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Abstract
Detecting anomalous users in social networks is an imperative but challenging task. The increasing complexity of inter-
personal behaviors and interactions further complicates the development of effective user anomaly detection techniques. 
Current state-of-the-art methods heavily rely on static personal features, making it difficult to quantify the hidden relevance 
of user behaviors through traditional feature engineering. This loss of accuracy is exacerbated by the rise of sophisticated 
camouflage and disguising techniques, which blur the distinction between anomalous and regular users. In this paper, we 
present GNNRI, an innovative framework for detecting anomalous users in social networks. Our approach leverages a net-
work representation learning model and a heterogeneous information network (HIN) to explore hidden semantic connections 
from user metadata, tweets, and interaction information. We extract both user metadata and behavioral features to construct 
a HIN and introduce two distinct learning layers to explore explicit and implicit user relevance. First, we employ a relation-
based self-attention layer to aggregate neighbor node closeness under specific relations and across different relationships. 
Subsequently, we apply graph convolution network-based convolutional learning layers, which enhance embedding effective-
ness by capturing graph-wide node similarity. We evaluate GNNRI using real-world datasets, and our results demonstrate 
that it outperforms all other comparative baselines, achieving approximately 90% accuracy for user classification, with a 
5–15% improvement over other GNN variants. Notably, even when using only 20% of the data for training, GNNRI achieves 
87.8%, 86.57%, and 87.1% accuracy for detecting zombies, spammers, and bots, respectively.
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1 Introduction

Social networks such as Twitter, Facebook, Instagram, 
Weibo, etc., have become essential platforms for indi-
vidual socialization and media engagement. Meanwhile, 
there are an ever-increasing number of anomalies mainly 
controlled by automated software in the form of zombie 
users, spammers, social bots, etc.  [1, 2]. They substan-
tially negatively impact social network platforms through 
malicious attempts, misinformation, and fraudulence. Spe-
cifically, zombie users are those fake followers who create 
an illusion of a high reputation and credibility via boosting 
the number of followers [3, 4]. Spammers and social bots 
attract public attention through active social behavior [5, 
6]. Spammers aggressively post harmful content such as 
commercial or personal advertisements, adult advertise-
ments, e-magazines, and serial letters [7–9] whilst social 
bots are designated to disseminate disinformation and 
propaganda that can sway public opinion [10]. Such decep-
tion can reach a vast community and lead to cascading and 
devastating consequences. [8].

Early approaches of social anomaly detection [11–13], 
simply relied on shallow classifiers based on straight-for-
ward extraction of static account information, i.e., extract-
ing the screen name, id, and the number of followers from 
metadata, assuming that early-stage anomalous users tend 
to adopt randomly-generated usernames. Unsurprisingly, 
the accuracy drastically drops when such static informa-
tion is no longer the critical characteristic of mocked 
users. In reality, the evolving camouflage techniques such 
as adversarial text generation [14, 15] will make it even 
harder to discriminate between anomalous users and real 
human [16]. There are a huge body of deep neural net-
work based approaches for spammer and bot detection. 
Refs. [17–19] perform tweet-granularity content analysis 
and detection where metadata is used as contextual infor-
mation of the individual user. Ref. [20] design a GCN-
based anti-Spam model that integrates both heterogeneous 
and homogeneous graph to capture the local and global 
context of a comment. Ref. [21] leverage convolutional 

mechanism for combining different single-view attrib-
uted graph embedding. However, all these works heav-
ily exploit profile data and textual information of social 
users and rarely consider the hidden behaviors among rel-
evant users. Graph neural networks (GNNs) based detec-
tion approaches [22–24] be widely applied to capture the 
explicit inter-connections between users (e.g., in Fig. 1, 
Bob posts a tweet and interacts with Alice in the com-
ments. At the same time, Dan and a bot are involved in the 
same topic discussion). While neighbor information can 
be better leveraged for representation learning, the hid-
den and higher-order relational nature of social networks 
is still under-studied. Abnormal behaviors are often hid-
den within the substantial number of implicit interactions 
between users on social platforms. For example, in Fig. 1, 
Bot-1 and Bot-2 are independent without direct interac-
tions, but they may share similar comment and retweet 
patterns and thus should be assimilated into the detection 
model. The third generation of bots since 2016, with a 
potent mixture of human operations and automated bot 
behaviors, managed to disguise themselves and survived 
platform-level detectors by using traditional classifiers or 
classic GNN models [25, 26]. Heterogeneous information 
network (HIN) has become the most helpful methodology 
to fuse various types of information and uncover the hid-
den semantics [27]. However, HIN-based approaches tend 
to have inherent limitations in meta-relations, i.e., meta-
path and meta-graph, particularly when the data resources 
in real application scenarios cannot underpin the modeling 
of HIN.

In this paper, we present GNNRI, an innovative GNN-
based anomaly detection framework enhanced by harvest-
ing multiple Relations and Implicit connections between 
social users. The framework mainly explores and exploits 
the hidden semantic connectivity based on the whole 
bunch of user meta, tweets, and interaction information 
with the aid of network representation learning and HIN. 
In the data preparation and modeling phase, we extract a 
wide variety of user features – from meta-features to other 
behavioral operations – and transform the heterogeneous 
entities and their relations into nodes and edges of a HIN. 

Fig. 1  An example of multiple 
entities and relations in social 
networks
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At the core of GNNRI  are the numerical embedding of 
user features and implicit relevance between users under 
different relations by integrating the advancement of graph 
attention network (GAT) and graph convolution network 
(GCN). We exploit rich semantic meta-structures, includ-
ing meta-path and meta-graph based on the established 
HIN, to represent the implicit connections between differ-
ent users. We introduce a relationship-based self-attention 
mechanism in the model (RSL) to explore the high-order 
implicit relevance between any pair of users and to aggre-
gate initial information from different relations. The model 
includes a two-level attention aggregation procedure for 
fusing the feature embedding: first calculating neighbor 
users’ closeness under a given relation and then consoli-
dating the contributions made from different relations into 
the embedding. To make better use of users’ adjacency in 
the social network and enhance further the implicit asso-
ciation of users, we stack additional convolutional embed-
ding layers (ICL) upon the attention layer that can exploit 
the whole-graph wide user similarities based on the num-
ber of relationship instances between any two users. This 
procedure measures the weighted number of pathways 
across different meta-structures and a higher value indi-
cates a closer relevance. ICL  can therefore enhance the 
implicit association of users without explicit connections.

To evaluate the effectiveness and efficiency of GNNRI, 
we collect 10,316 user data and 21,360 tweet data from 
Twitter platform for initializing the HIN. We elaborately 
label the users in the dataset into four categories (normal 
users, zombies, spammers, and social bots) and compare our 
GNNRI  against the state-of-the-art baselines. We conduct 
comprehensive experiments in terms of user classification 
and clustering tasks. Results show our approach can achieve 
roughly 90% accuracy for user classification, with about 
5–5% improvement against other GNN variants. Particularly, 
even when using 20% data for training, GNNRI  can achieve 
87.8%, 86.57% and 87.1% accuracy for zombie, spammer 
and bot classification, respectively. For user clustering, our 
approach can achieve the highest NMI and ARI compared 
with other GNN-based approaches. In addition, GNNRI  has 
the quickest convergence with less fluctuation, indicating the 
competitive efficiency in the model training.

In particular, we make the following contributions:

• For the first time, we propose a novel framework for 
categorizing social network users based on heterogene-
ous information network, which utilizes user meta fea-
tures, behavior features, and textual semantic features 
(Sect. 3.3).

• We develop a relationship-based self-attention mecha-
nism to measure user closeness within relationships, 
enhancing detection of key interactions in the network 
(Sect. 3.4).

• We introduce an advanced convolutional layer to analyze 
high-order interactions, improving anomaly detection by 
leveraging hidden connections among users (Sect.  3.5).

• We prove the superiority of our model through classifi-
cation tasks and clustering tasks, and our model gains a 
higher accuracy in anomaly detection that the state-of-
the-art methods. Meanwhile, our model is interpretative. 
In addition, we further illustrate parameter sensitivity 
experiments (Sect. 4).

The rest of the paper is organized as follows. Section 2 clari-
fies the problem, defines social network anomaly user detec-
tion, and lists the preliminaries used in the article. Secttion 3 
presents the our framework GNNRI. Section 4 describes the 
proposed approach’s experiments and performance results 
compared with the baseline methods. Section 5 lists the 
related work about our research. Section 6 summarizes the 
paper and outlines future work.

2  Preliminaries and problem definition

This section presents the background and preliminar-
ies before introducing the problem scope and framework 
overview.

2.1  User anomaly in social network

An anomaly, aka. outlier, is referred to as a case that does 
not follow the same model as the rest of the data  [28]. 
Abnormal users in social networks are those individuals or 
groups who fail to conform to the characteristics defined by 
standard patterns. It manifests in activities that differ from 
normal user behaviors, such as unusual views and behaviors. 
In this paper, we primarily focus on three types of abnormal 
users:

• Zombie user. Also known as fake followers, zombie 
users are used to boosting the number of followers to 
a target user for popularity promotion [29, 30]. Zombie 
followers merely follow users who want attention and 
behave harmlessly—most time keeping silent, with few 
interactions such as comments and retweets. However, 
they still have a non-negligible indirect societal and eco-
nomic impact via changing public influence.

• Spammer. A spammer usually posts commercial con-
tent, tempts users to click malicious links, and redirects 
to spammer-controlled third-party domains [9]. Spam-
mers interact with users by replying to comments or 
retweeting to enhance their credibility. They may post 
similar content through coordinated activities to increase 
their influence [31]. Moreover, spammers are engaged in 
topical discussions to disseminate their content.
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• Social bot. Social bots sway public opinion by posting 
content with certain hashtags [32]. They make a huge 
attempt to imitate and change user viewpoints and behav-
iors by interactions [33]. Social bots disproportionately 
spread news and opinions with ulterior motives and 
typically increase the content in the early dissemination 
stages. Through replying and mentioning operations, they 
can even target influential users.

2.2  Preliminaries

Heterogeneous information network (HIN) [34]. A HIN  
is denoted as G = G(V, E,K,R,�,�) , where V denotes the 
nodes set, E denotes the edges set, K denotes the node types 
set and R denotes the edge types set. In real-world set-
tings, there may be multiple types of nodes or edges, i.e., 
|K| + |R| > 2 . Each individual node i ∈ V is associated with 
a node type mapping function � ∶ V → K . Each individual 
edge e ∈ E has an edge type mapping function � ∶ E → R . 
The HIN constructed in this paper encompasses different 
nodes and edges, indicating entities and their interactions. 
Figure 1 exemplifies the user behaviors that can be observed 
on a social network such as Twitter or Weibo. Users are 
inter-connected through four basic operations—following, 
commenting/replying, posting/retweeting, and hashtag-
ging. Accordingly, there are four distinct entities—user 
(U), tweet (T), comment (C), and hashtag (H). Figure 1 
exemplifies a typical use case in Twitter. For instance, Dan 
posts a tweet containing a hashtag, while Bot-1 and Bot-2 
post tweets with the same hashtag. Claire retweets what a 
Spammer account originally tweets.

Meta-schema [34]. Given a HIN G(V, E,K,R,�,�) , the 
network schema for network G can be denoted as T(K,R) , 
a directed graph with the node type set K and edge types 
set R . In simple words, the meta schema comprehensively 
depicts the node types and their relations in a HIN. It pro-
vides a meta template to guide the exploration of node rela-
tionships and extract subgraphs from the HIN. Figure 2a 
summarizes the high-level relationships between entities. 
Therefore, we can employ the entities and operations as 
nodes and edges for constructing the HIN.

Meta-path and meta-graph  [34, 35]. Given 
a meta schema, a meta-path MP  ,  denoted as 

K1

R1

���������→ K2

R2

���������→ ⋯

Rl−1

��������������→ Kl , is a path on T(K,R) that defines a 
composite relation R = R1◦R2◦⋯◦Rl−1 between node type 
K1 and Kl . Herein, ◦ indicates the relation composition opera-
tor. A path p = v1 − v2 −⋯ − vl between v1 and vl in the net-
work G follows the meta-path MP , if ∀i , vi is of type Si . We 
call p a meta-path instance of MP . Figure 2b demonstrates 
the meta-paths defined on the meta-schema.

A meta-graph MG , is a directed acyclic graph (DAG) 
with a single source node and a single target node. The nodes 
and edges in MG are confined to K and R , respectively. We 
define the meta-graph instance in the same manner as the 
meta-path model. Intuitively, a meta-graph conveys more 
complex and richer relationships than a meta-path.

Mining such semantic relationship is the cornerstone of 
subsequent tasks such as classification, clustering, etc. In 
practice, based on the observations in the social network 
platforms, we extracted the four most valuable meta-paths 
s1 to s4 to outline that users can have indirect connectivity. 
For instance, the meta path s4 U-T-H-T-U means two users 
post tweets that contain the same hashtag topic, although 
they may not have direct friendship (following and fol-
lower) or interactions (comments or replies). It is particu-
larly effective when pinpointing social bots, as they typically 
lead a trend by posting substantial content related to the 
same hashtag in short order. Furthermore, we leverage meta 
graphs s5 and s6—composing a group of meta paths—to 
emphasize the importance of “retweet-reply” and “retweet-
reply-hashtag” relationships between users simultaneously. 
For example, s5 indicates the user posts a tweet retweeted 
and commented by another user.

2.3  Problem definition

This work aims to effectively detect abnormal users in social 
networks, depending on the personal features of users and 
relational features in social networks. Our work addresses 
two deficiencies facing abnormal user detection: loss of 
accuracy and ignorance of implicit relationships. Specifi-
cally, most existing studies tackle user anomalies in a uni-
fied way without differentiating their specific characteristics. 
Such approaches will result in a loss of accuracy in anomaly 
detection. On the other hand, there are numerous intrinsic 

Fig. 2  a Meta schema and b 
meta structures (meta-paths and 
meta-graphs)
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relationships, i.e., hidden relevance stemming from user 
behaviors, which can hardly be quantified by conventional 
feature engineering.

The detection procedure is typically regarded as a classifi-
cation. Formally, we aim to take as input features X  of social 
users and their previous labels (standard/zombie/spammer/
bot) T  to predict the type t of any target user. For the first 
time, we propose to solve the problem of abnormal user 
detection with heterogeneous information networks, which 
can take into account the relationships of social networks. In 
this work, our framework mainly relies on user meta-features 
and fully explores the explicit and implicit relationships hid-
den in social networks for abnormal user identification.

3  GNNRI: relation‑aware attentive 
and convolutional embedding 
for heterogeneous user relevance

In this section, we first overview GNNRI and then detail 
how we design the two learning layers in GNNRI to project 
the user relevance into the embedding representation of each 
user.

3.1  Overview

Figure 3 describes the overview architecture. GNNRI offers 
an elaborated extraction of entities in a social network based 
on feature engineering—extracting data from Twitter via the 
Twitter API and selecting them to obtain the meta-features, 
behavior features, and textual semantic features of users. 
These features provide four types of entities, including 
social user, tweet, comment, and hashtag, and six interac-
tions. GNNRI then builds up the HIN by organizing entities 
and the extracted interactions into nodes and edges within a 
HIN (Sect. 3.3). As user is the target object of the detection, 
we aim to generate a homogeneous graph that only con-
tains user entities from the HIN. To do so, GNNRI primar-
ily employs meta structures, including meta path and meta 
graph, to extract the relational connectivity among users.

At the detector’s core is the numerical embedding of 
nodes and edges in the HIN. In learning the numerical 
embedding, it must fully exploit node affinities within a 
given relationship and properly aggregate the information 
about homogeneous graphs of different relationships. To 
fully exploit the individual contribution of relationships, 
which are expressed in meta structures, Anomaly Detector 
involves two distinct layers: relationship-based self-atten-
tion layer (RSL) and a GCN-based convolutional embed-
ding layer (ICL). We design separate strategies to learn the 
embedding: In RSL, we firstly calculate the closeness of 
explicit neighbor users under a given relationship at node 
level (i.e., intra-relationship) (Sect. 3.4.1) and consolidate 

the contributions made from different relationships at 
semantic level (i.e., inter-relationship) (Sect. 3.4.2). We 
employ ICL to enhance further the implicit association of 
users without explicit connections. It exploits the whole-
graph-wide user similarities based on the in-between 
number of relationship instances of any two users. This 
procedure measures the weighted number of pathways 
across different meta-structures, and a higher value indi-
cates a closer relevance (Sect. 3.5). We then feed the simi-
larity matrix and the preliminary embedding result from 
RSL into a GCN model to further improve the numerical 
embedding. Eventually, Anomaly Classifier digests the 
learned vector embeddings to learn a classification model 
and determines if the given user behavior is typically or 
malicious. General purpose techniques including Random 
Forest, Logistic Regression, SVM, etc. can be adopted for 
implementing the classifier (Sect. 3.6).

3.2  Main pipeline

Since node embedding is the crucial procedure of GNNRI, 
we first outline how the embedding procedure is broken 
down into pipelines. As shown in Fig. 3, the meta-fea-
ture matrix U will be streamed into GNNRI and passed 
to RSL where intra-relationship, and inter-relationship 
attention aggregation procedure will be carried out. Spe-
cifically, a D × D weighted matrix �si , i.e., the adjacency 
matrix, represents closeness of any two neighboring 
nodes in each relational meta-structure si . This aggrega-
tion mechanism finally yields an inter-mediate embedding 
matrix Esi , of shape N × D for all nodes, i.e., each row Esi

x  
represents the embedding vector for node x (Sect. 3.4.1). 
Afterward, Esi will be applied further into a nonlinear 
transformation to consolidate the embedding results 
across all relational meta-structures. The trainable weight 
matrix Wsi is used to transform the node features and other 
weight parameters. RSL will eventually produce the N × D 
embedding matrix T (Sect. 3.4.2).

Subsequently, ICL will take over the control of embed-
ding to dig out long-distance user connections. The 
essence of ICL is to uniformly and generally calculate the 
structure proximity between any two users, even without 
direct connections. To generalize the similarity between 
any two users, we incorporate all adjacency matrices into 
an overall similarity matrix M. The intention is to add 
all possible pathways between the two users within all 
graphs about all relational meta-structures. M and T will 
be assembled further, with the aid of a GCN convolutional 
process, generating the final embedding matrix H, which is 
of shape N × D� , where D′ is the final embedding dimen-
sion (Sect. 3.5). Table 1 summarizes all notations used in 
the paper.
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3.3  Hin construction

We exploit Twitter API to identify the pertaining entities 
and the in-between connectivity. We initialize the procedure 
by extracting meta-features before recognizing the entities 
and building up meta structures to represent user behaviors 
and ascertain their underlying semantics. Initially, the fea-
ture extraction module transforms the original information 
into a heterogeneous graph. The edges between nodes in the 
heterogeneous graph are established based on the account’s 
friend relationships and interactions in the social network 
platform.

We retrieve each account’s meta-features and description 
features as its initial node feature, and extra tweet features 

Table 1  The variables and 
feature tags of social users

Symbol Description

S Relationship collection
si One type of meta-structures, i.e. relationships
U The raw node feature matrix of users
�

si Learnable weight matrix for closeness degree in RSL
c
si
x (y) The importance (closeness) for node y to node x based on relationship si in RSL

E
si
x

The node representation of user x under relationship si in RSL
W

si Trainable weight matrix for aggregation across relationships in RSL
bsi Bias under meta-structure si for aggregation across relationships in RSL
�
si
x

The importance of the relationship si for user x in RSL

�
si
x

The weight for relationship si to node x in RSL
Ψsi Adjacency matrix to calculate the instances of connection between two users
�si Weight for relationship si in ICL
M(x, y) The similarity calculated between user x and user y in ICL
T The output matrix of user embeddings of RSL
H The output matrix of user embeddings of ICL, also the final embedding matrix

Aggregation ICL Aggregation ICL ICL… Classifier y

…
…

target user node

S1

S6

target user node

RSL

GCN

(c) Implicit-Connection Convolutional Layer (ICL)

(a) GNNRI

(b) Relation-Based Self-Attention Layer (RSL)

Intra-Relation Inter-Relation

Initial user nodes User tags

Fig. 3  The overall architecture of GNNRI 

Table 2  User features

Feature name Type Feature name Type

id_str String followers_count int
name String friends_count int
screen_name String listed_count int
url String favourites_count int
description String statuses_count int
created_at String default_profile Boolean
verified Boolean protected Boolean



International Journal of Machine Learning and Cybernetics 

and entities are extracted using NLPtool https:// github. 
com/ explo sion/ spaCy from the original tweets. The meta-
features of users serve as the node features of the social user 
node and then as the initial input features of our framework. 
Table 2 demonstrates the metadata details extracted from 
the user object. We use the N × D raw feature matrix U to 
store the meta information, where N and D are the numbers 
of users and dimensions of meta-features, respectively.

Specifically, the feature engineering include the follow-
ing steps:

• Account nodes: We encode the description field of the 
account metadata into a 64-dimension vector through a 
pre-trained language model Word2Vec. To enrich the 
original node features, we consider the number of fol-
lowers and the number of friends since such numbers are 
the most representative social identity of a Twitter user. 
Additionally, binary value is used to indicate default_
profile, verified and profile_use_background_image, 
count the length of screen_name, name and description 
fields and the number of digits in screen_name and name 
fields.

• Tweet nodes: We embed the text of the original tweet 
by the pre-trained language model Word2Vec into a 300 
dimension vector. We incorporate the raw tweet con-
text a variety of additional information – the number of 
retweets, the number of replies, the number of favorites, 
the number of mentioning of the original tweet, and the 
number of hashtags and the number of URLs involved in 
the tweet.

• Hashtag and entity nodes: Similarly we embed the text 
of hashtag and entity into a 300-dimension vector.

3.4  Relation‑aware attention‑based node 
embedding

One-hop connection, aka. direct link, is the most direct 
interpersonal connection between two users via a meta-
path or a meta-graph. The critical procedure for obtaining 
the representation of a user is to aggregate all embeddings 
of its neighboring users. To exploit the intrinsic difference 
among different users and the impact disparity under differ-
ent meta-structure (meta-path or meta-graph), we can break 
down the one-hop connection into two aspects: differentiat-
ing the proximity of different users within a meta-structure 
and adding up contributions from different meta-structures.

3.4.1  Node embedding under a given relationship

Closeness degree. Inspired by the self-attention mecha-
nism [36], we use the degree of closeness between users 
to quantify the individual importance of neighbor users. 
More specifically, given a set of meta paths and meta graphs 

S = {s1, s2,… , sm} , the objective is to calculate the intra-
relationship node aggregation for each corresponding meta-
structure. Assuming a pair of user nodes (x, y) is connected 
via a meta path si . We use closeness(x, y;si) to denote the 
importance of y onto x:

where ux and uy denote the embedding vectors of user 
features (e.g., 64-dimension numerical vector) and �si

 is 
a matrix only determined by the meta-structure si , while 
� denotes the activation function. The closeness index is 
asymmetric.

We intend to calculate the structure connection across 
all users under different meta structures. Meta-paths and 
meta-graphs over types and structures indicate semantic-
explainable similarities between two user nodes. We use the 
adjacency matrix Ψsi to count the instances of connection 
between two user nodes. Given a meta-path si , K1K2 ⋯Kl , 
the adjacency matrix can be calculated by:

where RKjKj+1
 is the relation matrix between entity Kj and 

Kj+1 . �si
(x, y) represents the count of meta-path instances 

between node x and node y.
As will be shown in Sect. 4, we collected 10,316 social 

users for the experiment where N = 10,316. �si
 will be a 

10,316 × 10,316 matrix and the embedding vector of users 
will be 64 dimensions. The overall embedding matrix Esi 
contains 10,316 rows and 64 columns. For meta path s2 
( U - T - T - U )  i n  F i g .   2 , 
�

s2 = RUT ⋅ RTT ⋅ RTU = RUT ⋅ RTT ⋅ RT
UT

 . �s2
i,j
> 0 indicates 

that user i and user j are associated with each other, and 
higher value indicates more pathways that can connect the 
two users through the given semantic.

Likewise, for a given meta graph sj consisting of a set of 
meta-paths, {sj1, sj2,… , sjJ} , the node adjacency matrix is:

For example, �s8 = RUT ⋅ ((RTT ⋅ RTU)⊙ (RTC ⋅ RCU)) . For 
a given meta graph sj consisting of a set of meta-paths, 
{sj1, sj2,… , sjJ} , the matrix can be formulated as:

where ⊙ is the operation of Hadamard Product. For exam-
ple, for a pair of nodes (x, y) connected via the meta-graph s5 
(a combination of s2 and s3 ). The matrix is �s5

= �s2
⊙�s3

.
Node embedding. Within a meta-structure si , for each 

user node x, it is only the neighbor node y that counts. That 
means we measure the closeness with masked attention. We 
then normalize the closeness to obtain the weight coefficient 
c
si
x (y) through softmax function:

(1)closeness(x, y;si) = �
(
ux�

siuT
y

)
,

(2)�
si = RK1K2

⋅ RK2K3
⋯ ⋅ RKl−1Kl

,

(3)�
sj = �

sj1 ⊙⋯⊙�
sjJ .

(4)�
sj = �

sj1 ⊙�
sj2 ⊙⋯⊙�

sjJ ,

https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
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Therefore, we calculate the node embedding of user x under 
si by carrying out weighted aggregation among all neighbor 
nodes:

Specifically, we employ a multi-head attention mechanism 
for precisely incorporating the neighbors’ embedding. To 
make the training procedure more stable, we repeat the com-
putation H times and concatenate the results.

3.4.2  Embedding aggregation across relationships

We transform every user vector in the Rsi through a layer 
of nonlinear transformation including the trainable weight 
matrix Wsi and bias bsi . The importance of the meta structure 
si for user x is calculated by:

where ysi denotes the weight vector for meta-structures. The 
importance score depends both on the meta-structure and 
the user node. Wsi , bsi and ysi are shared by all nodes in the 
same group. That means that even the same meta-structure 
has different scores for different nodes, but at the same time, 
these scores are closely related. We use softmax function to 
normalize the weight of each meta structure si , as following:

We aggregate the embeddings of a node x under different 
meta structures:

Performing the aggregation on each user will eventually 
form the overall matrix T, and each row vector represents 
the individual embedding of each node.

3.5  ICL to explore implicit relevance

Following the similarity calculation presented in [37], we 
define a user similarity between user x and user y, primarily 
considering the meta-structure instances between these two 
users. Given a collection of meta structures {s1, s2,… , sm} , 
the similarity is calculated by:

(5)csi
x
(y) = softmax(closeness(x, y;si)).

(6)Esi
x
=∥H

h=1
�
(∑

csi
x
(y) ⋅ uy

)
.

(7)�si
x
= (ysi )T ⋅ tanh

(
W

siEsi
x
+ bsi

)
,

(8)�si
x
= softmax

(
�si
x

)
.

(9)Tx =

m∑

i=1

�si
x
Esi
x
.

(10)M(x, y) =

m∑

i=1

�si

2 ×�
si(x, y)

�si(x, x) +�si(y, y)
,

where �si(x, y) is the number of si instances bridging 
between x and y, and �si

 represents the weight of si . Notably, 
we use a learnable parameter vector � = {�s1

,�s2
,… ,�sm

} 
to denote weights of all meta structures.

We can then use the calculated similarity to indicate the 
connectivity between any pair of user instances. We con-
struct an N × N weighted adjacency matrix M to store the 
semantic similarity among N users. To form a GCN model, 
we firstly calculate M̃ = M + IN , M̂ = D

−
1

2 �MD
−

1

2 where IN 
is the identity matrix and D is a diagonal matrix such that 
Dii =

∑
j Mij . We apply two layers in the GCN:

where �1 and �2 denote different activation functions. W (0) 
and W (1) are learnable weight matrices between the input 
and hidden layer and between the hidden and output layer. 
H(0) is the input feature matrix, and H(1) is the output feature 
matrix after applying the first GCN layer. H(0) is set to be 
the embedding matrix T. Eventually, we use each row of the 
embedding matrix H, i.e., H1,H2,… ,HN , to numerically 
represent each user.

GNNRI  allows for pipelining any arbitrary tiers of ICL s 
with RSLaccording to different requirements. There are 
many variants of GNNRI, e.g., GNNRI-RSL where we only 
retain RSL with ICL switched off and GNNRI-ICL where 
only convolutional layers are activated. We provide a con-
figurable layer number for variable performance, and we 
will evaluate the impact of the layer number on the overall 
detection performance in Sect. 4.

3.6  Multi‑anomaly detection and optimization

We adopt a Logistic Regression classifier to achieve the 
final step of anomaly detection. During the model train-
ing, the classifier absorbs the labels of the training nodes. It 
minimizes the cross-entropy between the ground truths and 
the predicted results to achieve the multi-class node clas-
sification. Specifically, the loss function F is formalized as 
follows:

where VΛ is the index set of user nodes with labels while y� 
is a binary vector indicating the label of a given node y and 
P� is the probability of neural network prediction.

4  Experiment

In this section, we describe the experiments, including clas-
sification and clustering, and parameter sensitivity, and pro-
vide some analysis of the results.

(11)H = H(1) = 𝜎2
(
M̂𝜎1

(
M̂H(0)W (0)

)
W (1)

)
,

(12)F = −
∑

�∈VΛ

y� logP�,
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4.1  Experiment setup

Platforms. Evaluation is conducted on a multi-core server 
with a 64-core Intel Xeon CPU @2.40 GHz with 512 GB 
RAM and 8 ×NVIDIA Tesla P100 GPUs. The server runs 
Ubuntu 20.04 LTS with Linux kernel 5.4.0. Our model is 
implemented using Python 3.5.2.

Dataset. We conduct experiments on two Twitter bot 
datasets Vendor-19 [38] and TwiBot-20 [39], by far the 
largest datasets in the public domain. Vendor-19 provided a 
collection of fake followers deriving from several companies 
and TwiBot-20 dataset exposes users’ social relationships 
and enables the use of advanced graph representation-based 
algorithms. We mix the datasets with a dataset of benign 
accounts Verified [40] and tagged a totality of 10,316 social 
users, including 2507 normal users, 2683 zombie users, 
2751 spammers, and 2375 social bots. We collected 21,360 
tweets posted by these users. Table 3 describes the data 
statistics.

Methodology. To evaluate the effectiveness, we compare 
GNNRI with baselines based on traditional neural networks, 
random walk, and GNN and Botometer [41], the classic bot 
detection website. We perform node classification and node 
clustering representative tasks in network representation 
learning studies. The node classification distinguishes four 
types of users to demonstrate the effectiveness in detect-
ing anomalous users (Sect. 4.2). We feed the obtained node 
embeddings to the K-means algorithm to perform cluster-
ing, setting the number of clusters the same as the ground 
truth classes (Sect. 4.3). For the ablation study, we evalu-
ated GNNRI and its variables GNNRI-RSL and GNNRI-
ICL, respectively. Furthermore, we experiment on param-
eter sensitivity to study the detailed impact of ICL layers 
and the dimension of embedding vectors on the accuracy 
(Sect. 4.4). We eventually showcase a comprehensive case 
study to discuss some key observations and findings from 
our experimental evaluation (Sect. 4.5).

Baselines. We compare our proposed framework with 
the following baselines, including the state-of-the-art het-
erogeneous network representation learning approaches and 

traditional social bot detection approaches. For all baseline 
models, we use the open-source implementations.

Botometer [41] is an online detection tool to check bots 
on Twitter but is not suitable for classifying anomalous 
users. Thus we only use it to distinguish anomalies from 
humans. Botometer is a representative method based on 
manual feature engineering [40].

MLP [42] is a multilayer perceptron that takes multiple 
datasets as inputs at the input layer. After complex calcula-
tions, the hidden layers take the vectors from the input layer 
and pass them to the output layer. There is a non-linear map-
ping framework of input and output vectors.

DeepWalk [43] takes the homogeneous network as input 
and generates the embeddings for all graph nodes. It lever-
ages the random walk algorithm to aggregate the informa-
tion of neighborhood nodes. We use DeepWalk to get the 
representations of the users.

Metapath2vec++ [44] constructs the neighborhood con-
text for the node embedding by using a meta-path-based 
random walk and then generates node embeddings via the 
skip-gram framework. In our experiments, we report meta-
path performance with the best result.

GCN [45] is a semi-supervised homogeneous graph 
convolutional network model that retains the graph nodes’ 
feature information and structure information. It uses the 
first-order approximation of the Chebyshev polynomial to 
complete an efficient graph convolution architecture.

GAT  [46] is a semi-supervised homogeneous graph model 
that utilizes an attention mechanism to aggregate neighbor-
hood information of graph nodes. To adapt the homogeneity 
of GAT, we ignore the differences between meta paths and 
meta graphs and execute GAT on the entire graph.

HAN [47] is a heterogeneous graph representation learn-
ing model that utilizes predefined meta paths and hierarchi-
cal attentions for node vector embedding.

HetGNN [22] uses a random walk with a restart strategy 
to sample strongly correlated heterogeneous neighbors and 
perform intra-node-type and inter-node-type aggregations 
but does not leverage the semantically meaningful meta-
paths and meta-graphs.

Table 3  Statistics of Dataset Features Node pair (X–Y) Number of node X Number of node Y Number 
of node 
pair

Type of user Number

1386 User-User 10,316 10,316 3 × 951 Human 2507
User-Tweet 10,316 21,060 21,060 Zombie User 2683
Tweet-Tweet 21,060 21,060 9003
User-Comment 10,316 15,207 15,207 Spammer 2751
Tweet-Comment 21,060 15,207 15,207 Social Bot 2375
Tweet-Hashtag 21,060 27 11,068



 International Journal of Machine Learning and Cybernetics

HGT [23] introduces an attention mechanism to the 
interactions of different types of nodes, and it conducts 
across-layer messages passing distinct kinds of neighbors 
to obtain high-order aggregation.

MAGNN [48] presents a meta-path based graph neural 
network aggregation for node embedding. It unifies differ-
ent types of nodes and applies intra-metapath and inter-
metapath aggregations. It neglects the comprehensively 
semantic meaningful meta-graphs.

RSHN [49] simultaneously captures the heterogeneous 
graph structure and implicit relation structural information 
to explore the interactions between edges and learn node 
and edge type representation. It is independent of meta-
paths and meta-graphs.

RCRFR [50] combines the RoBERTa classifier and a 
random forest regressor with similarity analysis to evalu-
ate tweet similarities and user profile features, employing 
a voting system to enhance detection accuracy.

BotBuster [51] uses a mixture of experts approach, 
where each expert analyzes a specific aspect of account 
information, such as the username, and combines their 
assessments to estimate the likelihood of an account being 
a bot, demonstrating superior performance across multiple 
datasets.

GNNRI-RSL and GNNRI-ICL are variants of GNNRI. 
GNNRI-RSL only retains RSL without ICL while only ICL 
is activated in GNNRI-ICL.

Model training. In general, we set the learning rate, 
the number of attention heads, and the dropout rate to be 
0.0005, 8, and 0.4, respectively. For all the deep learning 
models, we employ the Adam optimizer with a learning rate 
of 0.005 and the weight decay of 0.001. We train them for 
100 epochs with the dropout rate of 0.5 and utilize early 
stopping with patience of 5. We ascertain the best setting of 
parameters such as the network layer and embedding dimen-
sion, according to the study of parameter sensitivity which 
will be shown in Sect. 4.4. For a fair comparison, we set the 
final embedded vector dimension obtained by all the above 
methods to 64 and use the same splits of training, validation, 
and testing sets. We tune all baseline parameters through 
the policies developed in their works and report their per-
formance with the optimal settings. More specifically, for 
Node2Vec and Metapath2Vec, we set the number of walks 
per node, the max walk length, and the window size to be 
10, 100, 8, respectively. The number of negative samples 
is set to be 5, if applicable. For GNNs such as GCN, GAT, 
HAN, MAGNN, we set the parameters suggested by their 
original papers: all GNNs keep 3 layers with dropout rate 
0.5. For RSHN, we use 2-layer HGNN coupled with 1-layer 
RLG-NN with 8 hidden units We set the number of attention 
heads to 8 and the dimension of the attention vector to 128. 
Note that all the above parameter settings also apply to all 
experiments. 

Metrics. To quantitatively evaluate the performance of 
GNNRI, we use the following metrics in the experiments: 
(i) for the classification experiments, we use Accuracy 
and F1 scores (see Table 4), two high-is-better metrics, to 
evaluate the effectiveness of detection. (ii) to quantify the 
clustering effectiveness, we use normalized mutual informa-
tion (NMI) [52] and adjusted rand index (ARI) [53] scores. 
We use ten-fold cross validation and calculate the average 
accuracy to provide an assurance of unbiased and accurate 
evaluation.

4.2  Classification effectiveness

Overall accuracy. We choose 20%, 40%, 60%, 80% of the 
data samples for training embedding models and the residual 
for testing. Table 5 illustrates the F1 and accuracy scores of 
each model when varying the training ratio. In all cases, the 
classification accuracy will intuitively increase when more 
samples are involved in the training procedure. In general, 
GNNRI-RSL or GNNRI-ICL can achieve competitive clas-
sification accuracy when compared with other graph-based 
models such as Metapath2Vec++, HAN, GCN, GAT, Het-
GNN, HGT, MAGNN, and RSHN. Similar results can be 
observed in the F1 score comparison. In fact, graph-based 
representation learning models manage to exploit relational 
information for effectively embedding any user information 
as a vector, and among them, it can be observed that the HIN-
based approach obtains better results. Even more so, joint 
effort of both models into GNNRI can significantly improve 
the precision compared against all other baselines. This is 
because the embedding effectiveness is further enhanced by 
exploring the implicit relevance in ICL. In addition, lim-
ited deviation can be found in GNNRI compared with other 
baselines, indicating our approach can deliver more stable 
classification.

Accuracy of individual user category. Figure 4 dem-
onstrates the classification effectiveness over different user 
categories and Table 6 shows the specific result when train-
ing ratio is set to be 80%. Obviously, GNNRI outperforms 
baselines over all cases, similarly to the overall accuracy 
comparison. Among different categories, the classification 

Table 4  Descriptions of evaluation metrics

Metrics Description

TP The number of malicious Apps that are correctly identified
TN The number of benign Apps that are correctly identified
FP The number of benign Apps that are mistakenly identified
FN The number of malicious Apps that are mistakenly identi-

fied
F1 2 ∗ Precision*Recall∕(Precision + Recall)

Accurate (TP + FN)∕(TP + TN + FP + FN)
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over normal users can target the best effectiveness: the val-
ues in Fig. 4a is higher than values in other heatmaps while 
the classification on spammer data samples experiences the 
lowest effect.

Impact of increasing epoch on accuracy. Figure  5 
shows the change procedure of accuracy score over all 
baselines with the increment of training epoch. Observably 
GNNRI has the quickest convergence speed to reach a decent 
accuracy (roughly 90%). In comparison, other bases either 
have larger accuracy fluctuation or need more epoch and 
time for convergence.

4.3  User clustering

We evaluate the user representations obtained by the above 
algorithms through the clustering task. After the training 
of these algorithms, we can get the embeddings of all user 
nodes. We perform node clustering using K-Means with 
a cluster number of four, i.e., the number of user types: 

human, zombie user, spammer, and social bot. The pro-
cess is repeated for 20 times and the final result is shown in 
Fig. 6. Overall, graph-based representation learning models 
perform competitively in clustering tasks. GNNRI performs 
better than all baselines. Therefore, it can be assumed that 
GNNRI makes effective improvements in the clustering task 
to obtain good results.

4.4  Impact of parameters

Impact of ICL  layers. Figure 7a shows the impact of the 
number of ICL layers on the detection accuracy. Increased 
ICL  layers achieve limited accuracy improvement—the 
accuracy reaches the peak when carrying out two ICL lay-
ers but goes down if more layers are added on. This is 
because too many aggregations would reduce the difference 
between categories. Therefore, we only double ICL for rela-
tion aggregation.

Table 5  Classification precision comparison

The values in bold represent the results of our proposed GNNRI method

Metrics Accuracy Micro-F1

Training 20% 40% 60% 80% 20% 40% 60% 80%

MLP 0.5807 ± 
0.0069

0.6069 ± 
0.0050

0.6133 ± 
0.0036

0.6285 ± 
0.0083

0.5805 ± 
0.0081

0.6091 ± 
0.0078

0.6106 ± 
0.0029

0.6269 ± 
0.0052

Deepwalk 0.6008 ± 
0.0026

0.6166 ± 
0.0053

0.6397 ± 
0.0030

0.6514 ± 
0.0043

0.6056 ± 
0.0036

0.6199 ± 
0.0049

0.6363 ± 
0.0052

0.6398 ± 
0.0096

Metapath2vec 0.6499 ± 
0.0089

0.6587 ± 
0.0095

0.6679 ± 
0.0033

0.6732 ± 
0.0082

0.6483 ± 
0.0094

0.6596 ± 
0.0044

0.6683 ± 
0.0096

0.6707 ± 
0.0065

RCRFR 0.7055 ± 
0.0045

0.7086 ± 
0.0039

0.6697 ± 
0.0043

0.7117 ± 
0.051

0.6513 ± 
0.0042

0.6902 ± 
0.0054

0.6608 ± 
0.0061

0.7100 ± 
0.0033

GCN 0.7216 ± 
0.0028

0.7202 ± 
0.0060

0.7394 ± 
0.0026

0.7507 ± 
0.0075

0.7207 ± 
0.0074

0.7193 ± 
0.0027

0.7339 ± 
0.0031

0.7501 ± 
0.0031

GAT 0.7893 ± 
0.0066

0.7959 ± 
0.0013

0.8095 ± 
0.0011

0.8352 ± 
0.0087

0.7772 ± 
0.0059

0.7902 ± 
0.0062

0.8038 ± 
0.0019

0.8193 ± 
0.0026

HAN 0.8281 ± 
0.0010

0.8322 ± 
0.0086

0.8489 ± 
0.0043

0.8633 ± 
0.0070

0.8211 ± 
0.0006

0.8302 ± 
0.0071

0.8503 ± 
0.0053

0.8621 ± 
0.0038

HetGNN 0.8145 ± 
0.0009

0.8238 ± 
0.0072

0.8342 ± 
0.0093

0.8539 ± 
0.0055

0.8201 ± 
0.0069

0.8270 ± 
0.0021

0.8404 ± 
0.0026

0.8597 ± 
0.0074

HGT 0.8269 ± 
0.0059

0.8306 ± 
0.0071

0.8495 ± 
0.0083

0.8601 ± 
0.0022

0.8312 ± 
0.0047

0.8395 ± 
0.0061

0.8493 ± 
0.0032

0.8619 ± 
0.0021

MAGNN 0.8290 ± 
0.0063

0.8364 ± 
0.0089

0.8477 ± 
0.0065

0.8639 ± 
0.0039

0.8221 ± 
0.0056

0.8292 ± 
0.0117

0.8513 ± 
0.0079

0.8672 ± 
0.0094

RSHN 0.8366 ± 
0.0034

0.8467 ± 
0.0016

0.8604 ± 
0.0106

0.8701 ± 
0.0052

0.8359 ± 
0.0037

0.8424 ± 
0.0038

0.8533 ± 
0.0081

0.8714 ± 
0.0005

BotBuster 0.8419 ± 
0.0057

0.8604 ± 
0.0044

0.8885 ± 
0.0073

0.8671 ± 
0.0047

0.8362 ± 
0.0033

0.8824 ± 
0.0045

0.8489 ± 
0.0071

0.8870 ± 
0.0022

GNNRI-RSL 0.8306 ± 
0.0064

0.8389 ± 
0.0032

0.8564 ± 
0.0094

0.8698 ± 
0.0071

0.8356 ± 
0.0047

0.8419 ± 
0.0041

0.8524 ± 
0.0078

0.8733 ± 
0.0053

GNNRI-ICL 0.7255 ± 
0.0072

0.7401 ± 
0.0080

0.7597 ± 
0.0029

0.7743 ± 
0.0066

0.7231 ± 
0.0073

0.7411 ± 
0.0085

0.7502 ± 
0.0031

0.7774 ± 
0.0074

GNNRI 0.8826 ± 
0.0019

0.8892 ± 
0.0036

0.8938 ± 
0.0053

0.9016 ± 
0.0076

0.8807 ± 
0.0022

0.8851 ± 
0.0026

0.8898 ± 
0.0032

0.8927 ± 
0.0034
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(a) Normal user. (b) Zombie User.

(c) Spammer. (d) Social Bot.

Fig. 4  Classifications accuracy under different user categories

Table 6  Classification precision in each user category

The values in bold represent the results of our proposed GNNRI method

Categories Human Zombie user Spammer Social bot All categories

Metrics Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy Micro-F1
Botometer – – – – 0.8507 0.8569
MLP 0.6445 0.6433 0.6289 0.6396 0.6154 0.6269 0.6294 0.6323 0.62955 0.6283
Deepwalk 0.6577 0.6598 0.6443 0.6434 0.6279 0.6122 0.6465 0.6331 0.6441 0.6352
Metapath2vec 0.6872 0.6898 0.6712 0.6626 0.6589 0.6601 0.6756 0.672 0.673225 0.6707
RCRFR 0.7550 0.7376 0.6786 0.6857 0.7311 0.6608 0.7004 0.6984 0.7501 0.7356
GCN 0.7602 0.7558 0.7557 0.7541 0.7398 0.7291 0.7507 0.7463 0.7516 0.7439
GAT 0.8398 0.8222 0.8304 0.8259 0.8205 0.8191 0.8387 0.8295 0.83235 0.8211
HAN 0.8689 0.8709 0.8678 0.8669 0.8557 0.8541 0.8623 0.8611 0.863675 0.8632
HetGNN 0.8602 0.8678 0.8533 0.8589 0.8497 0.8503 0.8526 0.859 0.85395 0.8597
HGT 0.8659 0.8674 0.8564 0.8614 0.8512 0.8518 0.8587 0.8603 0.85805 0.8604
MAGNN 0.8693 0.8699 0.8612 0.865 0.8567 0.8553 0.8638 0.8629 0.86275 0.8634
RSHN 0.871 0.8807 0.8688 0.8716 0.8549 0.8592 0.8657 0.8723 0.8651 0.8711
BotBuster 0.8760 0.8948 0.8812 0.8866 0.8560 0.8705 0.8704 0.8780 0.8654 0.8809
GNNRI-RSL 0.8766 0.8997 0.8725 0.8708 0.8603 0.8596 0.8707 0.8778 0.870025 0.8771
GNNRI-ICL 0.7888 0.7823 0.7693 0.7796 0.7661 0.7765 0.7674 0.7801 0.7729 0.7798
GNNRI 0.9055 0.9009 0.8944 0.8903 0.8897 0.8775 0.8902 0.8831 0.895 0.8897
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Impact of varying embedding dimensions. Figure 7b 
depicts the impact of the embedding dimensions on the 
accuracy. The increment of embedding dimensions leads to 
a picking-up trend until the dimension number reaches 64, 
followed by a constant reduction. This is because a large 

enough embedding dimension can provide the required 
information for the classification and redundancy will be 
introduced once the dimension surpasses a certain threshold. 
In addition, the dimension of the vector y observably impacts 
on the accuracy. As shown in Fig. 7c, as the dimension size 
grows, the performance of GNNRI grows accordingly and 
reaches the peaking accuracy when the dimension size is set 
to be 128. Similarly, the accuracy will drop drastically due 
to overfitting.

4.5  Case study

In this subsection, we conduct several case studies and 
explore the implications behind.

4.5.1  Implications of calculating closeness degree

We first randomly select several user instances under differ-
ent user categories to investigate how the elements consti-
tute the closest neighbors of a given user. This analysis can 
showcase the specific contribution of relevant users to the 
targeted user, correspondingly indicating their contributions 
to the numerical embedding and anomaly detection. It is 
worth noting that the targeted user itself will be included in 
the closeness calculation due to the self-attention mechanism 
in the RSL and we then visualize the residual top-5 closest 
neighbors of a given user.

Finding-1: normal users and social bots tend to be 
close to their own kind. Users of the same kind are often 
among the closest neighbors of a specific user. For instance, 
as shown in Fig. 8a, d, Four fifths of closest neighbors of 
the normal user U1037 are normal ones and all top-4 closest 

Fig. 5  Accuracy and epoch

Fig. 6  NMI and ARI values

Fig. 7  Impact of parameters

Fig. 8  The closest neighbors 
of U1037 (normal user), U76 
(zombie user), U1661 (spam-
mer) and U181 (social bot)

(a) U1037. (b) U76. (c) U1661. (d) U181.
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neighbors of the social bot U181 are social bots. This is 
simply because normal users and social bots are engaged in 
so many relationships that users involved in the same tweets 
via either retweet or comment will be heavily associated 
with each other. The advancement of bot technology makes 
it increasingly sophisticated for users, particularly the inex-
perienced ones, to differentiate the roles of social bots. This 
gives rise to certain social bots being included in the closest 
neighbors of a normal user, and vice versa.

Finding-2: Zombie users and spammers tend to own 
diverse close neighbors. One will be closely associated 
with zombie users as long as he would expand his social 
reputation, no matter what type of user he belongs to. For 
instance, U5571 (spammer) and U9029 (social bot) are 
among the closest neighbors of the zombie user U76. Simi-
larly, spammers can be widely related to other users. Spam-
mers involved in the same activities or coordinated to launch 
specific attacks—such as advertising to generate sales or 
disseminating viruses and phishing information, etc.—are 
likely strongly correlative in the proximity calculation. In 
addition, for the purpose of marketing promotion, spam-
mers may be engaged in certain hashtags, wherein a close 
connection with social bots or normal users is established. 
This explains why the spammer U161 in Fig. 8c are closely 
related to U1753 (zombie user) and U7590 (social bot).

4.5.2  Analysis of importance of relationships in RSL

Figure 9a–d show the distinct contributions of each relation-
ship to different types of users. We provide some findings 
below.

Finding-3: relationship s2 (retweeting) and s3 (com-
menting) substantially contribute to users under all 
categories. As the most frequent operations in social net-
works, retweeting and commenting are intrinsically of 
critical importance in social interactions, particularly for 
normal users (e.g., U1037) and spammers (e.g., U1661). 
Interestingly, some zombie users even occasionally retweet 
or comment other posts of normal users in order to flourish 
a targeted tweet and user, and camouflage themselves with 
such usual operations. This is aligned with the observations 

in Fig. 9b. Social bots are also keen to reply to comments or 
retweet to attract more attention from others and make them 
interested in the hashtag.

Finding-4: s4 (hashtagging) plays a significantly 
important role in the social activities of social bots. Fig-
ure 9d indicates social bots are very likely to increase popu-
larity of some specific topics by participating in the topic 
discussion with hashtagging. This is a unique characteristic 
of social bots, different from other types of users. Spammers 
are sometimes engaged in the popular hashtags, e.g., Twitter 
Trends, for boosting the marketing dissertation or sale pro-
motion. This phenomenon is in line with the contribution of 
s4 to the spammer U1661 shown in Fig. 9c.

4.5.3  Analysis of implicit relevance exploration in ICL

Figure 9e shows the weight of the different relationships 
in one ICL. It can be seen that the proportion of s1 is the 
highest, which is also consistent with the goal of the frame-
work. In general, zombie users increase the popularity of 
normal users by following them. However, zombie users 
often have no direct connection with each other. Therefore, 
in the exploration of implicit relevance, mining the indirect 
relationships between zombie users through common friends 
is one of the main objectives. s2 and s3 , on the other hand, 
exemplify the role of secondary retweets and multiple replies 
in interpersonal relationships. It is conceivable that these 
two relationships are also undetectable in RSL. s4 , s5 and s6 
are of relatively marginal importance. Thus, it can be seen 
that the further aggregation of different indirect relationships 
in ICL can fully exploit the multiple relationships between 
users.

5  Related work

Anomalous social user detection. Anomalous social users 
are referred to those anomalies or outliers in social networks. 
We focus on three types of abnormal users: zombie users, 
spammers, and social bots. Most approaches employ basic 
personal features for the detection of zombie users. Basic 

(a) U1037. (b) U76. (c) U1661. (d) U181. (e) Weight s of Meta-

Structures.

Fig. 9  Figures a–d show the contributions made by six relationships, s1–s6 to normal user U1037, zombie user U76, spammer U1661 and social 
bot U181, respectively. Figure eshows the weight values of each of the above six relationships in ICL 
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Bayesian classification that combines user characteristics 
and machine learning methods have proven efficient for 
zombie users detection. Alowibdi et al. [54] leverage user 
profile characteristics with a Bayesian classification algo-
rithm to detect deception. Cresci et al. [3] further discuss 
the fake followers created for profit, with which the custom-
ers use numerous followers to draw the world’s attention. 
However, they are rule-based and lightweight classifiers 
with fewer characteristics taken into account. Several stud-
ies use user features and text features for spammer detection. 
Ala’M et al. [55] extract ten standard features based on the 
user personal characteristics and textual information and 
leverage four machine learning classifiers for detection. Lee 
et al. [56] exploit the observable profile user information and 
textual features with a machine learning-based algorithm to 
identify spammers. Stringhini et al. [9] and Chen et al. [57] 
propose lightweight features to simplify the detection pro-
cedure. However, spammers can easily hide user informa-
tion and textual features to avoid being identified. Benev-
enuto et al. [58] experimentally demonstrate classifiers that 
incorporate textual features and metadata can deliver better 
results compared with classifiers that use only user features. 
Alom et al. [59] conduct deep learning-based algorithms on 
metadata and textual data. All these works demonstrate the 
use of textual information in spammer detection. Social bots 
spread specific messages by posting many tweets with simi-
lar content on social networks [60]. Other works  [11, 61, 62] 
consider substantial meta users and features in the elaborate 
machine learning models particularly for the consideration 
of scalability and generalization; however, they usually come 
with non-negligible time and computational cost.

There is also a huge body of detection approaches based 
on deep learning techniques. Ping et al. [18] devise CNN-
based model to extract joint features and fuse temporal char-
acteristics of the tweet information for detecting social bots. 
However, the the computation cost is prohibitively high. 
We make good use of a hashtag to simplify bot detection, 
where a hashtag can effectively represent the joint features of 
tweets and contains temporal information. Wang et al. [63] 
leverage GCN for fraudster detection in the online app 
review system. Li et al. [20] design a GCN-based anti-Spam 
model that integrates both heterogeneous and homogene-
ous graph to capture the local and global context of a com-
ment. Zhang et al. [21] leverage convolutional mechanism 
for learning the embeddings of each single-view attributed 
graph and attention mechanism to fuse different embeddings. 
Yang et al. [64] propose a self-supervised GNN architecture 
search technique that can learn the scope of multi-hop neigh-
borhood and the number of layers. However, these works 
heavily exploit the profile data and textual information of 
social users and rarely consider the hidden behaviors among 
relevant users. Unlike these studies that treat social users as 
independent individuals, our work focuses on mining the 

relational features of social networks through a series of 
meta-structures.

Recently, Aljabri et al. [65] provided a comprehensive 
review of the latest machine learning techniques for bot 
detection and classification across major social media plat-
forms, covering supervised, semi-supervised, and unsuper-
vised methods, as well as discussing challenges and future 
research directions. Yang et al. [40] proposed a framework 
that uses minimal account metadata for efficient and scalable 
real-time analysis of Twitter’s public tweet stream, employ-
ing a rich collection of labeled datasets and a strict validation 
system to ensure model accuracy and generalization. Arin 
et al. [66] proposed a novel deep learning architecture that 
combines three LSTM models and a fully connected layer to 
capture complex social media activity of humans and bots, 
exploring three learning schemes to train each component 
effectively. Ng et al. [51] proposed BotBuster, a social bot 
detector using a mixture of experts approach, where each 
expert analyzes a specific aspect of account information, 
such as the username, and their combined assessments esti-
mate the probability of an account being a bot. In contrast, 
our GNNRI framework integrates diverse data types and 
advanced graph neural network techniques, providing a more 
holistic and accurate detection of social bots by capturing 
complex user interactions and high-order relationships.

Graph neural networks. Graph neural networks 
(GNNs) [67] are proposed to extend existing neural net-
works to fit graph-structured data. GNNs aim to learn a 
representation for any node in a graph, primarily through 
aggregating neighborhood information. The delivered node 
embedding is fed into downstream tasks, such as clustering, 
classification, and linking prediction. Graph convolutional 
network (GCN) [45] generalizes the idea of convolutional 
neural networks (CNNs) to the graph domain. The convo-
lutional mechanism is particularly useful to fuse the spatio-
temporal features and external feature properties, and hence 
significantly critical in time-series prediction such as traffic 
flows prediction [68–72].

Graph attention network (GAT) [46] introduces the clas-
sical attention mechanism to GNNs. Unlike GCN, which 
aggregates all the neighbor nodes equally, GAT identi-
fies more important neighbor nodes by assigning different 
importance scores to them. There are numerous variants of 
GNN; however, none of them can be directly used in hetero-
geneous graphs. In fact, such traditional approaches based 
on homogeneous information graphs merely encompass one 
type of node and edge, making it inefficient to depict vari-
ous objects manifesting in the real world. To deal with this 
deficiency, heterogeneous information networks (HIN) are 
proposed [73]. Due to its ability to express multiple relation-
ships between diverse entities, HIN is widely used in many 
areas including recommendation systems [74, 75], chem-
istry [76, 77], social network mining [37], and intelligent 
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transportation systems [78], etc. Since social networks are 
intrinsically heterogeneous, we combine HIN  with GNN-
based approach to aggregate different information from 
neighbor nodes so that different impacts of neighbor nodes 
can be enforced.

6  Conclusion

We present GNNRI, a novel anomalous user detection 
framework for social networks based on heterogeneous 
information network and graph representation learning. 
In essence, numerical embedding of user features will be 
fed into a classifier to identify potential anomalies. To best 
express and capture relationships among entities, we exploit 
rich semantic meta-structures including both meta-path and 
meta-graph. GNNRI breaks down the inherent connectiv-
ity between users into the calculation of explicit relevance 
and implicit relevance. We leverage relationship-based self-
attention mechanism and following-up GCN-based convo-
lutional mechanism for precisely modelling the explicit and 
implicit user relevance. Experimental results showcase a 
remarkable performance increase for both user classifica-
tion and clustering when compared to the state-of-the-art 
baselines.

In the future, we plan to extend GNNRI  to support 
streaming data so that real-time anomaly detection can be 
enforced, protecting vulnerable users from anomalous and 
harmful behaviors. For example, on social media platforms 
like Twitter, where millions of tweets are posted every min-
ute, GNNRI will handle real-time data inputs such as tweets, 
retweets, likes, and user interactions. The system will use the 
new incoming data to update the dynamic graph and detect 
anomalies as they occur.
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