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Abstract—The Resource Description Framework (RDF) and
SPARQL query language are gaining increasing popularity and
acceptance. The ever-increasing RDF data has reached a billion
scale of triples, resulting in the proliferation of distributed RDF
store systems within the Semantic Web community. However, the
elasticity and performance issues are still far from settled in
face of data volume explosion and workload spike. In addition,
providers face great pressures to provision uninterrupted reliable
storage service whilst reducing the operational costs due to a
variety of system failures. Therefore, how to efficiently realize
system fault tolerance remains an intractable problem. In this pa-
per, we introduce ScalaRDF, a distributed and elastic in-memory
RDF triple store to provision a fault-tolerant and scalable RDF
store and query mechanism. Specifically, we describe a consistent
hashing protocol that optimizes the RDF data placement, data
operations (especially for online RDF triple update operations)
and achieves an autonomously elastic data re-distribution in the
event of cluster node joining or departing, avoiding the holistic
oscillation of data storage. In addition, the data store is able
to realize a rapid and transparent failover through replication
mechanism which stores in-memory data replica in the next hash
hop. The experiments demonstrate that query time and update
time are reduced by 87% and 90 % respectively compared to other
approaches. For an 18G source dataset, the data redistribution
takes at most 60 seconds when system scales out and at most 100
seconds for recovery when nodes undergo crash-stop failures.

Keywords—RDF; distributed system; consistent hashing proto-
col; scalability;

I. INTRODUCTION

The Resource Description Framework (RDF) is proliferat-
ing among a variety of fields, such as science, bioinformatics,
social networks, knowledge graphs, and auto question&answer
services. For instance, semantic-web style ontologies and
knowledge bases with millions of facts from DBpedia [6],
Probase [23], Wikipedia [17] and Science Commons [27] are
now publicly available. Many industrial search engines from
Google, Bing and Yahoo! [14] [29] have presented substantial
supports for RDF to explicitly express the semantics of their
web contents. In reality, RDF is designed to flexibly model the
schema-free information for the Sematic Web [17] [27] and it
forms the data items as triples. All RDF stores can be searched
by using SPARQL query language that is mainly composed of
triple patterns.

The rapid explosion of data volume and dynamicity ur-
gently necessitates an elastic and scalable data provisioning
and storage. The dynamicity stems from either the fluctuation
of data scale and request bursting due to world-wide hot events

or updates of the web contents within Internet environments
[25]. Obviously, the bottleneck of centralized RDF systems
[3] [7] [17] [22] [27] is subject to scalability and reliability
limitations derived from the restricted computational capacities
and storage resources of a single machine. Due to this reason,
many distributed RDF store and query approaches are proposed
to improve the system scalability and accelerate the query
performance.

In reality, the RDF can be inherently expressed as graph
and the graph partition can be accordingly utilized to decide the
placement pattern and storage position. However, the graph-
based systems have to perform a holistic data re-partition
among existing machine nodes for load-balancing on the
occasion of new data storing or machines joining-in. This
process of data re-distribution is extremely time-consuming
considering the massive data amount and the varying condition
in web-scale environments. Query services even have to endure
service downtimes for the upgrading of underlying storage
systems, resulting in significant performance degradation. To
overcome these efficiency issues, in-memory relational data
table schemes can facilitate the reduction of such operational
costs. Besides, dynamic update of RDF data source is sig-
nificantly important since knowledge-base systems [6] [17]
[23] allow for online editing and data sharing among users.
The update frequency will dramatically increase especially
when RDF data source is applied to social network. Since
SPARQL 1.1 standard was proposed in 2013, there are still
huge vacancies remained to comprehensively support those
update operations. For the query performance, Map reduce
paradigm [20] [30] can be intuitively adopted to parallelize
the query tasks. However the iteratively synchronous commu-
nication protocol as well as the disk-based processing hinders
the efficient data query. TriAD [12] and Trinity.RDF [29] thus
employ a communication protocol based on MPI standard, yet
the supplementary machine adding or removing will give rise
to the failed or evicted query job. To this end, the elastic
adjustment of cluster size should be autonomously conducted
to satisfy the data dynamicity and transient surge.

Additionally, reliability is another key concern for data
storage and query system due to increasingly common failures
which are now the norm rather than the exception caused
by the uncertain of system condition, enlarged system scale,
and plethora of software or hardware faults that will activate
[31]. Especially for the in-memory data store, severe faults
such as main memory thrashing, out of memory (OOM) etc.
will degrade the holistic system QoS [10]. How to guarantee
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Fig. 1: An example of RDF graph

the user data and query tasks free from such system failures
remains an intractable challenge.

In this paper, we describe ScalaRDF — a distributed and
scalable RDF triple store based on in-memory key-value store.
We present a novel protocol that extends the consistent hashing
protocol [15] to achieve efficient data placement and elastic
resource scale out/in. This approach allows for low-cost data
store in event of RDF data update and dynamic cluster resource
joining-in or departing. In our system, merely local data re-
distribution will manifest, avoiding the holistic data oscilla-
tion. We also leverage a light-weight log-based mechanism
to perform data operations in a batch manner. Through data
redundancy mechanism, the in-memory data will be backed-
up on the disk of adjacent nodes, minimizing the negative
impacts under failure conditions. The system is implemented
based on Redis [28] and Sesame [8] for data query engine.
The experiments demonstrate that query time and update time
are reduced by 87% and 90 % respectively compared to other
approaches. For an 18G source dataset, the data redistribution
takes at most 60 seconds when system scales out, and at most
100 seconds is needed for recovery when nodes experience
crash-stop failures. In particular, the major contributions of
our work can be summarized as follow:

e  We firstly design a data placement and store protocol
by extending the consistent hashing protocol. The
data can be managed in a distributed in-memory
cluster which can autonomously scale in-and-out with
minimized data re-partition overhead.

e  Our system can efficiently deal with updating opera-
tions of RDF data source and support triple record
insert and delete, allowing for a large number of
online RDF triple updates. The light-weight log-based
mechanism helps the reduction of time-consuming
delete operations.

e We realize a rapid data and service recovery mech-
anism through replication. We store in-memory data
replicas in the next hop node, achieving transparent
and rapid failover for running data queries.

The rest of this paper is organized as follows: Section II
introduces an example and the system overview; Section III
outlines our design philosophies and the main implementation
details; Section IV presents the system evaluation; Section V
discusses the related work; Section VI and VII discusses the
current limitations and the conclusions of this work.

II. MOTIVATED EXAMPLE AND OVERVIEW
A. Motivated Example

To make readers better understand our work, herein we
give a simple example of how RDF system works. Figure 1
shows a RDF graph, describing the entities in a university
(e.g., professors, students, courses and hobbies etc.) and the
relationships among these entities (eg. teach, like). RDF store
manages all the entities in memory or disk. When the user
wants to find a student who likes swimming, and is supervised
by Professorl, the query can be converted into a SPARQL

query:

select ?x where ({
?x type Student .
?x like Swimming .
Professorl teach ?x .}

In particular, <?x type Student>, <?x likes Swimming>
and <Professorl teach ?x> are triple patterns. Each triple
pattern will be matched in the RDF graph. The query result
of the first triple pattern includes T'om and Jim. The second
includes T'om and the third includes T'om. As these three triple
patterns share the same variable z, all intermediate results
will be joined together and generate the final result Tom.
Consequently, the user will get the answer Tom.

B. Architecture Overview

Figure 2 illustrates the system architecture overview. The
architecture of ScalaRDF follows a typical master-slave model.
The master is responsible for parsing RDF files and distributing
triples to different slaves. It also parses SPARQL query and
generates the query plan subsequently. Correspondingly, the
slaves take charge of storing triples and executing query plans.
All the processes of execution and storage are monitored by the
monitor component. When a node enters or leaves the cluster,
Monitor will notify the master and the master will reschedule
and drive the data repartition and placement. In particular,
ScalaRDF mainly consists of the following components:

RDF Parser — It takes the responsibility of parsing RDF
files (represented in TTL/N3 format), which reads files and
extracts triples.

Dictionary — The triples generated by RDF Parser are
originally in string format and each part of the triple (eg.
subject, predicate, or object) is replaced by an ID to reduce
the space occupation. The mapping of <ID, String> is stored
by the dictionary component.

Partitioner — Triples generated by Dictionary will be con-
verted into 6 indices ( i.e., SP_O, PO_S, SO_P, P_SO, O_SP,
S_PO key-value pairs). These 6 indices will be distributed to
slaves to enable the consistent hashing protocol to perform on
the occasion of data insertion.

SPARQL Parser & Query Plan & Optimized Query —
The parser is responsible for preprocessing incoming queries
and the query will be converted into a query plan. The plan
will be separated into parallel compute tasks and executed in
the cluster.

Deletion Logger — Considering the triple delete is very
time-consuming, we utilize a log-based approach to record
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Fig. 2: System architecture
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the operations (such as delete) in disk, staging the data and
flushing to the backup file in a batch manner. The log is
recorded in the master in case of data loss.

Backup & Recovery — Each slave stores indices in
memory and backups them in disk. When a node gets failed,
the backup data will be recovered and repopulated into the
memory without interrupting the query service.

Memory & Disk Storage — Each slave stores the indices
in local memory and backups the replicas in other slave’s disk.

Monitor — Once a node joins-in and departs, it will notify
corresponding nodes to deal with the events and trigger further
recovery and adjustment.

III. DESIGN AND IMPLEMENTATION
A. Index and Data Placement

All RDF stores can be searched by using SPARQL queries
that are composed of triple patterns. A triple pattern resembles
a triple, while S, P and/or O can be variables or literals. To
satisfy all query situations, it needs six indices, namely SP_O,
SO_P, OP_S, S_PO, P_SO O_SP key-value pairs, according
to [18]. As for <28, ?P, 720> pattern, which selects all triples,
we store the source RDF file in master to support this triple
pattern due to its infrequent usage. Table 1 shows the detail
of indices. For example, as to the triple <S1I, PI, OI>, for
SP_O index, key = hash (“1”+SI +P1), value=0O1; for S_PO
index, key= hash (“6”+S1), value=P1+O1. The performance
of Six key-value pair indices will surpass that of Three Table
Index [18] in lookup speed, as the time complexity is O(1).

After six key-value pair indices are generated, these indices
will be distributed to slaves according to the consistent hashing
protocol. For example, for a 232 — 1 hash space, we compute
the hash value of the node IP, which determines the position
of the node in the hash ring. The key of the index decides
the position of the triple. The index will be stored in the first
node in clockwise, whose hash value is no less than its key. The

TABLE I: Six key-value pair indices

prefix  index type key value triple pattern

1 SP_O SP O <S, P, 70>
2 PO_S PO S <78, P, 0>
3 SO_P SO P <S, 7P, 0>
4 P_SO P SO <7S, P, 20>
5 O_SP (6] SP <78, 7P, 0>
6 S_PO N PO <S, 7P, 70>
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Fig. 3: RDF data storing and placement

index is stored in memory to improve the query performance.
As discussed in [12], a memory storage cluster is sufficient
to store the current biggest RDF dataset. After the dictionary
component converts the string into ID, a source RDF file will
be compressed when stored in memory. Redis is a key-value
in-memory database and provides fast reading and writing
capabilities, thus we use it as the memory storage.

In case of nodes getting failed, the triples are backed-up
in disk. According to the consistent hashing protocol, when
a node gets failed, the data stored in it should be stored in
the next-hop node (next node in clockwise in hash ring). In
this paper, we backup the in-memory data in the next-hop
node’s disk (we call this Next Hop Backup Rule). When this
node gets failed, the next-hop node loads the data into memory
to recover the system. This method will reduce the network
communication and improve recovery performance. Figure 3
describes the storing organization.

B. Elastic Resizing of Compute Cluster

Users will also insert and update triples into the clus-
ter using SPARQL query language continuously and the in-
memory storage resource will be consumed. Besides, when the
cluster becomes overloaded due to millions of query requests
or workload surges [25], new nodes need to be automatically
added into the cluster to timely supplement more computing
resource. To minimize the negative impact onto the running
tasks or queries, we design an optimized consistent hashing
protocol to achieve dynamic and online new nodes adding
without any downtime to services.

Each time when a node joins-in or departs the cluster, there
are two steps to follow: one is to ensure the in-memory data
consistency according to our consistent hashing protocol, and
the other is to maintain the consistency among data replicas
according to the Next Hop Backup Rule. All of them are to
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perform data re-distribution. Obviously, only the data stored
within a specific range of nodes will be influenced, thereby
minimizing the data re-distribution operational costs. Figure 4
demonstrates an example to show the detailed procedure:

1)  New node backups previous hop node’s in-memory
data: For example, if Node D is added, the backed-up
data of Node C has to be migrated from its previous
Node A to Node D.

2)  Next hop node deletes the duplicated in-memory data:
After Node D is added, Data_D between Node C
and Node D should be redistributed from its original
repository Node A to Node D according to the
decision made by the consistent hashing protocol.
Node A should delete Data_D to avoid duplication
(detailed in Algorithm 1). Subsequently, Node A
checks the Deletion Log File and finally removes the
corresponding triples out of its memory.

3)  New node loads data into memory: According to the
protocol, files between Node A and C are originally
stored within the memory of Node A. After Node D
is added, the data should be split and a fraction of
the data will be re-distributed onto Node D. Similarly,
the stale replicas on Node A should be removed to
follow the consistency rule.

In practice, these steps can be executed in parallel. Once the
third step finishes, the query service becomes available again
and the system will recover after all steps completion. The
Monitor component will monitor the cluster status in a real-
time manner and notify the master with regard to the node
adding event, and the master coordinates with corresponding
slaves to recover the system.

C. Dynamic Updating Operations

Our system is implemented based on Sesame [8], a well-
known framework for processing RDF data. The entire query
processing workflow is outlined in Figure 5. The SPARQL
parser accepts a SPARQL query as input and generates corre-
sponding query model, which consists of triple patterns and
join operations. The execution order of triple patterns will
affect query performance significantly. The query optimizer
uses cardinality generated in the step of data loading for
query optimization and generates an optimized query model
afterward. To accelerate the triple pattern matching, we execute

Algorithm 1 Delete duplicated data in memory

Define:
backward_key < the hash key of the adding node’s previous
hop node in hash ring in clockwise
forward_key <— the hash key of the adding node

1: keys = get all keys in memory
2: for key:keys do
3: if forward_key < backward_key then

4 if backward_key < key then

5 delete key //delete this key-value pair

6 else if forward_key >= key then

7: delete key //delete this key-value pair

8 end if

9: else

10: if key <= forward_key && key > backward_key
then

11: delete key //delete this key-value pair

12: end if

13: end if

14: end for

the matching operation in parallel. Finally the query result will
be returned to the user.

We extend SPARQL parser to support insert and delete
operations. An example of SPARQL insert language is like:

INSERT DATA {studentl type student. studentl
like swimming.}

SPARQL parser decomposes it into two triples <studentl type
student> and <studentl like swimming>, and transfers these
triples to all slaves. In addition, slaves extract each triple,
create indices for them, store the index belonging to itself
according to the consistent hashing protocol, and backup the
data belonging to the previous hop node in the hash ring.
Before storing triples in memory, we will estimate if the triples
is existed and append the non-repetitive triples at the end of
the backup file.

Similarly, a SPARQL delete language is like:

DELETE DATA {studentl type student. studentl
like swimming.}

SPARQL parser decomposes it into two triples <studentl type
student> and <studentl like swimming>, creates six indices
for each of them, stores them directly into local log file (called
the Deletion Log File), and then deletes them from the in-
memory cluster. Deleting a triple is a very time-consuming
operation because it has to traverse the backup file, find
them and delete them. Despite the delete operations are low-
frequent, a huge number of few triples are involved to store
in backup file. To overcome the overhead of traversing backup
file, we are inspired by the design of journaling file system. The
master will store the indices locally. When the log file is filled
or the system recovers from scaling in/out, the log file will
be flushed to the backup files in slaves immediately. All the
query requests during the update operation will be cached in a
queue. Once the update operation finishes, the query requests
will be reprocessed.



Optimized
SPARQL SPARQL Query Q_ue!'y P ue Parallel Query
del optimizer query —> . it
query parser mo model Execution resu

Fig. 5: SPARQL query processing workflow

Algorithm 2 Backup in-memory data

1: keys = get all keys in memory
2: for key:keys do
3 for value:Redis.smember(key) do
4: buffer.append(key);
5: end for
6: end for

7: open backup file

8: write buffer to backup file
9: close backup file

D. System Data Recovery

The crash-stop of a server stemmed from software crash or
late-timing failure (such as timing-out server with interrupted
heartbeats) can be regarded as an equivalence of the cluster
tailing-off. Another equivalent reason is the over-provisioned
resource that can be removed for the energy-efficiency. In this
paper, we will deal with these two cases in the same way:
recovery the in-memory as well as the backup data. Figure 6
shows an example.

1) In memory data recovery: Before Node D crashed,
the replica of File_D is stored in the disk of Node
A. When Node D leaves, Node A loads File_D into
memory. Node A then moves File_D to Node B,
and Node B merges File_D and File_A together to
keep the backup data consistent. Finally, Node A will
check Deletion Log File and delete the corresponding
triples out of its memory.

2)  Backup data recovery: When Node D leaves, File_C
stored in Node D will experience data loss. At this
time, Node A will substitute Node D to backup the
data in memory of Node C (detailed in Algorithm 2).

When writing this paper, we merely consider the single
failure scenario in the proposed mechanism. The correlated
and simultaneous failure tolerance and recovery techniques are
currently in progress and we briefly discuss them in Section
VI

IV. EXPERIMENTS AND EVALUATION
A. Experiment Setup

We conduct the experiments on a local cluster with 13
computing nodes that connected with 1Gb/s Ethernet. Each
node is with two 1200 MHz processors, 252GB memory,
423GB hard disk and runs Debian 7.4, Apache Maven 3.2.1,
Redis 3.0.7, Zookeeper 3.4.6, and Java 1.6.0_27. One node is
taken as the central master while other nodes as slaves. LUBM
[2] is used as the benchmark for our experimentation and it
uses university as basic unit with roughly 23MB size. Seven
queries (shown in Appendix) are designed to assess the query
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performance [2] [12]. We use the following metrics to illustrate
ScalaRDF outperforms others:

o Query Performance — It is measured by the time from
inputting a SPARQL query to outputting the result.

e Data Redistribution (Recovery) Performance -
Some data will be re-distributed after cluster re-sizes
or system failovers. We therefore define two metrics:
query recovery time and system recovery time. Query
recovery time is measured by the time from a node
being added or getting failed to the query service be-
comes completely re-available. System recovery time
is measured by the query recovery time plus the
additional time consumption to achieve eventual data
consistency.

e Update Performance — Insert performance is mea-
sured by the time of storing triples into memory and
appending triples into backup files. Correspondingly
the delete performance is measured by the time of
removing triples out of memory and generating logs
into Deletion Log File.

We mainly compare the query performance of ScalaRDF
with Rainbow [11]. Rainbow is a distributed and hierarchical
RDF triple store with dynamic scalability and it uses HBase
Cluster as the persistent storage, which creates Three Table
Index [18] to support any type of triple patterns. Additionally,
Rainbow takes Redis cluster as the second storage, which
creates SP_O and PO_S indices to support frequently-issued
triple patterns. When a Redis node gets failed, it automatically
switches to HBase for querying. As Rainbow is not open
source, we implement it and make a comparison in terms
of the query performance. We do not compare the update
performance due to the nonsupport by Rainbow. Moreover,
we compare the operation performance of ScalaRDF with a
typical centralized RDF system gStore [32].



2500 ; *a1 #q2 +q3 ~q4 ~q5 +q6 =q7 180 7 <12 +q3 ~q4 ~q5 ~q6 =q7
160 { 5 X
2000 140
= #120
21500 Emo
£ 1000 F gg
500 1) A —
20 { =% L ——— >
0 0 e

10 40 80 120 200 3 4 5 6 7 8 9 10 11 12
LUBM dataset(universities) The number of nodes

(a) Varying dataset (b) Varying nodes

Fig. 7: ScalaRDF query performance

1400 1 4 scalarDF 3000 1

1200 - Rainbow-IM
# Rainbow-HBase

ScalaRDF
Rainbow-IM
@ Rainbow-HBase

2500 -

2000 -

1500 -

Time(s)

600 k
1000 -

200 - I I 500 1
0 .w z % = I 0 4

gl 92 q3 q4 q5 q6 q7
Queries

(a) LUBM-10 result

ql 92 q3 g4 g5 q6 q7
Queries

(b) LUBM-40 result

Fig. 8: Query performance comparison

B. Query Performance

Figure 7(a) shows that the query time of ScalaRDF increas-
es with the increment of dataset. This is because the query
result size increases linearly when LUBM dataset grows. It
is also observable from Figure 7(b) that ScalaRDF achieves
stable performance regardless of the fluctuation of machine
number due to the adopted centralized architecture of the query
engine. To illustrate the performance improvement, we use
LUBM-10 and LUBM-40 as exemplified test cases and make
comparisons with other approaches: a) Rainbow-HBase which
takes HBase as the storage layer without Redis cluster, and b)
Rainbow-IM which leverages HBase as its persistent storage
layer and Redis cluster as the cache layer.

As depicted in Figure 8, the performance of ScalaRDF and
Rainbow-IM is approximately the same when performing ql,
g2, q3, g5 queries, as those queries merely contain SP_O,
PO_S triple patterns and the corresponding indices are all
stored in Redis, indicating no significant difference. Neverthe-
less, ScalaRDF significantly reduces the query time by roughly
83% compared to Rainbow-IM in q4, q6, q7 queries. This
phenomenon can be attributed to SP_O, PO_S triple patterns
within the queries that have to read from HBase and Redis.
Compared with Rainbow-HBase, ScalaRDF can constantly
decrease the query time by approximately 87% in all cases
due to the improvement of memory read speed.

C. Recovery Performance

As illustrated in Figure 9, the recovery time grows lin-
early with the dataset increment. In LUBM-800 benchmark
(roughly 18GB size), the average time of query recovery is
approximately 60 seconds and the corresponding time used to
repopulate system states and reach eventual data consistency
is at most 90 seconds in the event of new node adding. In
contrast, to tackle server failover or cluster size shrinking, the
query recovery time and system recovery time on average are
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roughly 100 seconds and 250 seconds respectively. Such data
re-distribution can be still completed at minutes-level, thereby
being soundly accepted for most RDF applications.

D. Operation Performance

Figure 10(a) illustrates the average time of insert decreases
linearly with the increment of nodes. The insert operation is
pre-stored in the disk of every slave. Each slave only needs
to store triples assigned to allocate on itself according to the
consistent hashing protocol, and needs to snapshot the data
pertaining to the previous hop node in hash ring. When the
total data to insert is fixed, the data partition that the node
should store will decrease with the increment of node number,
resulting in the decreased insert time. We also evaluate the
impact of varying dataset on the insert performance. Similar to
the query and recover effects, the increased data size will give
rise to an augmented makespan (See Figure 10(b)). Due to the
support of only insert operations in gStore, we only evaluate
the insert performance with ScalaRDF. As demonstrated in
Figure 11, the insert time of our approach can be significantly
reduced by 90% compared to gStore. The reason for this
phenomenon is that gStore has to traverse the whole data to
find whether the triple exists. Instead, Redis implements O(1)
time complexity to determine the existence of a specific triple.

Figure 12 shows the delete performance result. The time
will also grow linearly with the increment of dataset. In reality,
the process of triples storing and file logging is controlled
by the central master, therefore the varying nodes will have
little impact on the result. According to our system design, the
delete operations can be delay-executed according to the logs
that record the triples metadata is about to delete, rather than
directly traversing the backup file and subsequently deleting
. In this manner, we can observe that the delete operation
of a LUBM-10 benchmark (around 226M) merely takes 100
seconds. The minutes-level operation cost would be acceptable
in most scenarios.
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V. RELATED WORK

Tremendous efforts have been devoted to building high
performance RDF management systems. We briefly introduce
some of the most related work.

Relational and Native Graph Approaches — Most of
the existing RDF stores, both centralized and distributed, use
a relational model to manage RDF data. For example, SW-
store [4], vertically partitions the RDF triples into multiple
property tables, while Hexastore [22] and Dream [13] employ
index-based solutions by storing triples directly in B+ trees. On
the other hand, a number of approaches are proposed to store
RDF triples in native graph format. These approaches employ
adjacent lists as a basic structure for storing and processing
RDF data. By using sophisticated indexes, centralized RDF
graph engines such as gStore [32], BitMat [5] and TripleBit
[27] prune many triples before invoking relational joins to
finally generate the results of a SPARQL query. Trinity.RDF
[29] is a typical distributed RDF graph engine by using
graph exploration approach to fast evaluate SPARQL queries.
Although Trinity.RDF supports many general-purposed graph-
based operations (such as random walk, reachability, com-
munity discovery), it does not allow for the integration of
parallel join techniques for non-selective queries. In this paper,
ScalaRDF employs a relational model storage.

RDF systems based on native graph approaches usually use
graph partitioning techniques to optimize the query evaluation.
Apart from centralized RDF system such as gStore [32],
BitMat [5] and TripleBit [27], [14] also follows a graph
partitioning approach over a cluster, where triples are assigned
to different nodes using the METIS [16] graph partitioner.

Graph partitioning allows triples that are close to each other
in the RDF data graph to be stored at the same machine,
thus overcoming the randomness issued by the purely hashing-
based partitioning schemes used in system such as SHARD
[19]. However, the bottleneck of the graph partition store lies
in the non-negligible repartition overhead when new batches
of data or machines added.

Centralized and Distributed RDF System — Most central-
ized systems [4] [17] [22] utilize relational models to manage
RDF data, while other systems [5] [27] [32] maintain RDF data
in native graph format. These centralized RDF systems use so-
phisticated indexes to improve the query performance. To over-
come the limited capacity of computing and storing resource
of a standalone machine, many distributed RDF systems have
been proposed. Based on the MapReduce paradigm, distributed
RDF systems such as H-RDF-3X [14] and SHARD [19] hori-
zontally partition an RDF dataset over a cluster of computing
nodes and employ Hadoop as a communication layer for
queries. However, MapReduce frameworks are known to incur
a non-negligible overhead due to their iterative, synchronous
communication protocols and disk-based computing schema.
To overcome these shortcomings, Trinity.RDF takes MPI [21]
as the communication protocol. It stores RDF triples in native
graph forms and replaces joins with graph explorations. TriAD
presents the asynchronous inter-node communication using
MPI and parallel/distributed join execution over six in-memory
indices. SparkRDF [9] uses Spark to implement SPARQL
query. All the intermediate results are modeled as Resilient
Discreted Subgraph to support fast iterative join operations.
Although these distributed RDF system achieve excellent
query performance, they do not have specific mechanism to
support system scaling in/out and effective fault tolerance.
Rainbow [11] is the first research work to solve this problem.
It uses HBase Cluster as the persistent storage and takes Redis
cluster as the second storage. It depends on HBase to achieve
persistent storage’s fault tolerance and scaling in/out, and
employs consistent hashing protocol to ensure Redis cluster’s
dynamically scalability.

VI. DISCUSSION

The work in this paper primarily focuses on provisioning
a reliable and elastic RDF storage system, but there are still
some limitations that need further improvement:

Centralized query engine — Although in-memory storage
schema is able to speedup the query compared to the disk-
based storing schema, the query can be further improved from
current centralized design. In reality, all query requests are
handled through the centralized master while the slaves in the
cluster only acts as back-end RDF storages. This design will
increase the possibility of single-point failure and become the
bottleneck of request handling. the implementation of fully
distributed engine is in progress.

Crash-stop failure model — We extend the consistent
hashing protocol in this paper to leverage the data replication
to handle single-point failure of nodes. The data on the
failed server can be repopulated from the snapshot that stored
in adjacent node in the event of server crash-stop failure.
However, current ScalaRDF cannot handle simultaneous and
correlated failure scenario where a combinations of failures
will manifest. To this end, we plan to transplant our previous



works [24] [26] into this RDF store to handle more general
and sophisticated failures including both crash-stop failure and
late-timing failure etc. We are also developing a probability
model to improve the placement of replicas according to the
failure probability of each node in real-system.

Imbalanced data distribution — As an initial system
implementation, we merely optimized the consistent hashing
protocol without applying virtual nodes to reduce costs. All
nodes in the hash ring are physical machines, resulting in the
imbalanced data distribution. Ketama hash algorithm [1] can
be referred as a standard implementation of consistent hashing
protocol to make triple store balanced via employing virtual
node. We plan to extend our work on the basis of the algorithm
in the future.

VII. CONCLUSIONS

In this paper, we introduce ScalaRDF, a distributed, elastic
and scalable in-memory RDF triple store. A novel consistent
hashing protocol is proposed to make RDF data placement
decision, take responsibility for data operations for editing web
contents and allow for an autonomous data re-distribution in
the event of cluster node joining or departing. In addition, the
data store is able to rapidly recover based on the replicated data
that backed-up in the next hash hop to realize a user transparent
failover. The experiments demonstrate that the query time
and update time are reduced by 87% and 90 % respectively
compared to other approaches. For an 18G source dataset,
the data redistribution takes at most 60 seconds when system
scales out, and at most 100 seconds is needed for recovery
when nodes experience crash-stop failures.
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APPENDIX

LUBM queries

PREFIX rdf: http://www.w3.0rg/1999/02/22-rdf-
syntax-ns\#

PREFIX ub: http://www.lehigh.edu/ zhp2
/2004/0401/univ—-bench.owl\#

gl: select ?x where{ ?x rdf:type ub:
GraduateStudent . ?x ub:takesCourse http://
www.Department(0.University0.edu/
GraduateCourse(}

g2: select ?x where{ ?x rdf:type ub:
Publication . ?x ub:publicationAuthor http:
//www.Department(.University0.edu/
AssistantProfessor(0}

g3: select ?x where{ ?x rdf:type ub:
UndergraduateStudent}

g4: select ?x ?y ?z where{ ?x ub:memberOf ?z
?z ub:subOrganizationOf ?y . ?x ub:
underGraduateDegreeFrom ?y }

g5: select ?x where{ ?x rdf:type ub:
FullProfessor .}

g6: select ?x ?y where{ ?y rdf:type ub:
Department . ?x ub:worksFor ?y . ?x rdf:
type ub:FullProfessor .}

q7: select ?x ?y ?z where{ ?y ub:teachOf 2z
?y rdf:type ub:FullProfessor . ?z rdf:type
ub:Course . ?x ub:advisor ?y . ?x rdf:type
ub:UndergraduateStudent . ?x ub:
takesCourse ?z .}



