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Abstract—Virtualization is one of the most fascinating tech-
niques because it can facilitate the infrastructure management
and provide isolated execution for running workloads. Despite
the benefits gained from virtualization and resource sharing,
improved resource utilization is still far from settled due to
the dynamic resource requirements and the widely-used over-
provision strategy for guaranteed QoS. Additionally, with the
emerging demands for big data analytic, how to effectively
manage hybrid workloads such as traditional batch task and
long-running virtual machine (VM) service needs to be dealt
with. In this paper, we propose a system to combine long-
running VM service with typical batch workload like MapReduce.
The objectives are to improve the holistic cluster utilization
through dynamic resource adjustment mechanism for VM with-
out violating other batch workload executions. Furthermore, VM
migration is utilized to ensure high availability and avoid potential
performance degradation. The experimental results reveal that
the dynamically allocated memory is close to the real usage with
only 10% estimation margin, and the performance impact on
VM and MapReduce jobs are both within 1%. Additionally, at
most 50% increment of resource utilization could be achieved.
We believe that these findings are in the right direction to solving
workload consolidation issues in hybrid computing environments.

Keywords—Hybrid Cloud Environment; VM Resource Dynamic
Allocation; VM Migration; MapReduce

I. INTRODUCTION

We are experiencing a Big Data era. A study by Harvard
Business Review in 2012 shows that 2.5 Exabyte of data is
generated everyday and the speed of data generation doubles
every 40 months [16]. To satisfy the increasing demands
of data analysis and processing, several systems from both
academia and industry are proposed to perform the compute-
intensive tasks among distributed nodes such as Mesos [14],
Yarn [23], Fuxi [26] etc. Meanwhile, virtualization has been
evolved into one of most important techniques in cloud
computing in recent years. By leveraging virtualization, the
data center providers could not only reduce the maintenance
cost of the infrastructure, but also increase the elasticity
and energy-efficiency through on-demand resource allocation
and workload consolidations. Multi-tenant customers are thus
capable of sharing the underlying resources and running a
variety of transactional or long-running services such as web
service, virtual desktop etc. in their isolated environment.
All these diverse workloads constitutes elements within the
hybrid cloud environment. However, service providers still
need to address a number of key challenges, such as striking
a balance between the application performance and the cluster

resource utilization. In fact, the recent workload study in cloud
datacenter illustrates that the low utilization is a very normal
phenomenon. As illustrated in [19], only 53% memory and at
most 40% CPU are utilized respectively on average.

One solution for utilization improvement is to run sepa-
rate frameworks on the same cluster, intuitively sharing the
same physical resources. At certain point of time, different
workloads (e.g., memory-intensive task and CPU-intensive
task) might utilize different resources complementarily. Nev-
ertheless, individual frameworks lack of overall cluster-level
resource viewpoints, resulting in non-negligible overhead in
data exchanges and component communications. To further
improve the cluster utilization, combinations of different types
of workloads are taken into account in an uniformed frame-
work. Due to the diverse resource requirements of the hetero-
geneous workloads, the complicity of resource management
and scheduling would dramatically increase with inefficient
request handling. Both Yarn and Fuxi adopt similar archi-
tecture to support different computation paradigms such as
MapReduce [11], DAG paradigm [1], streaming [6], Spark
[25] etc. However, they have not yet considered how to merge
virtual machine (VM) workload within the current resource
management system. Unlike those tasks, VM is long-running
service and tends to be infrequently created and moved once
being initially placed to a specific node. In fact, VM would
be migrated only when the system failure and node overload
are detected due to the substantial costs with many factors
considered [15] during the migration.

In cloud environment, VMs are usually configured during
the initialization with the amount of resource (CPU, memory)
specified [17]. Resource over-provision is one of the solutions
to lower the SLA violation from users point of view but usually
leads to poor infrastructure utilization. In contrast, under-
provision could lead to potential performance degradation
despite the increased utilization. Additionally, the pre-defined
size of VMs and vertical application elasticity would also
result in the decrement of resource utilization [22]. Therefore,
there are a great number of opportunities for the providers
to dynamically adjust the actual resource allocated whilst
guaranteeing the QoS of applications inside the VM.

In this paper, we propose a workload consolidation ap-
proach which combines traditional batch processing tasks (e.g,
MapReduce) with online long-running VM workload in a
hybrid computing environment. We design an elastic resource
allocation mechanism to timely adjust the amount of the over-
provision according to the real application resource usage with



little negative impact on other co-allocated computing tasks.
Our system is constructed based on Yarn and KVM, and the
experimental results reveal that the allocated memory with the
dynamic allocation approach is close to the real usage with
only 10% estimation margin. Additionally, the performance
impact on VM and MapReduce jobs performance are both
within 1% while achieving at most 50% utilization increase.
In particular, the major contributions of our work can be
summarized as follows:

e A new protocol that efficiently handles user’s multiple
VM placement requests to mitigate the unbalanced
resource aggregation.

e A sliding window based VM resource adjustment
mechanism in order to improve the holistic cluster
utilization.

e A VM-migration based approach that enables the high
availability and performance for the VM application.

The remaining sections are structured as follows: Section IT
presents the background and basic workflow while Section III
describes the proposed approaches and core design philosophy;
Section IV shows the experimental results followed by the
related work in Section V; Finally, we conclude our paper in
Section VI with the future work discussed.

II. SYSTEM OVERVIEW
A. Background

To satisfy the increasing demands of diverse data pro-
cessing framework, two-level scheduling architecture (such as
Yarn, Fuxi) is widely adopted to de-couple the individual pro-
gramming models from the resource management. Specifically,
Resource Manager (RM) is the central resource negotiator and
responses to different application’s resource requests whilst
granting available resources to the Application Master (AM).
AM coordinates the logical plan for each computation tasks
and requests resources from the RM. Upon receiving the
granted resource, AM would interact with the Node Manager
(NM), a special system worker daemon to launch, monitor
or kill the compute task within an execution container. The
container could be regarded as a logical bundle of resources
bound to a particular node and named as resource release.

In hybrid cloud environments, the resource management is
becoming more complicated with the combinations of different
heterogenous workloads or frameworks. On a shared cluster,
the compute-intensive job (e.g., MapReduce), web service,
long-running VM workloads etc. are co-allocated. Based on the
core philosophy in Yarn, we design and implement a protocol
to support both MapReduce application and VM placement.

B. Basic Workflow

In our system, we inherit some basic concepts from Yarn.
Each master (e.g., MR Master and VM master) is responsible
for application-specific execution logic and the corresponding
resource request. The workflow in Figure 1 illustrates the
lifecycle of a job and how system components cooperate
with each other. Firstly, VM requests are submitted to the
RM. Once available resources are detected in RM scheduler,
RM will allocate a container for the VM Master (step 1-3).

Resource
Manager

Workload of MapReduce

Workload of Virtual machine ————

Fig. 1: The workflow of hybrid computing environment

Afterwards, the VM launching request would be handled by
VM master and a new protocol for VM placement is adopted
with a global cluster resource view considered. VM Master
then delivers the resource request to the RM (step 4). Each
request contains resource demands and the locality preference
generated by the protocol. RM will attempt to satisfy the
requests, and VM Master will send a concrete work plan to the
corresponding NM (step 5-6) to launch a VM upon receiving
assigned resources. Thereafter, NM starts the VM in a resource
container, which is limited and isolated by Linux Cgroups [2].
The VM reports its running state to VM Master via heartbeat
(step 7-8) periodically.

In addition, we utilize a dynamic resource allocation mech-
anism to adjust the assigned resource amount according to
the collected profiling information produced by NMs. Further-
more, an automated migration might be incurred by VM master
to guarantee the high availability and performance of running
workloads. When the migration terminates, there will be a free
container and the VM Master will send to NM a decreased
container plan, to subsequently kill the container and reclaim
the corresponding resources to RM.

III. DESIGN AND SOLUTIONS

In order to fulfill the scenario mentioned above, the system
architecture is proposed as demonstrated in Figure 2. In RM,
the node tracker traces the running status, and RM maintains a
waiting queue for job requests and handles resource requests.
Based on the Application Master service, VM Master controls
VMs with a placement protocol and takes responsibility for the
VM routine execution and migration. In addition, a dynamic
allocator in each node takes charge of dynamic allocation and
VM migration. More details will be discussed in the following
subsections.

A. A New Protocol for VM Placement

In MR Master, data locality and load balance are usually
taken into account during scheduling. For example, the map
task in MapReduce would be assigned to the node that is close
to the data block. However, interactive latency is the dominant
factor considered by VM service, indicating that the VM job
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Fig. 2: System Architecture

should be placed on a node with as sufficient resources as
possible. Our protocol is thus designed for the VM placement.

Firstly, VM Master delivers a FulllnfoRequest to RM
to obtain the overall resource information when the master
process is created and the priority segment is also carried
within the message. Meanwhile, RM maintains an unique
request waiting queue for the multiple requests, following the
first come and first service (FCFES) rule. Besides, preemption
mechanism is introduced so that applications with the lowest
priority could be preempted to make space for higher ones. RM
aggregates a global resource view collected from all NMs, and
it composes the required information into protobuf [5] format
to respond to corresponding VM Master once the request is
satisfied.

Secondly, informed the available resources of each node,
VM Master determines which node the job should be assigned
to by using an extended load-balanced algorithm (See Algo-
rithm 1). The overall resource profile is traversed firstly and
the node with the maximum available resources is sorted out.
If multiple nodes are found, other workloads running on each
node should be checked and the node with the minimal number
of MR jobs would be finally selected. We also implement a
plugin interface to support multiple VM placement strategies
such as [13], [18] etc.

Furthermore, VM Master encapsulates resources demands
(including the initial resource need of the VM, the placement
instruction generated by the heuristic algorithm and the priority
of the request) into a ResourceRequest which will be delivered
to RM asking for execution containers.

All these processes constitute an atomic operation due
to the resource contention and interference from co-allocated
VMs [24]. Therefore, the priority queue should be locked
when FulllnfoRequest is being handled and be unlocked after
a VM manages to be launched in a container. Obviously,
the locking mechanism limit the concurrency of VM requests
and the system scalability. This inspires us to conduct further
optimizations.

Figure 3 could be demonstrated as an example. If a user
submits three VM requests, the consumed time of sequential
VM placements is 1.8 times more than merged request. The
performance degradation becomes even more serious with the

Algorithm 1 VM placement pseudo-code

NodeResourceList <— Obtain the overall resource profile
VMPlacementList < null, MaxResource <+ (O
for each NodeResource in NodeResourceList do
if NodeResource > MaxResource then
MaxResource < NodeResource
clear VMPlacementList
VMPlacementList < NodeResource
else if NodeResource = MaxResource then
add NodeResource to VMPlacementList
end if
end for
if |VMPlacementList| = 1 then
place VM on this node
14: else
15: traverse VMPlacementList, find the node with the least
MR jobs executing on
16: place VM on this node.
17: end if
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Fig. 3: Merge of VM requests

increment of VM request number. Other VMs have to wait
and be blocked until the locking is removed by the VM which
obtained the lock. In fact, due to the homogeneity of the same
user requirement, both the full information synchronization
(step 1) and the acquisition/release of the shared lock (step
2 and 4) could be merged together. More specifically, the pre-
fetched overall resource information resides into local memory
and the queue is locked. Afterward, the proposed placement
will be conducted until all VMs generate their optimal location
preferences. During these periods, the global resource profile
is accordingly modified when each round finishes. All VMs’
requests are combined into a single message after releasing
the lock, resulting in significant reduction of communication
overheads.

B. Dynamic Resource Allocation for VM

The long-term resources occupancy of VM service and
the constant resource leases in a node would all lead to
low cluster resource utilization. Thus, we design a dynamic
resource allocation mechanism for VM to handle with this
issue.

After RM allocates the lease on a particular node, VM



Algorithm 2 Sliding Window Based Dynamic Allocation

Define:
currentAllocatedResource < currently isolated resource for
VM job
availableResource < the available resource of the node
retryTimes < pre-defined size of sliding window
left < the left of sliding window
assignedResource < the value of resource to be isolated
time-slot I’
Monitor the resource occupation of VM job M(I")

1: while I" do

2: if the elements number in the window < retryTimes
then

3 add M(T") to sliding window

4 continue

5 else

6: if all element values in window are same then

7: assignedResource < the window value

8 move left to window end

9 else

10: left < left + 1

11: continue

12: end if

13: end if

14: if assignedResource < currentAllocatedResource OR
availableResource is sufficient then

15: currentAllocatedResource < assignedResource

16: modify AvailableResource

17: inform RM

18: else

19: do Migration

20: end if

21: end while

Master will launch a VM based on this container (a resource
lease). A daemon running on this node monitors the real-
time resource usage of the VM through Linux proc, which
is a pseudo file system providing an interface to get access
to the runtime system and process information. Based on
this information, a dynamic resource allocation algorithm is
implemented to determine the new size of the container. Since
the amount of the isolated resource is computed with over-
provision, there are substantial spaces to shrink the amount of
the binding resource. The frequency of the lease adjustment
is another intricate challenge. Frequent re-allocation would
aggravate the burden of resource scheduler and increase the
network load as well when exchanging too much information
with RM. However, long period modulation, on the other
hand, would negatively impact the allocation effect and fail
to improve the server utilization.

To strike the balance between them, we sacrifice some
computation accuracy by quantifying the allocated resource
amount to each VM into an integer number. We use a sliding
window based mechanism to cope with the transient spike,
avoiding unnecessarily repetitive re-allocations. If the assigned
resource changes and remains stable in the next time period
of the window size, there is a potential trend for the new
resource re-allocation. In practice, we use the retryTimes
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Fig. 4: The process of migration

as the pre-defined size of the sliding window and once all
sequential values inside the window approximately keep the
same, the currently assigned resource could be substituted by
the new sliding window value. The core idea in Algorithm 2
is presented .

There will be three different types of situation in terms
of the dynamic re-allocation. If the new resource size is
less than the current allocated resource, the assigned amount
will be cut down. Otherwise, if the new resource exceeds
the current allocation while the node has sufficient resource
to offer, the allocation will be subsequently conducted. If
the lease expansion overweighs the physical nodes capability,
some workloads migration will be carried out to make enough
spaces for execution.

If the current node is able to afford the resource scaling
up or down, the dynamic allocation approach would generate
a new resource assignment plan directly. It firstly notifies the
NM to re-isolate the container, followed by communicating
with RM to update the global resource view using the newly
assigned amount. In the protocol, new message segment is
added with the original heartbeat between NM and RM, which
is typically used to report the node states. Upon getting the
heartbeat from NM, RM will initially check the new segment.
If the segment is not empty, RM extracts the package and
updates the global resource profile.

C. Migration

A VM migration daemon is running along with the NM
and it makes preparation for the migration, sends/receives
instructions and performs migration as well. To fulfill live
migration, the resource lease on the destination node must
be allocated beforehand to reduce the service downtime. VM
migration controller (VMMC) in VM Master is responsible for
this type of resource allocation.

The whole process is illustrated in Figure 4. Once the
daemon in source node captures the migration instruction,
it generates a MigrationRequest with needed resources in
destination node and sends the request to VM Master (step
1). When receiving the MigrationRequest, VMMC of the
VM master will ask the RM for a particular node using our
proposed VM placement protocol. RM allocates the resource,



creates the lease on the specific node and responds to the
VM Master with the appointed assignment (step 2-3). Then
VM Master will inform the source node about the destination
address. Consequently, the VMMC in the source node gives the
migration command to move the VM to the destination node
(step 4-5). After receiving MigrationFinish signal, VMMC
from the source will release the used resources which will
be recruited by RM later (step 6-7).

IV. EXPERIMENTS AND EVALUATION

In this section, we discuss and explain the effectiveness of
the proposed dynamic resource allocating for VM in hybrid
computing environment and then evaluate the efficiency in
improving the cluster resource utilization.

Before explaining the experiments, we will introduce the
benchmarks consisting of transactional workloads which all
run inside the VM:

Tpc-c [7]: an on-line transaction processing benchmark,
which simulates a complete computing environment where a
large number of users execute transactions against a specific
database. These transactions include: entering and delivering
orders, recording payments, checking the status of orders, and
monitoring the level of stock at the warehouses.

Wikipedia [8]: also an online transaction processing
benchmark, which executes adding and removing watch list,
updating page, getting page anonymous or authenticated.
Wikipedia emphasizes more on memory data operations.

Memcached [3] [4]: a general-purpose memory caching
system, which is often used to speed up dynamic database-
driven websites by caching data and objects in RAM or used
to test memory latency.

Moreover, we use WordCount for MR workload, and the
Job Completion Time (JCT) is calculated to measure the
impact on the job performance.

A. Experimental Environment

We use 5 machines to constitute a distributed computing
environment in which MR jobs and VMs could be co-executed.
Our system is extended from current Yarn 2.2.0 and the VM
service is based on QEMU-KVM (kvm-84). Each machine
consists of Intel(R) Core(TM) i7 860@2.80GHz CPU, 4GB
memory and 320GB disk.

B. Experimental Results

1) Dynamic Resource Allocation Effect: To demonstrate
the improved resource utilization through dynamic resource
resizing, we firstly demonstrate the effect of proposed resource
binding mechanism under different types of workload mix-
tures. Afterwards, we evaluate the performance impact on the
utilized benchmark workload inside the virtual machines over
a period of time.

Firstly, we set up a pair of VMs on each node in our test
cluster with 768M memory initially required for each VM.
Diverse workloads combinations are made over the cluster
as shown in Figure 5 and each benchmark runs in a VM.
More specifically, TPC-C simulates 20 concurrent users while
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Fig. 5: The normalized memory usage of each node and the
whole cluster. Pair VMs with different workloads are executed
on each node over the cluster. The figure shows the assigned
memory amount with, without dynamic allocation mechanism
and the actual memory usage are compared respectively.

Wikipedia simulates 10 concurrent users with a 1M dataset.
Each benchmark simulates 1000 transactions per second. We
record the assigned and the actual used memory amount after
workloads are launched and could be executed stably. Appar-
ently, the assigned memory without dynamic allocation(static
allocation) approximately is twice the actual used amount,
resulting in a fact that substantial allocated resources are
occupied and would not be highly utilized. In contrast, the
allocated memory with our proposed mechanism is extremely
close to the usage with only 9.89% margin on average in
the whole cluster. A magnified phenomenon can be observed
in idle-workload node because the required resource to run
VMs is far from the initial request amount configured when
launching the VM. We also believe that our method will
significantly improve the resource utilization especially in idle
workloads environment.

Furthermore, we launch a VM with the same resource
request and execute the TPC-C benchmark simulating 20 con-
current users inside the VM. Similarly, we record the average
assigned resource with/without dynamic mechanism and the
actual memory consumption every 5 seconds when the VM is
launching. With the VM initialized, the real memory usage
is growing. The static method assigns 800M memory over
the whole time duration and the dynamic resource allocation
is also illustrated in Figure 6(a). In addition, the interaction
latency of the benchmark is also monitored and the result
shown in 6(b) reveals that the average latency is slightly
increased by at most 1% which can be nearly neglected.

2) Impact on Performance of VM workload and MR
job: Previous experiments have demonstrated the dynamic
allocation mechanism could spare and reuse the resources
which are assigned out but not really utilized by the VM.
We further illustrate the performance impact on different
workloads in our hybrid computing environments.

In our test cluster, we keep five wordcount jobs concur-
rently running by continuously launching a new wordcount
job once one job finishes. At the mean time, we constantly
submit VM with TPC-C benchmark simulating 5 concurrent
user and 1,000 transactions per second until no more VM could
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be launched and scheduled. The whole experiment lasts for
600 seconds. In addition, we measure the maximum number
of VMs that the system can support, the VM’s interaction
latency, and the average JCT of all wordcount jobs respectively.
Furthermore, we repeat similar experiments by adjusting the
parameters of TPC-C benchmark (with 10, 15, 20, 25 con-
current users respectively) and by adopting Wikipedia bench-

mark (with 0.1M, 1M, 10M, 100M dataset respectively) to
further evaluate the impact on the performance under different
workload conditions. Figure 7 depicts the results of above
experiments.

As shown in Figure 7(a) and 7(d), with the increment of
the simulated user number in TPC-C workload, the stress of
each VM workload grows. The supported VM number by our
proposed mechanism thus decreases due to the fixed cluster
resource amount. On the contrary, the number in the static
allocation approach remains the same, much less than our
dynamic allocation mechanism. This is because the overall
memory is not fully utilized even though some memory can be
spared by co-allocated running VMs. Since Wikipedia focuses
on memory data operations, weak performance interference
among VMs leads to a similar VM allocation in all cases. All
in all, by leveraging the dynamic resource strategy, more VMs
can be performed on the cluster and the resource utilization is
consequently highly improved.

Figure 7(b) and 7(e) illustrate the workload performance
comparison under different configurations. There is only a
slight overhead (within 1%) in comparison with the static
allocation strategy. For example, the latency of TPC-C with
10 concurrent users increases from 23.5 microseconds to 23.8
microseconds. This minor overhead can be almost ignored
considering the significant improved utilization.

It is also observable that the extended JCT of word count
workload is no more than 1%. Specifically, only 0.1s is needed
to finish the word count job when 100M dataset is adopted
in Wikipedia workload. The results in all cases reveal that
there is little impact on the performance of co-executed batch
workloads. we attribute it to the isolation efficiency of our
platform.

3) Performance Comparisons Among Different Ap-
proaches: We conduct the experiment to compare the per-
formance of our approach with straight-forward combina-
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tion of VMs and MapReduce framework in one cluster. We
firstly make five wordcount jobs concurrently running by
continuously launching a new wordcount job once one job
finishes. At the same time, VM is launched in our system with
dynamic resource allocation and static allocation scheme. For
comparison, we also startup VM by primitive KVM manager.
The interactive latency of VM and JCT of wordcount within
different stage are recorded and depicted in Figure 8.

Due to the resource hard limit set by static resource
allocation, the maximum number of VM that can be set up
is only 16. No more VMs can be started up, even if some
spared memory could be shared or temporarily taken over.
The proposed dynamic allocation strategy brings considerable
benefits by tightly allocating the requisite resources so that 8
more VMs could be launched. Meanwhile, the response latency
(shown in Figure 8(a), from 100,371.28 microseconds to
114,771.12 microseconds) and the corresponding JCT (shown
in Figure 8(b), from 29.03 seconds to 31.45 seconds) is slightly
increased. From the providers’ viewpoint, this approach will
be, no doubt, worthy of sacrificing little overhead for the
greatly improved cluster utilization.

Figure 8 also demonstrates that the performance of both
workloads dramatically descend although much more VMs
could be launched by primitive KVM commands. Compared
with dynamic resource allocation, the interactive latency of
TPC-C workload in straight-forward combination dramati-
cally increases by 135% from 114,771.12 microseconds to
270,179.06 microseconds (Figure 8(a)), and the JCT of word-
count increases by 34.78% (Figure 8(b)). The reason for
this is that the naive scheme lacks hard resource limit to
resource and an effective isolation strategy, bringing about
intense resource competition among co-allocated workloads.
In fact, the increased latency can not be tolerated due to severe
SLA violation, and is thus not an ideal solution in a hybrid
computing environment.

4) Performance Benefits from VM migration: In order
to reduce the SLA violation, we perform VM migration when
potential system overload is detected. In this experiment,
we generate an overloaded scenario by artificially aggravat-
ing existing workloads and make the available memory of
the server below 100M. Afterwards, we increase the inner
workload of a specific VM and measure the fluctuation of
the interaction latency. According to our approach, the VM

TABLE I: the interaction latency comparison before and after
VM migration

Workload | Before migration | After migration | reduction
Wikipedia 6467078 4368376 32.45%
TPC-C 86094.29 69876.83 18.84%

is supposed to be migrated once it cannot obtain sufficient
resources from its current node. It is observable from Table
I that the latency of Wikipedia and TPC-C benchmark are
reduced by 32.45% and 18.84% respectively through VM
migration, thereby significantly maintaining the user’s QoS.

V. RELATED WORK

This section describes and discusses the related work
towards handling problems in hybrid computing framework
and resource provisioning for virtual machine.

Hybrid computing framework with MapReduce: One
issue in a cluster monopolized by an individual computing
framework is the low resource utilization [19]. To solve this
problem, combining different types of workloads in an unified
framework becomes an option. Some recent solutions are Yarn
[23], Mesos [14], Fuxi [26], Corona [9], Omega [20], which are
maintained and used respectively by Apache, Twitter, Alibaba,
Facebook and Google. Most works separate the functionality
of job execution from the resource management. Job execution
only takes responsibility for the lifecycle of a specific job while
resource management provides an unified resource schedul-
ing and assignment. However, current approaches only focus
on the combinations between batch processing and real-time
computing jobs but neglect long-running services. Moreover,
the static resource lease mechanism limits the flexibility of
resource allocation. Sharma et al. [21] introduce a model to
hybrid MapReduce with VM. The model divides the cluster
into a virtual machine sub-cluster and a physical sub-cluster.
Submitted interactive jobs will be placed on virtual cluster
and the deployment of MapReduce will be determined by
the overhead of executing on virtual machine through a small
training cluster. Nevertheless, the model would influence the
job completion time of MapReduce to some extent.

Resource over-provision for virtual machine: Resource
over-provision plays a key role in ensuring that the cloud



providers adequately accomplish their obligations to customers
while maximizing the utilization of underlying infrastructure.
Typically, there are two kinds of over-provision, static resource
over-provision and dynamic resource provisioning. Static pro-
visioning is often applied in the initial stage of capacity
planning. It is usually conducted in offline and occurs on
monthly or seasonal timescales. The pre-allocated resource
is an estimated size based on its workload pattern. However,
workload fluctuations and overall low-utilized servers at most
time all lead to substantial resource waste during non-peak
times. There are also studies concentrated on dynamic resource
provisioning. Ghosh et al. [12], analyse the risks of over-
provision resources in a cloud and a threshold-based scheme is
proposed. Similarly, Breitgand et al. [10] present an algorith-
mic framework to estimate the total physical capacity required
to perform the over-provision. They rely on the insight in
future resource usage. In contrast, we provide VM service for
customers, which can hardly predict the user’s operation of the
next period. In addition, those approaches consider each VMs
resource need separately. With multiple fixed jobs (MR and
VM) scheduling and executing in hybrid computing cluster,
such frequent adjustment in real-time and fine-grained way
might result in the available resources of the cluster fluctuating
so rapid that the resource scheduling could be imprecise.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a hybrid computing environ-
ment to combine long-running VM service with traditional
batch workloads. Firstly, a new protocol is proposed to deal
with the VM placement problem and we conduct optimizations
to reduce the serial requests waiting time. Secondly, we build
a dynamic resource allocation mechanism for VM in order
to improve the holistic cluster utilization. Additionally, VM
migration is utilized to ensure HA and avoid the potential
performance degradation. The experimental results reveal that
the dynamically allocated memory is close to the real usage
with only 10% estimation margin, and the performance impact
on VM and MapReduce jobs are both within 1%. Resource
utilization with our approach could also reach at most 50%
increase. Our current work concentrates more on memory iso-
lation and re-allocation. As for the future work, we believe that
on-demand CPU control and adjustment should be enhanced
for CPU intensive workloads. Furthermore, the VM failover
is also needed to be included in the resource management
component.
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