cluster.
Therefore, to discover the pages with same content efficiently
from a great amount of pages is significantly essential. We
firstly compare the hash value of two pages. If their values are
the same, the second step is taken for the further comparison
of the overall memory page contents byte by byte. Otherwise,

the step above can be omitted. The reason for this is because
two pages can be determined discrepant if their hash values
are different. Although there is a chance that pages with
identical hash value may be different, the probability of this
phenomenon is quite low, only accounting for less than 1%
which can be nearly neglected for the sake of efficiency
improvement.

B. Hash Router Mechanism
We design a hash router mechanism implemented by a

global hash table shared by all the hosts to store all saved page
information. The information includes the hash value and the
corresponding file name that actually store the memory page
and the offset in the file, through which we can get the page
content. Before a page being saved, we calculate the hash
value and then search the hash table using the calculated hash
value to find whether there has already been an identical value
or not. If not found, we update the table by adding the
corresponding information.

 Furthermore, the size of the hash table will drastically
increase with the proceeding of the snapshot. Due to the fact
that the hash information is shared by all hosts, if each of these
hosts keeps a copy of the hash table, the memory consumed
for the hash table will be exorbitant which will bring about
additional overhead to keep the consistency among all hash
tables. Another alternative is to maintain the hash table on a
single host. In this case, all the query and update requests will
be sent and accumulated onto this host, giving rise to severe
request bottleneck and great resource overhead. To solve the
problem, we separate the holistic hash table into several sub-
tables distributed on different hosts. Each host shares a
Bulletin Board which records the sub-tables distribution
information and an example can be illustrated in Table 1.

C. An Effective Distributed Storage Format
Without the consideration of de-duplication, the contents

of the shared memory page will be separately stored in one or
more locations spreading among different VM snapshot files.
It will create a great amount of redundant disk space which
leads to a relatively low efficiency. Therefore it is necessary to
design a novel storage format to store the memory state in
order to reduce the size of produced snapshots. Usually the
shared memory will only be stored in certain snapshot file and
other snapshot files which shares the same memory page just
need to store the relevant reference information including both
the storage file name and offset address. Through this indexed
information, the content can be easily found and a tremendous
disk reduction can be reached because the reference
information only occupies 16 Bytes in comparison with 4KB
holistic memory page size. The proposed storage approach can
be illustrated in Fig. 2.

Figure 1. Memory deduplication scenario

TABLE I. BULLETIN BOARD EXAMPLE.

Hash Value Host Address
0x00000000~0x3fffffff Host1 192.168.1.101
0x40000000~0x7fffffff Host2 192.168.1.102
0x80000000~0xcfffffff Host3 192.168.1.103
0xd0000000~0xffffffff Host4 192.168.1.104

315

Based on our previous observations, we firstly analyze
and classify memory pages into three categories: single-byte
duplicate pages, ordinary duplicate pages or new pages. The
first type is the one in which all the bytes are the repeated
contents while the ordinary duplicate page refers to the page
whose content can be found the same as a specified page that
has been saved before. If the page is neither a single-byte
duplicate page nor a duplicate page, it can be marked as a new
page. We have designed different storage strategy for different
page types. More concretely, only the repeated byte needs to
be stored for the single-byte duplicated page. As for the
duplicate pages, the index information rather than the page
content will be stored which can significantly reduce the disk
space consumed. The whole page content has to be saved to
the snapshot file with respect to the new page. In addition, the
flag which indicates the type of pages is stored together with
page content to ensure the correctness and efficiency of roll-
back operations. More specifically, the format of storage strat-
egy can be demonstrated in Fig. 3. RAM_SAVE_FLAG_CO-
MPRESS, ADDRESS and PAGE represent the byte-duplicate
page, same-content page and new page respectively.

Our memory de-duplication approach can be applied to
not only stop-copy snapshot but the pre-copy snapshot as well.
There are some differences between these two snapshot ways

in terms of the storage schema. In stop-copy way, all the VM
memory pages are only saved once when taking snapshot. In
contrast, in pre-copy snapshot, the dirty pages need to be
stored more than once due to the iterations before the dirty
pages are eventually synchronized. During this synchroniz-
ation, the memory page tends to become dirty many times. If
the snapshot is performed and written into different file block
every iteration round, extremely large disk space and plenty of
time have to be spared when saving all the states for each
round. Instead, we just conduct memory de-duplication for the
first iteration and save the holistic memory page directly for
time saving. Once pages modified in the next few iterations,
the latest disk space will be overwritten and re-used. In this
way, both the time and space consumed will be cut down
significantly.

III. IMPLEMENTATION

In this section we present how we implement the
proposed methods mentioned in the last section.

We implement a collaborative snapshot prototype based
on memory de-duplication by extending KVM snapshot
mechanism. The architecture of our snapshot system can be
observed in Fig. 4. The virtual cluster is combined with
several VMs which spread over different physical machines.
The snapshot module and roll-back module are implemented
in the QEMU, which runs in the user space.

As shown in Fig. 4, the system is composed of four
components: memory snapshot module, memory de-
duplication module, communication module and storage
module. As the global hash table is distributed among different
hosts, query operations for hash table on remote hosts are
achieved via socket mechanism. This work is fulfilled by
communication module which accepts the hash value passed
from the memory snapshot module and subsequently searches
the corresponding host. Moreover, the memory de-duplication
module determines the data that is needed to be stored in the
snapshot file based on the search result send by the
communication module. The more detailed process for the
distributed snapshot can be illustrated as follows: The first
step is that a snapshot synchronization command is sent to all
the VMs in the virtual cluster (operation 1) followed by the
communication establishment (operation 2). Afterward, the
memory snapshot module begins to traverse the whole VM
memory pages, computes each hash value and sends the hash
value to the communication module (operation 3). After the
completion of searching hash table, the result will be send to

Figure 4. System Architecture

Figure 2. Memory snapshot storage mechanism

Figure 3. Memory snapshot storage format

316

the memory de-duplication module which will produce the
data according to the result (operation 4). The memory de-
duplication module will subsequently send the data to its
storage module to complete the storage for the page (operation
5).

As the hash table is distributed on multiple hosts
mentioned in Section 2, the query requests for the hash table
are sent through socket mechanism. For each hash sub-table,
there is a socket server thread serving for it. The socket server
thread receives the search request and returns the result after
searching the local hash sub-table.

According to the range of hash value and the number of
hosts, the entire hash table is divided into several sub-tables
with equal size. The Bulletin Board records the distribution of
the hash table which has been discussed in Section II. Upon
receiving a query request, the thread in communication
module will look up the bulletin board to find the destination
host where the sub-hash table is maintained.

Based on our snapshot design and mechanism, the roll-
back of the virtual cluster can be conducted when system
resuming. As all the raw page data is stored in its snapshot file,
the roll-back daemon read the snapshot file sequentially.
According to the format illustrated in Figure 3, we can extract
the page address, type flag as well as the content from the file.
For a single-byte duplicate page, the page is loaded by filling
the whole page. But for the duplicated page, we firstly get the
page reference by reading the next 16 bytes and calculate
corresponding location. Afterwards, the page content can be
loaded by reading the next 4096 bytes.

IV. EXPERIMENTS AND EVALUATION

Our approach can be applied to both stop-and-copy
snapshot and live snapshot. We conducted a set of experiments
to demonstrate the efficiency of the system design.

A. Experimental Environment
We conduct the experiments on three physical servers

and each of them is configured with 8 core Intel(R) Core(TM)
i7 CPU 2.93GHz processor and 16GB memory. The servers
are connected via switched Gigabit Ethernet. All the servers
are used to be a nfs server where the VM images and snapshot
files is located. Two of them are utilized to run VMs and take
snapshot. The operating system on physical servers is
debian6.0 with 2.6.32-5-amd64 kernel. In addition, we allocate
1GB memory for each virtual machine and adopt qemu-kvm-
0.12.5 as the virtual machine manager. We set up the
experiments in different scales: 2, 4, 6, 8, and 10 virtual
machines in a virtual cluster over the servers respectively.
Each VM has its isolated memory snapshot file stored in nfs
servers.

Three typical workloads are capsulated into the virtual
machines and used as the benchmarks to measure the perform-
ance of different snapshot mechanisms:

Idle workload means the VM does nothing except for the
tasks inside OS itself after it booting up.

Kernel Compilation is a development workload involv-
ing memory and disk I/O operations. We compile the Linux
2.6.32 kernel along with all modules.

Distcc [14] is a compilation tool that distributes the
compilation tasks across the VMs in the virtual cluster. It is
composed of one Distcc client and a couple of servers. The
client distributes the tasks to servers, which will complete the
tasks and send the results to client. We use Distcc to compile
the Linux kernel with all modules.

We compare our stop-and-copy snapshot method with the
default snapshot of KVM, and compare the live snapshot
method with VNSnap[15]. The comparisons are made in the
following three aspects: the size of snapshot files, snapshot
time and roll-back time.

B. Impact on Stop-copy Snapshot
In this experiment, we compare our method with the

default snapshot of QEMU/KVM. The virtual cluster
snapshots are conducted when the cluster is idle and running a
Distcc compilation tasks. The time to complete the snapshot
and the memory snapshot file size of each VM are recorded.
We perform these experiments several times to collect and
calculate the average value in order to reduce error margins.

Fig. 5 describes the reduction ratio of the snapshot file
under different cluster scales in idle status and Distcc
benchmark running scenarios respectively. Apparently, a
significant reduction on snapshot size can be achieved using
our approach and the reduction rate is enlarged with the
increase of VM number. The reason for this is because the
larger the VM number of the cluster is, the higher probability
of finding the same-content pages in other VMs will have. The

2 4 6 8 10

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36

R
ed

uc
tio

n
R

at
e

(%
)

VM COUNT

 Idle
 Distcc

Figure 5. the size reduction of stop-copy snapshot file

2 4 6 8 10
0

50

100

150

200

250

300

Sn
ap

sh
ot

 T
im

e
(s

)

VM COUNT

 Default Method(idle)
 Our Method(idle)
 Default Method(distcc)
 Our Method(distcc)

Figure 6. the total snapshot time of stop-copy snapshot whenVMs are
idle and running Distcc

317

reduction percentage can even reach about 34% when ten
VMs are co-allocated. In addition, the reduction degree in idle
case is larger than that of the workload executed case in all
VM scales. This is due to the fact that a large amount of free
pages contribute to efficient snapshot compression. This also
indicates that it is better to take snapshot when the whole
cluster is in idle for the space reduction consideration.

As shown in the Fig. 6, the snapshot time taken by our
method is reduced by at least 63% compared with that by
default approach no matter which scenario the experiment is
conducted and the reduction rate even increases very
dramatically when the virtual cluster scales up. There are
several reasons to explain this phenomenon. Firstly, the
default method saves the memory state in its image file. Due
to the qcow2 format used in the VM image, two levels of
tables will be traversed when data is written to the image file,
producing a non-negligible time overhead. In contrast, in our
proposed approach, the VM memory state is saved in a
separate binary file where the data can be stored directly. Fur-
thermore, the data stored in memory snapshot file by our
snapshot method is much less than the default method owing
to the de-duplication strategy, which will eventually result in
the less I/O disk operations. The overhead brought by extra
memory de-duplication can be omitted considering the
tremendous time saving.

Fig. 7 shows that our method has an slight overhead on
rollback time than the default method but it can be limited into
few seconds. This overhead is mainly brought by locating the
reduplicate pages. When the VMs number increases, the rate
of reduplicate pages becomes higher, resulting in a slightly
obvious rollback overhead.

It can be also observed that there are still some discrep-
ancies between the cluster in idle and the cluster running
Distcc, although they share an extremely similar trend.
Obviously, both the snapshot time and rollback time are longer
when running the Distcc benchmark. It is mainly because that
free pages of VMs when running application are much less
and the size of its snapshot file is larger compared with the one
in idle case which will bring about a longer snapshot and
rollback time. Additionally, we can draw a conclusion that the
effect of memory de-duplication in idle cluster outperforms
the cluster running Distcc. This suggests that snapshot should
be taken when VMs are idle if possible.

C. Impact on Live Snapshot
To demonstrate the efficiency of our method on live

snapshot, we implement the strategy of VNSnap and compare
our method against it with respect to the time it consumes. We
also take the live snapshots to the virtual cluster in two
scenarios: the idle cluster and the cluster running a Distcc
compile task.

The snapshot time consumption can be observed in Fig. 8.
The VMs running applications usually have a longer snapshot
time than the idle VMs because of the longer memory iteration
copy time to synchronize the memory states. In particular, in
each scenario, as the live snapshot mechanism of both our
method and VNSnap approach is based on pre-copy live
migration, the snapshot time is mainly determined by the
memory iterate copy time which leads to a very similar time
consumption. Nevertheless, a marginal overhead is generated
by adopting our approach when taking snapshot time because
duplicated pages discovery and page contents replacement will
take some time. However, this slight overhead can be tolerated
considering the greatly reduced disk capacities by data de-
duplication in comparison with the VNSnap schema.

D. Impact on Performance
Figure 7 depicts the compilation time during continuous

distributed snapshot as the number of VMs in the virtual
cluster increases. It is observable that the completion time
increases if the snapshot is conducted. The increment is
derived from the snapshot overhead such as I/O operations and
CPU utilization as well as the VM downtime brought by
taking snapshot. Compared with VNSnap approach, the

2 4 6 8 10
0

10

20

30

40

Sn
ap

sh
ot

 T
im

e
(s

)

VM COUNT

 VNSnap(idle)
 Our Method(idle)
 VNSnap(distcc)
 Our Method(distcc)

Figure 8. the total snapshot time comparison of live snapshot
whenVMs are idle and running Distcc

2 4 6 8 10
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

ro
llb

ac
k

tim
e(

s)

VM COUNT

 Default Method(distcc)
 Our Method(distcc)

Figure 7.the total rollback time of stop-copy snapshot when VMs are idle

2 4 6 8 10
0

500

1000

1500

C
om

pi
la

tio
n

Ti
m

e(
se

co
nd

s)

VM COUNT

 No Snapshot
 Default Snapshot
 Our Snapshot

Figure 9. the size reduction of stop-copy snapshot file

318

compilation time is slightly reduced in our approach despite of
the marginal decrement.

V.RELATED WORK

Since the emergence of virtualization technology, as one of
the most important features of VMs, snapshot has received a lot
of attention in the research community. There has been a large
amount of work on virtual VM snapshot. The Linux Logical
Volume Manager [9] provides a limited form of copy-on-write
snapshots of a block store. Parallax [3] significantly improves
on this design by providing limitless lightweight copy-on-write
snapshots at the block level. The Andrew File System [7]
allows one snapshot at a time to exist for a given volume. In
addition, distributed snapshot has been widely studied in the
previous works. The earlier works mainly focus on the
distributed snapshot protocol to preserve the consistency of
system. VNSnap[15] leverages Xen’s live migration function
to minimize system downtime when taking snapshots, and
instantiate a distributed snapshot algorithm to enforce causal
consistency across the VM snapshots. Dejavu[12] uses a new
runtime mechanism for transparent incremental check-pointing
that captures the least amount of state needed to maintain
global consistency and provides a novel communication
architecture that enables transparent migration. In contrast to
optimize the snapshot protocol, we implement a collaborative
snapshot approach for virtual machine cluster with memory de-
duplication.

Eunbyung Park[5] presents a technique for fast and space-
efficient check-pointing of virtual machines by eliminating
redundant data and storing only a subset of the VM’s memory
pages. At a checkpoint, these pages are excluded from the
checkpoint image. Lei [17] proposed a HotSnap which focuses
on system downtime and TCP backoff duration reduction.
Traditional snapshot technique for single VM eliminates the
redundant data just by compressing all the single-byte duplicate
pages. Lots of work about memory redundancy and sharing had
been conducted [6, 8, 10, 11, 19] but the traditional distributed
snapshot does not consider the memory similarity across the
virtual machines and the snapshot for each VM is proceeded
independently. Renyu [20] discussed the performance interfere-
ence without solving the memory sharing problems in co-
allocated virtual cluster. In our work, a memory de-duplication
operation is added to the above traditional snapshot procedure.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a virtual cluster snapshot approach that
considers shared resources in order to reduce redundant data
and mitigate the IO overhead. Our approach identifies
redundant memory pages across the entire virtual cluster and
maintains references to duplicated pages using a hash router
mechanism to perform memory de-duplication. By doing
memory de-duplication when taking snapshots of VMs in the
cluster, the total size of memory snapshot files are reduced
effectively. We implement the approach on QEMU/KVM
platform with not only stop-copy snapshot method but also pre-
copy snapshot method. The experiment results reveal that we
can reduce the total memory snapshot files by average 30% and
reach 63% reduction of the snapshot time compared with the
default KVM approach. As future work, we are planning to
optimize the pre-copy snapshot by memory locality prediction

in order to conducting snapshot intelligently while further
improving the performance.

ACKNOWLEDGMENTS

The work in this paper has been supported in part by the National
Basic Research Program of China (973) (No. 2011CB302602), China
863 program (No. 2011AA01A202), National Nature Science
Foundation of China (No. 61170294, 91118008, 61272165), and HGJ
Program 2010ZX01045001-002-004. We also thank Ismael Solis
Moreno from the University of Leeds for his kind suggestions.

REFERENCES

[1] James E.Smith, et al. “The Architecture of Virtual Machines”, IEEE
Computer Society, Volume 38, Issue 5, May 2005 Page(s):32 – 38

[2] Snapshot. http://www.snia.org/education/dictionary/s/#snapshot, retrieved
November 8,2012

[3] D. T. Meyer, et al. “Parallax:Virtual Disks for Virtual Machines” In
Proceedings of the 3th ACM European conference on Computer
systems(EuroSys’ 08). ACM, 2008

 [4] N. Garimella, “Understanding and exploiting snapshot technology for data
protection”, IBM developer Works, IBM, 2006,
http://www.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
retrieved November 8,2012

[5] E. Park, et al. Fast and space-effcient virtual machine checkpointing. In
Proceedings of the 7th International Conference on Virtual Execution
Environments(VEE’ 11), pages 75–86, Newport Beach, USA, 2011.

[6] D. Gupta, et al. Difference engine: Harnessing memory redundancy in
virtual machines. In Proceedings of the 8th symposium on Operating
systems design and implementation (OSDI’08), 2008

[7] Howard, et al. Howard, John H., et al. "Scale and performance in a
distributed file system." ACM Transactions on Computer Systems
(TOCS) 6.1 (1988): 51-81.

[8] S. Barker, et al. An Empirical Study of Memory Sharing in Virtual
Machines. In Proceedings of the 2012 conference on USENIX Annual
technical conference (ATC’12) USENIX Association, 2012

[9] Lvm2. http://sources.redhat.com/lvm2/.
[10] Zhao W, et al. Efficient LRU-based working set size tracking[J]. Michigan

Technological University Computer Science Technical Report, 2011
[11] Miłós, Grzegorz, et al. "Satori: Enlightened page sharing." In Proceedings

of the 2009 conference on USENIX Annual technical conference
(ATC’09). USENIX Association, 2009.

[12] J. F. Ruscio, et al. "Dejavu: Transparent user-level checkpointing,
migration, and recovery for distributed systems." In proceedings of the
IEEE International Parallel and Distributed Processing
Symposiumv(IPDPS’07). IEEE, 2007.

[13] Cully, et al. "Remus: High availability via asynchronous virtual machine
replication." In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’09). 2008.

[14] Distcc.http://code.google.com/p/distcc/
[15] Kangarlou, et al. "VNsnap: Taking snapshots of virtual networked

environments with minimal downtime." In IEEE/IFIP International
Conference on Dependable Systems & Networks(DSN'09). IEEE, 2009.

[16] Burtsev, et al. "Transparent checkpoints of closed distributed systems in
Emulab." In Proceedings of the 4th ACM European conference on
Computer systems(EuroSys’ 09). ACM, 2009

[17] Lei Cui, et al. “HotSnap: A Hot Distributed Snapshot System for Virtual
Machine Cluster”. In Proceedings of the 27th Large Installation System
Administration Conference(LISA’13), 2013

[18] Amazon elastic compute cloud (amazon ec2). Http://aws.amazon.com/ec2/
[19] Yunkai Zhang,et al "CloudAP: Improving the QoS of Mobile Applications

with Efficient VM Migration." In Proceedings of the 15th IEEE
International Conference on High Performance Computing and
Communication(HPCC 2013), pp. 1375-1381. IEEE, 2013.

[20] Renyu Yang, et al. "An Analysis of Performance Interference Effects on
Energy-Efficiency of Virtualized Cloud Environments" in Proceeding of
the 5th IEEE International Conference on Cloud Computing Technology
and Science(CloudCom 2013), pp. 113-119. IEEE 2013

[21] Xicheng Lu, et al. "Internet-based Virtual Computing Environment:
Beyond the data center as a computer." Future Generation Computer
Systems (FGCS 2011).

319

