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Abstract—The reliability of data and services hosted in a
virtual machine (VM) is a top concern in cloud computing
environment. Continuous snapshots reduces the data loss in case
of failures, and thus is prevailing for providing protection for
long-running systems. However, existing methods suffer from
long VM downtime, long snapshot interval and significant per-
formance overhead. In this paper, we present ConSnap, a system
designed to enable taking fine-grained continuous snapshots of
virtual machines without compromising VM performance. First,
ConSnap adopts the COW (copy-on-write) manner to save the
memory pages in a lazy way, and thus decrease the snapshot
interval to dozens of milliseconds. Second, we only save the
incremental memory pages on the basis of the last snapshot in
each epoch to reduce the snapshot duration, and thus mitigate
VM performance loss. Third, we propose a multi-granularity
space reclamation strategy, which merges the unused snapshot
files to achieve storage space saving, as well as fast recovery.
We have implemented ConSnap on QEMU/KVM and conducted
several experiments to verify its effectiveness. Compared with
the stop-and-copy based incremental snapshots, ConSnap reduces
the performance loss by 71.1% ∼ 10.2% under Compilation
workload, and 14.5% ∼ 4.7% for the Ftp workload, when the
interval varies from 1s to 60s.

Index Terms—cloud computing; virtual machine; continuous
snapshots; copy-on-write; space reclamation

I. INTRODUCTION

Virtualization, an essential technology for consolidating
applications into virtual machines (VM) effectively, is one of
the cores of cloud computing systems. To provide continuous
cloud services, the reliability and security of the running state
as well as the data in virtual machines has become a challenge
and hot issue. Statistics reveal that the hardware malfunction
occupies 44% of the cause of all data loss, while the value is
49% for software errors, such as user misbehavior, software
corruption, and malicious agents (viruses and so forth) [1].

Continuous protection of virtual machines is a prevalent
technique to provide protection for long-running systems by
capturing and preserving the complete execution history of
protected VMs [14] [6]. It allows the user or administrator
to restore VM state to any preserved point to minimize the
data loss in case of system failures. As a result, this technique
is widely used for high availability, forensics, debugging, and
system administration [5] [9] [6] [13].

The nowadays approaches for continuous protection of VMs
fall into two categories: log-replay and continuous check-
pointing. Log-replay records all input and non-deterministic

events of the VM so that it can replay them deterministically
later when the VM fails [6] [12]. However, deterministically
replaying the logging events relies heavily on the virtual ma-
chine monitor (VMM), specifically, the architecture of CPU.
Besides, for multi-core CPU environment, the deterministic
replay depends on the exact order in which CPU cores access
the shared memory, which is difficult to implement and suffers
super linear performance degradation with increase of the
number of virtual CPUs.

Continuous checkpointing, or called continuous snapshots
technique, captures the entire execution state of the running
VM at relatively high frequency and saves them into persistent
devices, then the saved state can be utilized for quick recovery
upon serious corruptions [14] [5]. A virtual machine snapshot
saves a complete copy of the VM state comprising of CPU
registers, memory state, and device states, etc. Most of the
existing methods for continuous snapshots leverage stop-and-
copy [5] [15] or pre-copy [14] mechanism, and employ incre-
mental mechanism [7] which only saves the modified pages
since last epoch to reduce the snapshot size. Unfortunately,
due to the heavy weight of virtual machines, the snapshot size
is still large, and thus leads to long VM downtimes, coarse-
grained snapshots, and significant VM performance overhead.

In this paper, we propose ConSnap, a fine-grained continu-
ous snapshots system to protect the running state of virtual
machines. ConSnap employs copy-on-write (COW) mecha-
nism to create snapshots for virtual machine in each epoch
which decreases the snapshot intervals to dozens of millisec-
onds. The system tracks the modified pages during snapshot
intervals and saves them only once. Besides, ConSnap saves
the modified pages into a buffer temporarily and flushes it
into disk in a schedulable way, with the aim to mitigate VM
performance loss. We have implemented a prototype system
based on QEMU/KVM [10] without modifications of Guest
OS or applications, and performed several experiments to
evaluate the efficiency of ConSnap. ConSnap outperforms both
stop-and-copy and pre-copy based snapshot approach when
saving the full content memory of VM. Compared with the
stop-and-copy based incremental snapshots, ConSnap reduces
the performance loss by 71.1% ∼10.2% under Compilation
workload, and 14.5% ∼ 4.7% for the Ftp workload, when the
interval varies from 1s to 60s.

In particular, the major contributions of our work are



summarized as follows:
• In each epoch, we overlap the actual memory saving with

the VM running period by the COW manner to reduce
the VM downtime.

• We propose a VM continuous snapshots approach by
combining incremental snapshot with the above method,
while utilizing an adoptive flush speed controller, achiev-
ing fine-grained snapshot intervals and insignificant per-
formance degradation.

• We provide a multi-granularity strategy to reclaim the
storage space.

The rest of this paper is organized as follows. The next
section provides some related works. Section III introduces
the design and implementation of ConSnap in details. The
evaluation results are presented in Section IV. The last section
is our conclusion and future work.

II. RELATED WORK

Most of the existing methods for continuous snapshots
leverage stop-and-copy [5] [15] or pre-copy [14] mechanis-
m. The mainstream virtualization solutions, e.g. KVM [10],
Xen [3], VMware [2], only provide the simple and intuitive
stop-and-copy snapshot mechanism, which suspends the VM,
copies the entire state, and resumes the VM. Therefore, the
VM downtime per epoch depends on the size of the entire
VM memory, or the pages modified since last snapshot if the
incremental mechanism [7] is adopted, which only save the
modified pages in each epoch to reduce the memory size. As
a result, this method results in substantial VM downtimes, and
suffers from significant VM performance degradation.

Pre-copy mechanism, which is initially designed for VM
live migration [4] to mitigate the VM downtime, saves memory
pages in an iterative way. It only copies the modified part
compared with the former round and would stop the VM
until the number of remaining memory pages can be saved
in a short interval. VNsnap [8] is a system to create the
distributed snapshot for a closed network of VMs, leveraging
Xen live migration function to minimize system downtime.
However, the performance of pre-copy approach is highly
relevant to the access pattern of the application inside the
VM. Firstly, the snapshot will suffer from a long duration
to be completed (even fail) particularly for write-intensive
workloads. Secondly, the host resource will be occupied for
a long time because of the large number of copy rounds,
affecting the VM execution a lot. Thirdly, the actually saved
VM state is not the state of the specified snapshot point. Due to
the long and unpredicted VM downtime and snapshot duration,
pre-copy based snapshot is less suited to taking fine-grained
continuous snapshots.

High availability systems, Remus [5] and Kemari [15], have
modified the live migration mechanism of Xen to enable
high frequency VM checkpoints between the primary and
backup hosts. Though based on the live migration method,
both Remus and Kemari essentially adopt the stop-and-copy
based incremental snapshots mechanism, because each epoch
is just the final stop-and-copy phase of migration, suspending

Fig. 1: Design of ConSnap

the VM and saving the pages. Remus optimize the stop-and-
copy method on Xen by reducing the number of inter-process
requests required to suspend and resume the guest domain,
removing xenstore from the suspend/resume process, copying
touched pages to a staging buffer rather than delivering them
directly, etc. However, Remus causes heavy runtime overhead
to the application in the primary VM.

Ta-Shma et al. [14] presented an approach for virtual
machine time travel using Continuous Data Protection and
checkpointing which is based on Xen’s live migration. Due to
lack of experimental results, we cannot evaluate the protection
granularity and the performance overhead, but the granularity
cannot be much finer because of the long-duration pre-copy
scheme. Besides, their system performs space reclamation by
simply defining an accessibility window which specifies the
period of time allowing reverting to, and data outside it is
to be reclaimed. However, this strategy discards all the saved
VM states out of the accessibility window, resulting that these
states cannot be reverted to in case that it is necessary.

III. DESIGN AND IMPLEMENTATION

This section begins with an overview of ConSnap, followed
by the design of single-epoch snapshot, continuous snapshots,
and space reclamation respectively, with some implementation
details in the final part.

A. Overview

Figure 1 illustrates the design of ConSnap. ConSnap mainly
consists of a Timer Controller, a Snapshot Manager and a
Space Manager. The Timer Controller can specify time periods
to trigger the Snapshot Manager to do snapshots and control
the Space Manager to reclaim storage space.

Snapshot manager manages each single-epoch snapshot
which consists of disk snapshot and state snapshot. We choose
iROW disk format [11] to realize the disk snapshot, which
achieves insignificant and stable VM downtime when taking
disk snapshot by improving the traditional redirect-on-write
method.

For state snapshot, ConSnap only saves the pages modified
since the last snapshot to reduce the snapshot size, and puts off
the actual memory saving to the VM running period to reduce



Fig. 2: The workflow of a single-epoch snapshot

the VM downtime. Then we use three save manners to save
memory pages and design an adaptive flush speed controller
to mitigate the VM execution performance degradation.

The Space Manger is designed to reclaim the space occupied
by the unneeded metadata and snapshot data, and a multi-
granularity strategy is performed.

B. Single-epoch Snapshot

A VM snapshot is a consistent view of the VM state at an
instantaneous point in time, consisting of the memory state,
disk state, and device states such as the CPU state, network
state, etc. The single-epoch snapshot of our ConSnap is a
two-stage process, corresponding to VM suspended and VM
running respectively, shown in Figure 2.

Once triggered to take a snapshot, ConSnap suspends the
executing VM immediately, followed by saving the device
states, creating disk snapshot provided by the iROW block
driver, setting all memory pages write-protected, setting the
flag to enable intercepting DMA operations, and creating a
background thread. These operations are lightweight enough
so that the VM suspension stage can be completed in a few
dozens of milliseconds.

Once the suspend stage is completed, we resume the VM.
During the VM running, a disk write operation to a specified
block will be redirected to a new block by the iROW block
driver. At the same time, we save the memory pages by
following three components collaboratively and concurrently.
To save each page only once, a save bitmap is used to record
whether a page has been saved.

Page Fault Handler. During the VM running, the write
operation on a write-protected memory page will result in a
page fault, which can be intercepted in the VMM layer. Then
we handle the page fault by saving the corresponding page
and its neighbors, and removing their write-protection flags.
By saving neighbor pages, we can benefit from the feature of
memory locality to reduce the frequency of page fault.

DMA Write Handler. Most virtualization solutions simulate
the DMA schema for I/O related devices. This schema dirties
the memory pages without triggering the page fault, so we
intercept the DMA write operations with another handler and
save the corresponding pages.

Active Save Thread. The thread is running in the back-
ground to traverse all the guest memory pages in sequence
and save the pages which have not been saved. A single-epoch

snapshot is completed when this thread traverses all the pages
one pass.

All of the above three manners copy the memory pages
to a buffer temporarily, and then flush it into the snapshot
file when it is filled up. However, the VM execution may be
affected if the buffer is flushed at a high rate by the active save
thread due to the I/O contention between the snapshot manager
and the VM applications. Therefore, we design a flush speed
controller to mitigate this effect. To control the flush speed,
we divide the buffer into several slices, and suspend the active
save thread for a period after flushing each slice into snapshot
file. The control procedure is illustrated by the Pseudo-code 1.
We assume each VM on a host machine has a maximum I/O
bandwidth reserved by administrator (RIO). Since applications
in the VM occupy a part of the bandwidth (RVM ), so only the
left bandwidth (Ravailable) should be used to flush the slices.
Therefore, to guarantee the bandwidth occupied by the flush
operation is less than the Ravailable, the flush period should
be equal to Ttotal at least, calculated by the size of the slice
and the available bandwidth. If the actual time to flush the
slice (Tflush) is less than Ttotal, we suspend the thread for a
period, denoted by Tsuspend. Obviously, we design the flush
speed controller by a predicted way, assuming that the VM I/O
rate in this flush period is same as that in last period. With the
controller, we reduce the impact on VM performance while
achieving a relatively short snapshot duration simultaneously.

Pseudo-code 1 Flush speed control

1: for each slice in Buffer do
2: RVM = Ssectors / Tinterval

3: Ravailable = RIO - RVM

4: Ttotal = Sslice / Ravailable

5:
6: flush this buffer slice into snapshot file
7:
8: if Tflush < Ttotal then
9: Tsuspend = Ttotal - Tflush

10: suspend snapshot procedure for Tsuspend

11: end if
12: end for

C. Continuous Snapshots

The continuous snapshots utilizes the single-epoch method
described above in each epoch, and only saves the memory
pages modified since the last snapshot. Figure 3 illustrates the
workflow of continuous snapshots.

To record the pages modified since the last snapshot, we
utilize another bitmap dirty bitmap. We take a full-content
snapshot firstly, saving the entire memory pages into the
snapshot file, and then take a series of incremental snapshots,
only saving the dirty pages. To take a snapshot, we first
suspend the running VM. Compared with the single-epoch
snapshot, a extra step during the VM suspended period is
updating the save bitmap. The bitmap should be set as all 1 for
the full-content snapshot, indicating that all the memory pages



Fig. 3: The workflow of continuous snapshots. (1) Copy dirty bitmap (records the pages modified since last snapshot) to
save bitmap (records whether a page has been saved in one epoch) when a snapshot is to be taken; (2) Set memory pages
write-protected, and clean up dirty bitmap; (3) Set corresponding bit of dirty bitmap when a page fault is intercepted; (4)
Save pages marked in save bitmap into snapshot files by three save manners.

should be saved in this epoch; for the following incremental
snapshots, the dirty bitmap is copied to the save bitmap,
meaning that only the changed pages need to be copied (Figure
3, step 1). Then, to mark the dirty pages, we clean up the
dirty bitmap and set all memory pages write-protected (Figure
3, step 2), followed by the VM restarted. During the VM
running, we intercept page faults and set the corresponding
bit in dirty bitmap to mark that this page has been modified
and should be saved in next epoch, then remove the protection
flag (Figure 3, step 3). Besides, we check the save bitmap
and save the corresponding page into snapshot files if this
page has not been saved, then reset the corresponding bit
in save bitmap (Figure 3, step 4). This epoch snapshot is
completed actually when the modified pages are all saved,
indicated by the emptied save bitmap. Obviously, we only
save a subset of the entire memory pages in each epoch, so
the snapshot size can be greatly reduced, and the snapshot
duration can be reduced at the same time. In addition, our
method puts off the page saving to the VM running period
based on the COW manner, and thus achieves only a few
dozens of milliseconds VM downtime. Therefore, both the
reduced snapshot duration and the lightweight VM downtime
contribute to the fine-grained continuous snapshots without
significant VM performance degradation.

D. Space reclamation

After long-term running of the VM and continuous s-
napshots with fine granularity, large amount of the storage
space will be occupied by the snapshot files. To reclaim the
storage space, existing systems typically define an accessibility
window to specify the period of time allowing reverting to, and
data outside the accessibility window is to be reclaimed, such
as in Ta-Shma’s system [14]. However, this method discards
all the saved VM states out of the accessibility window,
resulting that these states cannot be reverted to in case that it is
necessary. So we provide a multi-granularity strategy, which
enables specifying a group of granularities to reclaim the
snapshot files created in different time periods. The snapshots
taken in different time periods are reclaimed into snapshots
with different granularities. The earlier the snapshots are taken,

Fig. 4: An example of space reclamation

the coarser the granularity should be. By this way, we can
reclaim the storage space without losing all the earlier states.
Figure 4 shows a simple example of the space reclamation,
reclaiming 1t-granularity snapshots to 2t-granularity and 3t-
granularity snapshots respectively.

Note that we save memory pages in an incremental manner,
a complete memory state of the VM in one point is also
based on the earlier snapshots. Therefore, before reclaiming
a snapshot file (target snapshot), we should merge some parts
of its data to its child snapshot file first. To do this, we scan
the bitmaps of the child snapshot and the target snapshot,
determining which pages should be merged based on the
condition: the page is not present in the child’s bitmap but
in the bitmap of the target snapshot. Then we copy the page
from the target snapshot to the corresponding position of the
child snapshot file. Figure 4 also gives an example which
reclaims two snapshot files (A & B) by merging them to the
child snapshot (C). We first merge snapshot file C with B,
followed by merging the merged file with A. Then the storage
space occupied by the two ancestor snapshots (A & B) can be
reclaimed and used by the following snapshots.

E. Implementation details

1) Completeness and Consistency of Pages: Since the
memory pages can be saved by aforementioned three manners
concurrently, guaranteeing the completeness and consistency
of the saved pages should be focused in the implementation of
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Fig. 5: Snapshot metrics of single-epoch snapshot with full content

ConSnap. The completeness means that we have saved all the
memory pages which should be saved, and the consistency
indicates that the contents of the saved pages are all same
as the contents of the memory pages at the snapshot point.
Therefore, we use a bitmap named save bitmap to indicate
whether a page has been saved in a snapshot process. When
each of the save manners prepares to save one page, we
consults save bitmap first and save this page only if the
corresponding bit has been set, then reset the bit. An emptied
save bitmap means the completion of a single-epoch snapshot,
and thus we guarantee the completeness of the pages. In
general, to ensure the consistency, save bitmap should be
locked before each access of the three save manners. However,
we give our following analyze to prove that the lock is
unnecessary. For the page fault handler and the DMA write
handler, they are actually not executed at the same time since
that they occupy different time slices, so they cannot cause
the inconsistency. The page fault handler and the active save
thread also cannot lead to the inconsistency because the active
save thread is read-only for the memory pages, and the same
is true for the DMA write handler and the active save thread.
A worst-case scenario may be that the page fault handler
intercepts a page fault and starts to save the page, while the
active save thread prepares to save the same page. If the page
fault handler finishes saving the page (followed by resuming
the VM) before the active save thread, the Guest OS may dirty
the page, and thus the active save thread saves a inconsistency
page version. Therefore, to guarantee the consistency of the
saved memory state, the saved pages are subject to the page
fault handler version or DMA write handler version when we
flush the buffer to the snapshot file. Without the lock operation,
we avoid the time overhead resulted by the queue for the lock,
which may affect the VM execution significantly.

2) Write-protection and Handling page fault: ConSnap
calls cpu physical memory set dirty tracking in QEMU,
which finally calls kvm mmu slot remove write access in
KVM to set each memory page write-protected. Once a VM-
Exit occurs because of the page fault, handle ept violation in
KVM would be called. So we can handle the page fault in
this function by setting the corresponding bit in dirty bimap
to record the modified page, and checking whether the page
has been saved by the other save manners by save bitmap.
If the bit is 1, we exit to QEMU with the flag EX-
IT REASON CONSNAP and the guest frame number (gfn)
of this page. Then QEMU handles the exception by saving

the corresponding memory page into the snapshot file and
removing the write-protection flag. Finally, QEMU resumes
the VM by the ioctl operation with KVM RUN flag.

3) Flush Speed Control: The key concern of the flush
speed controller is calculating the VM I/O rate. QEMU
implements the VM block I/O in function bdrv aio writev
and bdrv aio readv in block.c, and one of their arguments
is nb sectors, indicating the number of sectors in this I/O
operation. A sector occupies 512 bytes in QEMU by default.
So we accumulate the numbers when the functions are called,
and use the sum to calculate the parameter Ssectors when a
flush operation is triggered.

IV. EVALUATION

A. Experimental Setup

We conduct the experiments on a DELL Precision T1500
workstation with Intel Core i7-860 2.8GHz CPU, 4GB DDR3
memory, 500G SATAII hard disk. We configure 2GB memory
for the virtual machine unless specified otherwise. The operat-
ing system on physical server and virtual machine is debian6.0
with 2.6.32-amd64 kernel.

We apply following application benchmarks as the VM
workloads in our evaluation. 1) Idle workload means the VM
does nothing except the tasks of OS self after boot up. 2)
Media Player workload means a video is played in the VM
with nothing else. 3) Compilation represents a development
workload involves memory and disk I/O operations, and we
compile the qemu-kvm-0.12.5 in our experiments; 4) Mem-
cached is an in-memory key-value store for small chunks of
data, and the server replies a corresponding value for a request
containing the key. We set memcached server in one VM,
and configure mcblaster as client in another VM to randomly
request the data. 5) IOzone is a file system benchmark utility,
which is used by us to simulate the workload with a large
number of file read and write operations; 6) Ftp is a standard
network protocol used to transfer computer files from one host
to another host.

Our experiments include two parts: single-epoch snapshot
and continuous snapshots. In single-epoch experiments, we
compare the following three snapshot methods, all saving
the entire memory pages into the snapshot file in the local
host. 1) Stop-and-copy based snapshot, the default snapshot
method used in QEMU/KVM, suspends the VM while creating
snapshots. 2) Pre-copy based snapshot, which is implemented
by modifying the live migration mechanism in QEMU/KVM,
saves memory pages in a iterative way while VM is running,
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and suspends the VM when the remaining pages can be
saved in a short interval. 3) ConSnap snapshot, our method
introduced in this paper, suspends the VM for a lightweight
time, and saves memory pages during the VM running period.

In continuous snapshots experiments, we only compare the
stop-and-copy based incremental snapshot and our ConSnap,
because the duration of pre-copy based snapshot is long and
unstable, which can be shown by the experimental results of
the single-epoch snapshot.

B. Single-epoch Snapshot with full content

1) Snapshot metrics: We create a series of full-content
snapshots at interval of 150 seconds when workloads are
running in the VM, and record the VM downtime, snapshot
duration and snapshot size of each snapshot, which is shown in
Figure 5. From Figure 5(a), we can see that the VM downtime
of ConSnap is only about 36 milliseconds, short and stable;
and the stop-and-copy method has a significant downtime,
about 20 seconds; while the pre-copy based approach results in
various downtimes from the workloads, e.g., 37.8ms for Idle
situation and 443ms for the Compilation workload, mainly
because of the different sizes of the remaining pages in last
copy round. For snapshot duration, shown in Figure 5(b),
the stop-and-copy method is the shortest, while the pre-copy
based method has the longest time and is various with the
workloads, this is because that it includes several rounds to
save memory pages. Our ConSnap’s duration also is dependent
of the specific workload because of the flush speed controller
which is designed to mitigate the performance loss of VM
execution. In spite of this, the duration of ConSnap is up to half
of the pre-copy based approach’s. Owing to saving only one
copy for each memory page, the snapshot size of the stop-and-
copy method and ConSnap are basically the same as the VM
memory size, while the pre-copy based method results in larger
and various sizes for different workloads, as illustrated in
Figure 5(c). One thing should be explained is the results related
with the IOzone workload. Though IOzone only involves file
operations, it dirties a large number of memory pages by DMA
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write operations, resulting in long snapshot duration and large
snapshot size in pre-copy based experiments.

2) Performance impact on VM: To evaluate the impact of
snapshot on VM execution, we conduct experiments with a
VM as Ftp server and another VM as Ftp client. We run a
script to record the data receiving rate of the client VM per
second firstly; start downloading a file from the server at the
21st second; then take snapshot with three methods at the
101st second. The results are shown in Figure 6. Without
snapshot, the file transfer can be finished in 180 seconds,
while the transfer time increases to 208s, 204s, and 195s
with once stop-and-copy snapshot, pre-copy based snapshot
and ConSnap snapshot respectively. The results demonstrate
that our ConSnap has the minimal overall impact on the VM
execution.

3) Flush speed control: We conduct a set of experiments in
this section to evaluate the effect of the flush speed controller.
We take the Compilation workload as example to compare the
snapshot duration and VM performance loss of our ConSnap
with those of other two strategies, as shown in Figure 7.
In the figure, “WoControl” denotes ConSnap without speed
control; “Fixed” means the strategy that the active save thread
is suspended for a fixed period after flushing each buffer
slice, and it is 5 milliseconds in this experiment; “Adaptive”
denotes the strategy introduced in this paper, in which the
suspending time after each flush depends on the I/O rate of
the VM, and we set Sslice as 1M bytes, RIO as 60 Mbytes/s



 0

 200

 400

 600

 800

 1000

Mplayer CompilationMemcached Ftp

VM
 D

ow
nt

im
e 

(m
s) Stop-and-copy based

ConSnap

(a) downtime

 0
 200
 400
 600
 800

 1000
 1200
 1400

Mplayer CompilationMemcached Ftp

Sn
ap

sh
ot

 d
ur

at
io

n 
(m

s)

Stop-and-copy based
ConSnap

(b) duration

 0

 20

 40

 60

 80

 100

 120

Mplayer CompilationMemcached Ftp

Sn
ap

sh
ot

 s
iz

e 
(M

By
te

s)

Stop-and-copy based
ConSnap

(c) size

Fig. 10: Snapshot metrics of continuous snapshots with 2s interval
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Fig. 11: Snapshot metrics of continuous snapshots with 5s interval

respectively. The duration and compilation time are normalized
based on that of “WoControl” situation respectively. Though
snapshot method without flush speed controller obtains the
minimum duration, it affects the VM execution most, about
more 10% loss than others. The other two methods have
a similar performance loss, while our strategy achieves the
shorter duration.

C. Continuous Snapshots

1) Dirty page rate: In continuous snapshots, the size of
the memory to be saved in each epoch, which depends
on the number of the pages modified during two adjacent
snapshots, is one of the most critical factors on the snapshot
performance. Thus, we conduct a series of experiments to
show the number of dirty pages and the average dirty rate
of each aforementioned workload with different time periods.

We start each workload in a VM, and record the number of
dirty pages every 2 seconds for 100 times in the first group
experiments. Figure 8 shows the results, demonstrating that
different workloads have different memory access patterns.
The Idle situation, Mplayer workload, Memcached workload
and Ftp workload all have a relatively stable number of dirty
pages, while the Memcached has more dirty pages relatively.
The number of dirty pages of IOzone workload fluctuates in
a small scope with a high level absolute value, while the
Compilation has a significant fluctuation.

To obtain a more comprehensive result of the dirty rate
with various time periods for all representative workloads, we
continue conducting several experiments with periods from 1s
to 60s. Figure 9 illustrates the dirty size and average dirty rate
of each aforementioned workloads, corresponding to different
intervals. In Figure 9(a), “theretical” denotes the maximal
speed of file writing of the host machine in theory, and is
set as 80Mbytes/s. We can see that the dirty rate of IOzone
is faster than the maximal speed, and its dirty size increase
linearly if the VM memory is enough. Therefore, VMs with
similar workloads is unsuitable to do incremental snapshots,

and we suggest taking full-content snapshots with a coarser
granularity. For the other five workloads, Idle and Mplayer
situations have insignificant dirty rates; Ftp has a basically
linear dirty size; Compilation and Memcached have a high
dirty rate when the interval is less than 10s, then the rate levels
off for the following coarser intervals. The above results imply
that taking continuous snapshots would obtain different results
depending on the specific workload and the snapshot interval.

2) Snapshot metrics: We take 2s and 5s as the interval
representatives to show the snapshot metrics of the continuous
snapshots. Due to the long and unstable duration, pre-copy
based method is unsuitable for the continuous snapshots, so
we only compare our ConSnap with the stop-and-copy based
incremental snapshots. We take a full-content snapshot firstly,
and then start the application in the VM, followed by a series
of incremental snapshots at the fixed interval. The results are
shown in Figures 10 & 11. We can see from the figures
that the largest advantage of our ConSnap is the insignificant
VM downtime. For the 2s interval, the downtime of the stop-
and-copy based approach occupies about 15% ∼ 35% of the
snapshot interval, and the percentage is 6% ∼ 25% for the 5s
interval. Oppositely, ConSnap has a stable and short downtime,
independent of the workload and the interval. The snapshot
duration of ConSnap is a little longer than that of the stop-and-
copy based method because that ConSnap has taken the VM
performance impact into account by speed control. However,
the impact on the VM execution led by a little longer duration
is far less than that by many multiples of downtime, which
will be proved in the next section. For the snapshot size, the
snapshot size of ConSnap is also a little larger than the stop-
and-copy based method, which can be explained by the reason
that the VM running time of ConSnap is longer than that of
the latter, resulting in more modified pages.

3) Performance impact on VM: We evaluate the VM
performance impact resulted by the continuous snapshots
in this section, using Compilation and Ftp workload. We
take a full-content snapshot at first, followed by a series of
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Fig. 12: Pencentage of VM performance loss with different
intervals

incremental snapshots using our method and the stop-and-copy
based incremental method. During the incremental snapshots,
we make the Compilation for several times, or download a
large size file from the VM, respectively. We measure the
VM performance in terms of the Compilation time and the
average download speed respectively. Figure 12 shows the
percentage of the VM performance loss based on the per-
formance without snapshots. The results are various with the
snapshot intervals. ConSnap reduces the performance loss by
about 71.1% ∼10.2% compared with the stop-and-copy based
approach in the Compilation experiments, while the values are
14.5% ∼ 4.7% for the Ftp experiments. Besides, the maximal
performance loss percentage in Compilation experiments of
our ConSnap is about 26.3%, and most of the values are
below 20%, which can be considered reasonable for a general-
purpose system. Overall, the performance loss decreases with
the increase of snapshot interval, and our ConSnap achieves
a less performance loss over the stop-and-copy based method
in every case, both at different intervals and with different
workloads.

V. CONCLUSION AND FUTURE WORK

This paper presents a fine-grained continuous snapshots
system ConSnap to protect the running state of virtual ma-
chines. In each epoch, ConSnap puts off the actual memory
saving to the VM running period to reduce the VM downtime,
and proposes an adaptive flush speed mechanism to eliminate
the I/O contention with the aim to mitigate VM execution
performance degradation. For continuous snapshots, ConSnap
employs incremental snapshots to only saving the pages
modified since the last snapshot. Combined with the above
single-epoch snapshot method, ConSnap achieves both fine-

grained snapshots and low performance overhead. Besides,
we introduce a multi-granularity strategy to reclaim the space
storage. We have implemented ConSnap on QEMU/KVM plat-
form, and conducted comprehensive experiments. The results
show that ConSnap achieves sub-second interval continuous
snapshots without significant performance loss for a variety
of workloads.

In future, we will focus on the strategy to revert the VM
state from a series of memory image files with insignificant
time and resource overheads.
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