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Abstract—A long-standing challenge in cluster scheduling is to
achieve a high degree of utilization of heterogeneous resources in
a cluster. In practice there exists a substantial disparity between
perceived and actual resource utilization. A scheduler might
regard a cluster as fully utilized if a large resource request
queue is present, but the actual resource utilization of the
cluster can be in fact very low. This disparity results in the
formation of idle resources, leading to inefficient resource usage
and incurring high operational costs and an inability to provision
services. In this paper we present a new cluster scheduling
system, ROSE, that is based on a multi-layered scheduling
architecture with an ability to over-subscribe idle resources to
accommodate unfulfilled resource requests. ROSE books idle
resources in a speculative manner: instead of waiting for resource
allocation to be confirmed by the centralized scheduler, it requests
intelligently to launch tasks within machines according to their
suitability to oversubscribe resources. A threshold control with
timely task rescheduling ensures fully-utilized cluster resources
without generating potential task stragglers. Experimental results
show that ROSE can almost double the average CPU utilization,
from 36.37% to 65.10%, compared with a centralized scheduling
scheme, and reduce the workload makespan by 30.11%, with
an 8.23% disk utilization improvement over other scheduling
strategies.

Index Terms—cluster scheduling, resource management, over-
subscription
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I. INTRODUCTION

Improving the resource utilization of clusters is a long-
standing issue that has become increasingly important to
satisfy global demand for Internet services such as web search,
social networking, and machine learning applications. Various
applications often exhibit diverse workload characteristics in
terms of task scale and resource heterogeneity. To cope with
such diverse characteristics, modern cluster management sys-
tems, e.g. those in [9][10][11][12], are designed to effectively
allocate jobs onto machines, and manage various resource re-
quirements as a unified pool of underlying resources. However,
there exists a substantial disparity between resource usage
requested by jobs and the actual cluster resource utilization.
For instance, studies of production clusters from Twitter and
Google show that typical disparities are around 53% and 40%
for CPU and memory respectively [13]. Therefore, the actual
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CPU utilization is between 20% and 35% and the memory
utilization is from 20% to 40% [14]. A scheduler might con-
sider a cluster as being fully utilized if a large resource request
queue is present, even when the actual resource utilization of
cluster machines is in fact very low. This disparity results in
the formation of idle resources, producing inefficient cluster
resource usage and incurring higher operational costs and
an inability to provision service. Additionally, computation-
intensive batch DAG jobs are increasingly common within
data-parallel clusters and should be handled properly. These
batch jobs are typically segmented into a large number of tasks
which only last sub-second or seconds duration [11][15].

The resource utilization of a cluster may be improved
through over-subscription (also known as overbooking) [16],
that enables jobs to be executed within a cluster by leveraging
resources from existing jobs that are presently underused or
idle. This technique has been heavily exploited at different
levels of a cluster, including the kernel [8], the hypervisor [17],
and the cluster resource scheduler. For example, the resource
scheduler would launch speculative tasks for existing jobs,
where the tasks use the over-subscribed resources and run in
a best-effort manner.

A centralized resource scheduler, such as YARN and Mesos,
performs over-subscription decision making [4] [5] through
a central manager that transmits the information about up-
dated idle or revocable resources to a job via piggybacking
on regular heartbeat messages within the cluster. However,
several heartbeat messages are required for transmission of
load information, resource scheduling, and dispatching of
speculative tasks. The duration of this transmission process
becomes even longer when task retry and re-submission are
needed. As heartbeats are typically configured to be sent at
3s intervals [9], it is likely that these instructions will no
longer reflect nor match the current cluster resource usage.
The reason for this mismatch in cluster resource usage is
primarily due to creation of potentially thousands of new
tasks, diverse resource consumption patterns of existing tasks,
and tasks that have second or even sub-second completion
times. This consequently results in sub-optimal reduction of
overall job makespan that could be significantly improved. A
decentralized scheduler may resolve some of the issues by
assigning speculative tasks randomly [18] or on per application



Fig. 1. Daily memory utilization of a 10,000 node cluster

basis [19]. However, this approach is highly dependent on ac-
curate queue delay times, which requires customers to provide
precise job completion times. It is unfortunately infeasible in
practice when considering the lack of customer knowledge
and unknown job types. What is needed is an over-subscription
approach that is capable of overcoming the late delivery of idle
resources for speculative tasks, as well as exploiting cluster
diversity in terms of heterogeneous resources and dynamic
resource usage.

In this paper we propose ROSE, a resource over-
subscription framework that provides an efficient and specula-
tive Resource Over-subscribing SchedulEr for cluster resource
management, which improves utilization whilst reducing job
end-to-end time. A ROSE job leverages idle resources di-
rectly from the node controller daemon situated within every
machine and creates speculative tasks, instead of waiting for
resources to be made available from the centralized resource
manager. These speculative tasks are then launched within
machines that are determined to be most suitable for resource
over-subscription through a multi-phase filtering process, con-
sidering estimated load, correlative workload performance, and
queue states. Such information is incrementally and timely
synchronized to the application-level scheduler. A threshold
control is used to determine and control launching speculative
tasks, thereby allowing for globally maximizing the reusability
of cluster resources. Furthermore, task rescheduling is also
employed to reduce the head of line blocking and resultant
straggler manifestation [20] within speculative tasks. ROSE
can be integrated into any multi-layer cluster system, and is
capable of over-subscribing multi-dimensional resources (e.g.,
CPU, memory, network, etc.). We implemented and evaluated
ROSE within the open-source resource management system
Yarn[1] and Alibaba’s cluster management system – Fuxi [11]
– in order to study improvements against comparative over-
subscribing strategies. The main contributions of this work
are:

• A general resource over-subscribing architecture for clus-
ter resource management that enables idle resources to be
leveraged to create speculative tasks.

• A multi-phase machine filtering process that considers
diverse factors (e.g., task-level rating and machine states)
to locate optimal machines for speculative execution.

• A runtime threshold control with timely task re-
scheduling that provides speculative task management.

II. RESOURCE UTILIZATION ISSUES

Centralized scheduling framework. Modern resource
scheduling systems typically decouple the resource manage-
ment layer from the job-level logical execution plans to en-
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TABLE I
CENTRALIZED OVER-SUBSCRIPTION

mQL #Unqueued #Resched #Succ
10 857 856 215
15 804 890 227
20 248 1440 234
50 24 1664 237
70 20 1685 253
avg 390.6 1307 233.2
% 19.5% 65.3% 11.7%

hance system scalability, availability and framework flexibility.
For instance, YARN[1] and Fuxi[11] share the following com-
ponents: Resource Manager (RM) is the centralized resource
controller; tracks resource usage, node liveness, enforces al-
location invariants; and arbitrates contention among tenants.
The component is also responsible for negotiation between the
available resources within the infrastructure and the resource
requests from Application Masters. Application Master(AM)
is a application-level scheduler, which coordinates the logical
plan of a single job by requesting resources from the RM,
generating a plan from received resources, and coordinating
the execution. Node Manager(NM) is a daemon process within
each machine and responsible for managing local tasks (in-
cluding launch, suspend, kill, etc.).
Production-level cluster resource usage. Logical resource
utilization is a metric often studied to measure scheduler
performance. Higher utilization implies more efficient sched-
uler decision making and faster job completion. We profiled
these characteristics by exploring the resource behavior of a
production-level cluster to ascertain idle resource occurrence.
Due to cluster’s cyclical behavior, we randomly select a
consecutive 5-days period and analyze over 10,000 machines
at Alibaba to study daily usage patterns. The metrics captured
include TotalResource that represents the total available re-
source (referring to memory for demonstration), RMPlanned
indicating the total amount of assigned memory to all AMs
(job managers) after resource assignment, AMPlanned repre-
senting the amount that is obtained and used by all AMs, and
NMReal showing the total resource consumed by all containers
at runtime.

As shown in Fig. 1, the mean memory utilization of the
cluster is 30%, with a deviation of 14.2%. Furthermore, a daily
temporal usage pattern can be visually observed in the cluster
due to conducting large-scale batch processing between 0:00
to 08:00 (CST). There exist sufficient idle cluster resources
that can be reused. Fig. 2(a) shows the memory consumption
of the entire cluster within a 12-hour period. Approximately
97.1% of memory on average can be reached by RMPlanned,
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Fig. 4. Workflow and inter-component interaction

indicating that most memory is visible and initially utilized
by the scheduler. Moreover, AMPlanned is extremely close
to RMPlanned, indicating that the majority of job requests
within the cluster are eventually confirmed with corresponding
resources granted. Nevertheless, a large disparity between the
RMPlanned and NMReal can be perceived, resulting in actual
resource utilization being very low. Fig. 2(b) reveals that over
80% sampled data points experience no more than 55% actual
memory usage compared with total assigned memory.
Overestimation & fragmentation. We further discover that
this under-utilization is resultant of user overestimation and
resource fragmentation. For example, at time point (27,500s),
we collected the total amount reserved by all running jobs and
calculated the fragmentation on each machine across the clus-
ter. Fig. 3 depicts statistics ordered by the resource amount,
showing that more than 80GB memory could be reused within
most machines (with 132GB memory per server). In fact, users
typically request excessive amounts of resources to handle
workload bursting to avoid SLA (Service Level Agreement)
violation. Fragmentation is also a common occurrence in
clusters, especially during periods of high resource requests.
From our analysis, there exists a significant gap between actual
and predicted resource allocation that remains unused.
Resource mismatch. To reuse such idle resources, centralized
over-subscription scheduling (e.g., Hadoop 3.0 [4]) is pro-
posed. To demonstrate the consequential limitations, we sub-
mit 2,000 speculative tasks to a Hadoop 3.0 cluster and observe
the launching number, varying the customizable max queue
length(mQL) on NMs. However, the decision and heartbeat
piggybacking mechanism will result in the delayed message
delivery and mismatch of the latest resource usage during
heartbeat intervals and lead to a great number of task re-
distributions. For example, on average 19.5% of submitted
tasks are excluded from the queue and 65.3% have to be re-
scheduled even if they are allowed to enqueue. Merely 11.7%
on average can be successfully launched. Additionally, due
to the inherent workflow in centralized resource scheduling,
unsuccessful tasks require several heartbeat intervals before
they can be re-submitted, re-scheduled and dispatched onto a
new NM. Such inefficiency greatly degrades the performance
of resource over-subscription and job execution.

Challenges & requirements. A challenge for scheduling
computation-intensive batch jobs is reducing the probability of
over-subscription violation and the consequent compensation
(such as rescheduling or evictions of speculative tasks) in
order to improve job end-to-end performance and system
utilization. Another challenge is how to timely detect and
exploit cluster diversity in terms of heterogeneous resources
and dynamic resource usage, and how to realize appropriate
speculative task execution using idle resources optimally. To
address these challenges, the first objective is [R1] to design
a generalized resource over-subscribing mechanism that can
effectively create speculative tasks compatible with established
centralized resource management pipeline; The mechanism
should effectively find and timely deliver the idle resource
information for launching such tasks. Additionally, the system
should [R2] fully exploit the dynamicity of the cluster, as
well as workload/server heterogeneity [13][21] to reduce task
eviction occurrence, and harness idle cluster resources includ-
ing fragmented resources and allocated (yet idle) resources.
To underpin the efficient resource discovery and optimal
determination of task dispatching, resource scheduling should
also [R3] aggregate and consider both application-level and
multi-dimensional system information; and flexibly manage
the life-cycle of speculative tasks on specific machines.

III. RESOURCE-OVERSUBSCRIPTION BASED SCHEDULING

A. Oversubscription-based Scheduling

To improve the scalability and deal with the heartbeat-
dependent issues in the centralized scheduling, decisions for
over-subscription and speculative task launching are made in
each job application master independently. We enable specu-
lative tasks to be launched and executed via leveraging idle
resources through the following steps:

(Step 1) A ROSE job requests resources from the RM.
(Step 2) Once the resources in the cluster have been allocated,
no further regular resources are assigned to jobs. (Step 3)
A job attempts to request additional resources directly from
NMs in a speculative manner, rather than waiting for the
emergence of available resources released by the RM. The
job then requests to launch speculative tasks in machines that
are determined by the Cluster Aggregator (CA) to be most
suitable to oversubscribe resources. (Step 4) To avoid inter-
task performance interference, speculative tasks run at lower
priorities and are preemptable compared to currently executing
tasks in the machine. NM maintains a local waiting queue to
maintain the order of submitted speculative tasks while the
NM judges whether the speculative tasks can be accepted
through a controller according to runtime system information.
For example, as long as the maximal utilized resource does
not surpass the upper-bound threshold, additional workload
can be launched onto the physical machine. (Step 4) Once
accepted, the speculative tasks will be enqueued and wait
to be scheduled by the threshold controller, otherwise, these
attempts will continue periodically.

It is worth noting that the procedure of resource over-
subscription to speculative tasks is decoupled from the central-
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Fig. 5. Architecture and design

ized resource manager and dispersed into separate job masters.
In reality, the RM does not perceive speculative tasks and
their utilized resources. The idle resources are actually taken
and re-used by the speculative tasks without being detecting
by regular tasks. The fragment or idle resources can be fully
utilized by the speculative task, and the task instance can be
immediately scheduled to execution machines. Consequently,
these instances can run in advance, greatly accelerating the
running process. Although there is a risk that such tasks may
be killed, holistically it is still more effective at shortening job
duration as well as utilizing idle cluster resources.

B. ROSE Architecture Overview

To achieve [R1], we propose the architecture to not only
guarantee that sufficient resources can be obtained by specific
jobs through centralized resource management, but also reuses
uncollected resources by executing speculative tasks. ROSE
is designed to be complementary and compatible to existing
protocols between the AM and RM, and thus can enhance
existing two-layer scheduling systems. Generally speaking, to
prevent excessive resource over-subscription and the resultant
performance degradation, we design a multi-level threshold
controller at runtime within each NM to determine the tim-
ing of launching speculative tasks and to limit the over-
subscription amount and running number of speculative tasks.
To maximize the effectiveness of resource over-subscription,
ROSE leverages a machine selection mechanism to select
candidate destinations for tasks.

Fig. 5 illustrates an overview of the ROSE system archi-
tecture, which contains of two scheduling modes in AM. The
first mode is to request resources from the centralized resource
manager and then launch relevant tasks or make a resource re-
allocation, which can guarantee that dispatched tasks can be
executed immediately without resource conflicts. The second
mode is the over-subscription mode to proactively negotiate
with one NM whether it can accept speculative tasks. To sup-
port this, AM locally maintains a replica of candidate machine
collection that is periodically coordinated and incrementally
synchronized by the maintainer in the Cluster Aggregator.
Even in case of long task starvation due to queuing or eviction,
AM in ROSE can instantly re-submit the speculative tasks
according to the maintained machine collection. AM adapts

Fig. 6. For each speculative task: the load on the current scheduled machine
and the minimum load(defined as optimal) in the cluster at that moment

a selection process to realize task placement in the event of
a large task number centering in a minority of machines.
The ROSE client can decide whether to turn on distributed
scheduling mode and customize the ratio of tasks that are
allowed for over-subscription per application.

To achieve [R2] and [R3], Cluster Aggregator (CA) is de-
signed to be a module decoupled with RM, to monitor runtime
information and aggregate the task-level status. CA collects
machine load from each NM and aggregates each machine
score based on the estimation from each AM (Section IV-A).
Based on this information, CA can determine a set of candidate
machines in a certain time period and then AM launches
speculative tasks onto machines according to the results. In
CA, we use a multi-phase machine filtering mechanism to
select and rank machine candidates prior to oversubscribing
resources, taking into consideration machine load, correlative
workload performance, and queue states for decision-making
(Section IV-B).

ROSE Job Master is a specific AM that leverages the
proposed over-subscription mechanism to compensate under-
utilized resource requests. First, the Task Scorer component is
used to rate machines based on the internal state and the state
transitions of all tasks within the job. Therefore, the task-level
scoring becomes a valuable criterion during the machine filter-
ing process within the CA. Additionally, as the main actor and
beneficiary of the resource over-subscription, AM coordinates
between the regular resource scheduling and over-subscription
strategy and adaptively upgrades the resource priority/level via
the Over-subscription Controller when resources are granted or
preempted. Due to variations in cluster states, it is possible that
the scheduling decision making might become sub-optimal.
For example, some tasks have already been dispatched to a
specific machine but experience head of line blocking. To this
end, a timing-out re-scheduling might be triggered to mitigate
the task starvation by the Timeout Detector.

Apart from the regular task management, the queue manage-
ment to order and control speculative tasks must be imposed
in the NM. Tasks from different AMs are enqueued and wait
to be launched. This is triggered by the node controller that
determines if the node capacity allows for further oversub-
scribing and which speculative task can be launched based on
real-time queue status and machine loads. This is performed
by: a) component monitoring to capture real-time metrics and
report to the CA (Section IV-A), and b) threshold controller
responsible for process management and runtime resource
isolation (Section V-B).



IV. LOAD AGGREGATION AND MULTI-PHASE FILTERING

We firstly demonstrate that the dispatched speculative tasks
can improve cluster resource utilization efficiency. We con-
duct experiments to investigate whether speculative tasks are
assigned to machines in an optimal manner. Each task is
expected to be assigned onto machines with the least load for
the sake of load-balancing. To quantify this desired outcome,
we profile all speculative tasks by contrasting the utilization
of the current machine where the task is running against
that of the lowest utilized machine across the cluster in the
same measurement interval. Fig. 6 shows the optimal and
actual value of different load dimensions (CPU, memory,
load and disk utilization), with the ideal CPU value (orange
segment) merely accounting for no more than 50% of tasks
are optimally allocated to machines in terms of utilization.
In terms of memory, this gap is even larger, indicating that
the task allocation strategy can be improved substantially. The
CDF shown in Fig. 6 also demonstrates that more than 62%
tasks can be placed onto better machines with at least half
less loads. Therefore, selecting suitable machines is highly
preferable to enhance cluster utilization efficiency.

A. Runtime Load Monitor and Aggregation

Load Monitor. To support precise machine selection at run-
time while measuring the resource utilization and cluster
health, a load monitor is proposed by capturing several ma-
chine metrics for each machine. For instance, we monitor the
resource utilization(cpu util, memory util, disk util, and net-
work received/transmit) and waiting/running container num-
bers for both regular and speculative containers. The monitor
is currently implemented in the NM as a submodule and can be
deployed as a underlying service for operational management.
Considering the data volume of the monitored data and the
resultant network pressure, we aggregate the load information
during a fixed time interval X seconds and periodically collect
and transmit it every Y seconds wherein X and Y indicate
the tradeoff between the data precision and monitor overhead.
Users can manually configure these parameters according to
machine bandwidth or other requirements. We also have to
depict the approximate load level based on the accumulated
historical data and the value will be utilized as a metric in the
decision making.
Scalability Considerations. The rate of data generation will
result in scalability issues for data processing and subsequent
task allocation. For example, if we set X to be 2s, there will be
30 records within a minute, and over 300,000 pieces of data in
a 10,000-node cluster that must be collected and processed to
perform scheduling. It is still extremely challenging to timely
provide an estimated approximation of load for each machine
during a specific time frame, particularly when the fluctuations
of demand and workload frequently changes over time. To
solve this problem, we propose a piecewise-based algorithm
and de-noising load acquisition method to accelerate the run-
time load evaluation without substantial precision degradation.
The NM will locally conduct the calculation before sending the
intermediate results to the CA. The stress of transmission and

Algorithm 1 Load Level Approximation (LLA)
Input: D – continuous tracedata of a machine metric

k – the pre-defined granularity of accuracy and the default value is 5;
Output: v: a predicted tendency value
1: if D is monotonous then :
2: return the last element of D
3: if card(D) < k then :
4: return eliminateOutlierMean(D)
5: let Si ← ∅, ∀i ∈ [1, k]
6: for each d ∈ D do
7: Si ← Si ∪ {d}
8: if card(Si) ≥ ⌈card(D)/k⌉
9: i = i+ 1

10: D′ ← {eliminateOutlierMean(Si)|∀i ∈ [1, k]}
11: if D′ is monotonous then :
12: return the last element of D′

13: else :
14: return eliminateOutlierMean(D′)

Function : eliminateOutlierMean(I)

Input: I – several continuous sample data;
Output: m – mean with eliminating outliers;
1: Q1 and Q3 are the lower and the upper quartiles respectively
2: T ← {d|d ∈ [Q1 − k(Q3 − Q1), Q3 + k(Q3 − Q1)]} (customarily

with k is 1.5)
3: return m←

∑
T

card(T )

calculations can be significantly mitigated by the approximated
estimation and decentralized design.
Load Estimation. Algorithm 1 depicts the load level esti-
mation based on the prior monitoring information and de-
noising process. We define the basic calculation unit as
conducted over a slide window with fixed number of data
points. To accelerate the estimation, we divide the entire
time period into k segments alongside the timeline (Line
1-5) and the calculation can be parallelized on different
segments (Line 6). For each segment, we calculate the average
load by de-noising the sample data through a calculation
(eliminateOutlierMean) based on Tukey’s boxplot [22] [23]
to pinpoint and eliminate potential outliers described in Alg. 1.
Moreover, ROSE can be compatible with other statistical
methods of outlier detection[24] [25] to handle the data with
asymmetric distribution. It is noteworthy that all segments
can conduct the average evaluation in parallel. After the local
calculation, we can obtain the value set D′ containing the k
average values. Subsequently if the elements are monotonous,
we can easily determine the target value according to the
tendency (Line 12). Otherwise, we regard the mean value
with eliminating outliers of D′ as the estimated result (Line
14). Due to parallelism and approximation, the load can be
efficiently calculated. Compared with the decision making
based on loads at a single measured instance, load estimation
based on recent slide window can more precisely capture the
load variation and obtain suitable machines.

B. Multi-Phase Machine Filtering Mechanism

Task Behavior Aware Machine Rating(TBAMR). To ac-
curately reflect the state of task execution, each machine is
assigned a satisfaction level reflecting their ability to suc-
cessfully execute speculative tasks, calculated through the use



Algorithm 2 Task Behavior Aware Machine Rating (TBAMR)
Input: AM – terminated jobs in a specific time period, AMi represents the

i-th job’s application master ;
Taskij – a set of all tasks, j ∈ {1, . . . Ni} represents jth tasks of AMi;

Output: Score – a synthetic score for all machines
1: for each AMi ∈ AM do
2: let penaltyScore← ∅
3: for each Taskij ∈ Taski do
4: if Taskij ’s status ∈ {failed, crashed, tailed, killed} then
5: m← getHostID(Taskij )
6: penaltyScorem ← penaltyScorem + 1
7: penaltyScore′ ← topK(penaltyScore)
8: for each psi ∈ penaltyScore′ do
9: Scorei ← Scorei − psi

10: return Score

of historical job execution data. Specifically, any action that
negatively impacts task execution such as long-tail, failure,
task kill and eviction, is regarded as negative behavior that
reduces the machine satisfaction score. This machine rating
is calculated for each machine by all AMs. Eventually, each
AM reports the perceived machine scores to the CA, using
the detailed pseudo-code as shown in Alg. 2. The procedure
is an important step that will be integrated into the machine
selection (Alg. 3, Line 2).
Multi-phase Machine Filtering. To select the most suitable
machine set where speculative tasks should be placed, ROSE
adopts a multi-phase machine filtering mechanism. In particu-
lar, the mechanism considers runtime load, task-level machine
performance, and the queue status of each machine. With
these multiple phases, we can take advantage of both the load-
balanced and minimized-queuing, thereby mitigating the head
of line blocking problem. Alg. 3 depicts the core phases:

a) Blacklisting from perspective of task-level assessment,
timing-out machine detection and runtime resource alerting.
The cluster aggregator will converge the evaluation scores of
all machines from completed jobs by utilizing Alg. 2. The low-
est K machines will be marked as weak performance machines
which have a higher likelihood of being removed from future
scheduling (Line 2-3). In addition to the low scoring machines,
temporarily timing-out machines are also eliminated from task
placement (Line 4). Additionally, the latest machine load status
is also gathered with overloaded machines filtered out once
any monitoring dimension(such as system loads, max-queue-
length, max-container-number, etc.) surpasses the pre-defined
threshold (Line 5). This is performed through the multi-level
threshold controller in NM(Section V-B).

b) Machine selection based on multi-resource load. In order
to comprehensively consider various resource dimensions,
ROSE leverages a modified tetris algorithm [26] to calculate
where speculative tasks should be packed. The method pre-
dominantly comprises task packing as an optimal projecting
problem within a multi-dimensional euclidean space. The ob-
jective is to maximize the packing efficiency when considering
the scheduler’s weighted preference for each resource dimen-
sion and the used resource amount (i.e. current system load) of
each candidate machine. The vector

−−−−−−−→
loadF ilter represents the

configurable weight values showing the dominant degree of the

Algorithm 3 Multi-phase Machine Filtering (MMF)
Input: (M,AM,Task,mL)
Output: C – candidate machines fit for oversubscribed resources;
1: LM ← {LLA(Mi).normalize()|∀Mi ∈M}
2: MachScore← TBAMR(AM,Task).asendSortByScores
3: B1 ← {Mi|MSi ∈ topK(MachScore) }
4: B2 ← {Mi|Mi ∈M and Mi is disconnected}
5: B3 ← {Mi|(∃j)( LMij ≥ the jththreshold)}
6: M ′ ←M −B1 ∪B2 ∪B3

7: let candidateInfo← ∅
8: for each Mi ∈M ′ do

9: lIndex←
−−→
LM l

i ·
−−−−−−−→
loadF ilter

10: qIndex←
−−−→
LMq

i ·
−−−−−−−−→
queueF ilter

11: candidateInfo← candidateInfo ∪ (Mi, lIndex, qIndex)
12: C′ ← candidateInfo.ascendSortBy(lIndex).topK(d ∗mL)
13: C′′ ← C′.ascendSortBy(qIndex).topK(mL)
14: C = {m|∃(l)∃(q)(m, l, q) ∈ C′′}
15: return C

given dimension in the resource management system. The dot
product value of runtime load information and the weighted
filter

−−−−−−−→
loadF ilter can be regarded as a load index to imply the

accumulated level over the corresponding dimensions(
−−→
LM l

i )
and the approximate load level according to the system’s
administration.

Specifically, within the procedure of implementation, to
ensure the same numerical range, we have to normalize the
available resources and loads of different machines into a
uniform value by the maximum machine capacity in the cluster
and record the values of each dimension of all machines into
LM (Line 1). In reality, the dot product prefers to place
tasks onto light-loaded machines whose available resource is
much more sufficient than others. Compared to the state-of-
the-art DRF [27] multi-resource selection approach, the pro-
posed method can enable more compacted workload packing
especially when the tasks’ requirements are heterogeneous.
The overall resource utilization can be promoted accordingly.
In this context, we calculate and order the load index of all

TABLE II
PARAMETERS IN ALGORITHMS

Parameter Meanings

M
the cluster machine collection where Mi represents the
i-th machine and i ∈ [1, n]

LMm×n
a matrix of monitored load information. i.e.,
[
−−−→
LM1,

−−−→
LM2, ...,

−−−→
LMn]

−−→
LMi

m-dimension metrics of machine Mi. i.e.,
[LMi1, LMi2, ..., LMim]⊺.

−−→
LMi can be divided

into the load-relevant part
−−−→
LMq

i and queue-relevant

part
−−−→
LMq

i . Namely,
−−→
LMi = (

−−−→
LMq

i ,
−−−→
LMq

i )
LMij the j-th dimension of monitored information of Mi−−→
LM l

i
load-relevant dimensions in

−−→
LMi

−−−→
LMq

i

queue-relevant dimensions in
−−→
LMi. i.e.,

[rc am, oc w am, oc r am]⊺
mL a bespoken maximum amount of candidate machines

−−−−−−−−→
queueF ilter

[rc am, oc w am, oc r am], a weighted filter vector
for queue-relevant dimensions. The nil element means
that the dimension is excluded from the selection

−−−−−−−→
loadF ilter

[cpu ut,mem ut, load avg 1, disk s ut, disk ut,
disk usage, net rec ut, net tra ut], a weighted
filter vector for load-relevant dimensions



machines (Line 8-9) and filter out a set of machines which
most fit for over-subscription (Line 12).

c) Machine selection based on queue states. Under similar
load circumstance, the capability of launching tasks as soon as
possible is significantly important to shorten the job execution
time. Thus, another factor to consider in the mechanism is
the length of queue state. It can indirectly indicate how soon
the waiting tasks can be allocated onto a given machine. The
queue relevant statistics

−−−→
LMq

i such as waiting, running task
numbers are also profiled periodically. For example, apart from
the regularly running task containers, the currently running
and waiting number of the speculative tasks are recorded in
the LM . Similarly, an index of queuing status is calculated by
the dot product operator (Line 10). In this manner, the 3-tuple
information for each machine (Mi, lIndex, qIndex) can be
obtained and aggregated (Line 11). On the basis of the load
pre-filtering, the final selection phase is to determine the mL
machines that is prepared for those waiting AMs to efficiently
and accurately leverage idle resources (Line 13-14).

C. Parameter Setting-up

The interval of load collection X highly depends on the
performance monitor techniques adopted in the distributed
platform. A larger X will result in greater precision loss of
load estimation. Thus the number should be minimized as long
as the monitor overhead is affordable. At present, we configure
X to be 1s or 2s since the paralleled load approximation can
effectively cope with the scalability issues.

The interval of load aggregation Y from each NM to CA
is another parameter that determines the frequency of muti-
phase machine filtering in CA and triggers the dispatching of
speculative tasks in AM. If Y grows too large, the machine
filtering will exhibit random selection, which dramatically
decreases the ROSE’s effectiveness. In fact, the basic principle
of setting Y is to cover the trend of load change and ensure the
timely update of machine list in CA. We also discovered that
this value positively correlates to the turnover and throughput
of speculative tasks. Therefore, according to our experience,
Y was configured to be 10s, and can be dynamically adjusted
when workloads change.

V. ROSE JOB SCHEDULING AND THRESHOLD CONTROL

A. ROSE Job Scheduling

Job Scheduling with Task Upgrade. In the event of un-
fulfilled resource requests due to insufficient resource, the
AM will proactively dispatch several speculative tasks onto
NMs according to the latest result of MMF procedure (Alg.4
Line 1-2). The AM also tracks all launched tasks until their
completion. Once the waiting resource is approved and the
corresponding request can be further fulfilled, the AM de-
termines whether a speculative task has been launched and
which machine it is executing within. If the available resources
are assigned to a resource request that is served by an over-
subscribed resource, the speculative tasks should be trans-
formed to regular tasks. In effect, the task upgrade is achieved
according to the task location and execution progress. Ideally,

Algorithm 4 ROSE Job Scheduling
1: if requests cannot be satisfied then
2: launchSpeculativeTask(MMF(M,AM,Task,mL))
3: if waiting resource is approved then
4: taskLoc, resLoc← where(task, resource)
5: if isSameP lace(taskloc, resloc) then
6: upgradeTask(task)
7: else if task progress is less than τ then
8: killSpeculativeTask(task)
9: startRegularTask(resource)

10: else
11: keepSpeculativeTask(task)
12: reserveRes(resource)

we preferably expect to alter the speculative task on the same
machine because there is no additional initialization time to
reschedule and launch. Thus, if the launched task has already
been executed on the same machine, ROSE will directly re-
label it as a regular task (Line 5-6). Otherwise, ROSE judge
if the it is cost effective to evict the speculative task based on
the execution progress. If the task is started with a progress no
greater than a provider defined threshold(e.g., 60%), the task
is killed and launched using new resources (Line 7-9). If the
progress surpasses the threshold (indicating a near-completed
task), we retain the task and also reserve the recently approved
resource just in case of the speculative task failure (Line 11-
12). The resource reservation is seemingly contradictory to
the improvement of resource utilization. However, the reserved
resource can be oversubscribed again to other tasks, thereby
reducing overall cluster task eviction and shortening overall
job makespan.
Task Rescheduling. Task starvation is also a common oc-
currence in the speculative tasks since the previous decision
might become sub-optimal and unreasonable considering the
variation of cluster states. In order to avoid this scenario,
the AM adopts a time-out detection to determine how long
the speculative tasks are waiting within the NM queue. If
the waiting time is over a finite timing-out bound, the task
will be re-dispatched to machines by using the latest MMF
result. This strategy can prevent the starvation and head-of-line
blocking, resulting in a better utilization and load balancing
among different queues. The occurrence of task stragglers can
also be mitigated.

B. Runtime Threshold Control
Threshold Control. We extend NM to realize the threshold
control of physical resource and queue management. Firstly,
multi-resource restrictions are imposed during the execution of
speculative tasks. An over-subscription ratio (OR) is used to
regulate the degree of resource over-subscription in the cluster
to avoid using excessive resources. For example, if the memory
capacity of a machine is 10GB, we can specify a 40% OR to
ensure that at most 4GB can be over-subscribed. In fact, the
ratio can be tuned by system administrators according to their
aggressive or conservative strategy and preference. The value
can also be learned from experiences based on continuous
monitoring and profiling. In this manner, the over-estimated
and fragmented resources can be aggregated and reused for



launching tasks. It can also avoid the performance interference
with regular tasks as much as possible in the scheduling.
Secondly, based on runtime system information, a controller
manages the whole life-cycle of speculative tasks including
task enqueue permission, execution start time, resource allo-
cation, task preemption with priorities, etc. For instance, the
controller determines if a speculative task can be started if all
resource metrics are within the limits of upper bounds and the
overall over-subscription quota does not surpass the maximum
threshold. Once any dimension is beyond the corresponding
threshold value, the over-subscription will be temporarily
blocked until the launching condition is satisfied. This also
creates the opportunity to configure a certain resource require-
ment according to user’s or system administrator’s demand.
The administrator should also have a specified configuration
to consider machine heterogeneity. When the regular tasks
request to revoke resources, task preemption will occur. As
a result, our proposed machine selection can facilitate the
speculative tasks running on reasonable machines where such
preemption infrequently occurs.
Resource Isolation. In current process management, we lever-
age cgroup [6] and its sub-systems such as blkio, cpu, memory,
net cls to enforce the IO, CPU, memory and network isolation
and control for over-subscription. We generate a tree-based
structure for each resource dimension and the root node of
the hierarchical structure describes and controls the resource
isolation. We define two node types to serve – the regular
group and over-subscription group. As the immediate children
of the root, the nodes represent the parent for task containers.
We separate tasks into two sub-tree collections through placing
speculative task and regular task within the over-subscribed
and regular group, respectively. Each group manages its own
priority and tasks within the over-subscribed group have lower
priorities than those in the regular group. This mechanism
can ensure the speculative tasks are preempted by higher
prioritized tasks. In regards to applicability, the architecture
and approaches of ROSE have been designed so that it can
accommodate LXC[7], Docker[28] which can provide further
isolation.

C. Discussion

ROSE is particularly effective and suitable for under-utilized
computing systems where offline(such as batch processing)
jobs are the dominant type of workload. ROSE is designed on
the assumption that idle resources can be heavily exploited
as long as the resource thresholds are not met. As batch
processing workloads are less sensitive to QoS(e.g., response
latency), they can tolerate a transient reduction in resource
requirements and can be speculatively used by co-located tasks
due to resource sharing or evicted tasks due to resouce pre-

TABLE III
COMPARISONS – YARN-R, YARN-N AND YARN-O

Group CPUUtil MemUtil Makespan #Unqueued #SuccSpec
Yarn-n 21.3% 18.5% 609s – –
Yarn-o 38.6% 27.1% 587s 169 58
Yarn-r 59.4% 49.3% 481s 0 493

emption and return. However, for online jobs, resources should
be strictly over-provisioned to ensure sufficient resources in
the event of any burst-type behavior. Due to the lack of a
kernel-level feedback control mechanism to capture transient
QoS fluctuation, ROSE cannot fully exploit the idle resources
of such online jobs whilst providing a high-precision control
of end-to-end latency. Therefore how to realize the QoS
control and corrections in a dynamic environment remains a
challenging topic in ROSE, as well as other resource managers.
We are currently extending ROSE to deal with safe co-
location of both computation-intensive and latency-sensitive
workloads by using QoS profiling and prediction, and runtime
PiPo [29] with rapid failover [30] to precisely control the
batch execution without causing severe QoS degradation. The
threshold controller can carry out corrections from the QoS
Controller based on the performance of running tasks.

VI. EVALUATION

A. Experimental Setup

Environment. To illustrate the general applicability, we im-
plemented ROSE within both Fuxi and Yarn to demonstrate
improvements in cluster resource utilization and job makespan
compared to other resource over-subscription strategies. Eval-
uation of ROSE’s effectiveness in Yarn was performed using
a 32-machine cluster, while comparisons against other over-
subscription strategies were performed in a 210-machine clus-
ter. Each machine consists of two 6-core Intel(R) Xeon(R)
CPU E5-2630 processors, 82GB RAM, 12*1.9TB disk drives,
and 10Gbps network. Furthermore, we also implemented
ROSE into a 4,600-machine cluster in Alibaba.
Baselines and Methodology. We compare the ROSE mecha-
nism in Yarn (Yarn-r) against native Yarn (Yarn-n) and the cen-
tralized over-subscription method in Yarn (Yarn-o). Further-
more, we also compare ROSE against non-over-subscription
and three over-subscription scheduling strategies adopted in
other systems: 1) RB (Random Based method): Assigns tasks
by round robin and FIFO queue management. This is the
comparable method of which Sparrow[31] and Apollo[18]
perform resource over-subscription; 2) SLB (System Load
Based method): Considers real-time resource utilization when
selecting candidate machines; 3) QLB (Queue Length Based
method): Primarily measures the queue length or waiting
container size of each machine, and is adopted within
Mercury[19]. A series of micro-benchmarks were performed
to demonstrate the detailed benefits gained from adopting the
ROSE design. These metrics consider:

• Cluster Resource Utilization. Average CPU utilization,
CPU load per minute, memory usage, and disk utilization
etc. on a cluster-level and node-level basis.

• Job Completion Time (JCT). End-to-end completion time
for a single job, recorded from the start of job AM execution
and finished at the termination of all tasks.

• Workload Makespan. The holistic span-time for a batch of
jobs, consisting of the accumulation of all submitted jobs.

• Task Eviction Number. Evictions due to preemption.
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Workloads. Experiments were conducted using the mixture of
jobs including WordCount, TeraSort[32] on 10GB data and a
Bayesian classification algorithm in the Mahout library[33] on
1.6GB set of Wikipedia pages jobs. These are well established
to benchmark cluster scheduling performance[11][29][34].
While we conduct experiments with different workload in
MapReduce, the concept of speculative tasks through over-
subscribing resources is readily applicable to other types of
jobs (e.g., Tez and Spark) and no difference will manifest if
the AM is correspondingly implemented adhering to the ROSE
protocol and interfaces.

B. ROSE vs. Centralized Over-subscription in Yarn

We evaluated the effectiveness of applying ROSE in
Yarn(Yarn-r) by submitting 40 Mahout ML jobs into a 32-
machine Yarn cluster. As shown in Table III, the average clus-
ter CPU utilization can be increased to 59.4% in comparison
to Yarn-n(21.3%) and Yarn-o(38.6%). Memory utilization also
sees similar improvements when using ROSE, increasing to
49.3% compared to 18.5% and 27.1%. Moreover, the overall
makespan of submitted jobs can be shortened using ROSE-
based Yarn-r by 21.0% and 18.1% compared with Yarn-n and
Yarn-o. ROSE can successfully launch 8.5× more speculative
tasks than Yarn-o without any exclusion from the NM’s local
queue. By contrast, in the centralized over-subscription method
Yarn-o, a large portion of the created speculative tasks fail

TABLE IV
USAGE STATISTICS

Dimensions RB SLB QLB ROSE
Avg Task Num/node 1.637 1.868 1.308 3.176

Avg CPU Load 9.739 10.704 9.263 13.902
Mem Usage(GB) 10.040 9.610 7.294 10.457

Disk Util(%) 32.727 33.870 31.814 50.956

to enqueue. This is because ROSE is capable of launching
speculative tasks more efficiently and accurately into machines
with higher suitability due to removing delayed message
piggybacking and adopting multi-phase machine selection.

C. Benchmarking
To emulate production workloads, we submitted 60 jobs

(equal numbers for each of those three types) in each exper-
iment run, forming 214,880 tasks in total. Each job type was
configured consisting of various task scales (10*10, 100*10,
100*100, 1000*100, 1000*1000, 8000*2000) where m ∗ r
represents m mappers and r reducers per job.
Over-subscription Parameter Impact. Herein, we investigate
the impact of over-subscription parameters that may influence
the system and job performance. In a ROSE job, we can cus-
tomize the proportion of tasks that can speculatively requests
resources that can be over-subscribed. This ratio is used to
balance between resource utilization and cross-job fairness
within a multi-tenant environment. We adjust the ratio within
a job from 0 % to 100% (where 0% indicates that no tasks
within the job are allowed to use over-subscribed resources).
Fig.7 demonstrates the full over-subscription (with 100% task
over-subscription capability) can achieve more than 31.24%
(from 637.06s to 438.04s) improvement in overall execution
efficiency. Additionally, when the ratio value increases, the
utilization of all resource dimensions also increase. Therefore,
we preset the ratio as 100% in all experiments. In particular,
when diverse workloads within different constraints are sub-
mitted by multiple tenants, the ratio configuration can provide
sufficient flexibility to satisfy various service requirements.
Resource Utilization. Fig. 9 shows ROSE increases CPU
utilization, achieving 65.10% on average versus 36.37% with
the non-over-subscription method. Fig. 8 and Table IV depict
a heatmap of per-node resource utilization and the number
of speculative tasks launched using different over-subscription
strategies. ROSE can achieve a higher CPU and disk utility
across the entire cluster. For instance, the average load can
be increased by 42.75% and the number of speculative task
launched per node even doubles compared with other strate-
gies. Since the workloads executing within the experiment are
IO-intensive, an increase in disk utilization is the most impor-
tant dimension to consider. In particular, as shown in Fig. 10,
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ROSE can achieve an 18.23% disk utilization improvement.
The memory usage does not exhibit an obvious grow as the
CPU and disk thresholds are firstly reached which imposes a
restriction on the memory over-subscription.

All these improvements are resultant of additional specula-
tive tasks that utilize the over-subscribed resources. In reality,
by using the multiple phase machine selection, the speculative
tasks within ROSE can be precisely dispatched onto machines
that have sufficient capacity to execute additional workloads.
Consequently, the number of running speculative tasks is al-
most 1.94x and 1.70x times that of RB and SLB. Accordingly,
the finish time is shortened due to the increased efficiency of
cluster packing, as well as the reduced waiting time for tasks
to be assigned oversubscribed resources. By contrast, the RB
method does not consider the runtime resource variation and
thus lacks the optimal task placement.

In fact, other than IO intensive workloads, ROSE natu-
rally facilitates other types of workloads. In particular, the
CPU-intensive and short tasks can be significantly enhanced
by the proposed efficient resource over-subscription. This is
because the shorter task duration is, the less likelihood of
task eviction occurrence during it’s execution, resulting in
efficient resource fragmentation recycling. The CPU isolation
and sharing mechanism within cgroups can also provision
more flexible approaches that complement our solution.
Job Completion Time. To accurately determine the effect
of job execution, we repeatedly submit the workloads for
20 rounds. Fig. 11(a) shows the statistics of the workload
execution with the maximum, 75th percentile, average(green
circle), median(red line), 25th percentile and the minimum
execution times depicted. In terms of the median value of
all submission rounds, it is observable that SLB and QLB
reduce the workload makespan by approximately 10.56% and
17.72% compared with the random-based method, while the
reduction can even reach 30.11% by ROSE. Additionally,
the fluctuation of workload makespan in ROSE can also be
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Fig. 12. Rescheduling approach

TABLE V
EVICTION NUMBER

#Evicted #Started
RB 532 85411
SLB 556 111915
QLB 680 81982
ROSE 591 117676

diminished compared with other approaches.
Fig. 11(b) illustrates the per-job execution time by synthe-

sizing all submitted jobs. It is observable that the execution
time varies as the number of mapper and reducer changes and
consequently, the submitted jobs exhibit diverse time ranges.
Nevertheless, we can observe that there is an improvement for
effectiveness for JCT. For example, the 75th percentile box
border of ROSE increases, indicating that job execution times
with small configurations (e.g. 10 mappers and 10 reducers)
is shortened and aggregated within 230s. Compared against
the RB method, the overall distribution of completion time
shifts smaller. Specifically, the maximum of job execution
time in ROSE can be reduced by approximately 27.19%.
By contrast, SLB and QLB methods only result in a 5.04%
and 21.35% reduction respectively. This substantial reduc-
tion within ROSE is predominantly derived from rapid task
launching with oversubscribed resource and efficient machine
filtering process. The threshold controller can also provision
the best destination for speculative tasks, avoiding potential
interference or eviction.
Rescheduling and Task Eviction Reduction. To evaluate
the effect of the rescheduling approach on job execution,
comparisons are conducted between RB (with rescheduling)
vs. RB(without rescheduling) and ROSE(with rescheduling)
vs. ROSE (without rescheduling). Fig.12 shows that RB
and ROSE are capable of reducing the median makespan
by approximately 12%. We also evaluate the task eviction
occurrence during over-subscription. Table V demonstrates
that ROSE achieves a substantially increases speculative task
number by 37.78% and 43.54% compared to RB and QLB,
respectively due to more speculative tasks can be accurately
launched within specific machines. Despite a large increase in
speculative tasks, the eviction rate only slightly increases due
to the machine filtering and threshold controller in ROSE.

D. ROSE at Scale

We implemented ROSE into the Fuxi scheduler used within
a large-scale test cluster at Alibaba to demonstrate it’s ef-
fectiveness at scale. This system is formed by 4,300 servers,
100k jobs and over 200k tasks, containing total 42 millions
parallel instances. Figure 13 shows cluster resource utilization
when ROSE over-subscription is activated for 3 hours. It
is observable that ROSE was able to consistently achieve
a doubled CPU increment, with the average cluster CPU
utilization increasing from 31.7% to 60.2% compared with
no over-subscription activated. This improvement results in a
23.3% reduction of the overall job makespan. The evaluation
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demonstrates that ROSE can significantly accelerate the job
execution and increase the system throughput.

VII. RELATED WORK
Cluster scheduling. Resource management systems in shared
clusters are proposed[9][10][11][12] to underpin diverse work-
load through resource negotiations through a central re-
source manager. DRF[27], capacity scheduling[2] or fairness
scheduling[3][35] are proposed to fulfill an efficient quota-
based resource sharing among multiple jobs. The objective is
the enforcement of scheduling invariants for heterogeneous ap-
plications, with policing/security utilized to prevent excessive
resource occupation. It sacrifices efficient resource utilization
for the assurance of scheduling fairness and job execution
performance. Over-subscription slightly violates the fairness
criterion when best-effort tasks are launched.
Over-subscription in virtualized environments. Over-
committing memory or CPU is a long-standing concept in the
Linux kernel [8]. It allows for allocation of more resources
than available, based on the assumption that processes often
do not utilize applied resources fully. Conservative systems
frequently leverage this concept to avoid the dangers of OOM
killing and evictions. In fact, virtual resources (e.g., vCPU)
are actually visible to the resource manager. The underlying
over-committing mechanism in the standalone is orthogonal
to the proposed cluster scheduling policy. In virtualized Cloud
datacenters, resource over-subscription is a widely-used tech-
nique [16] [17] [36] due to the same principle. Different
VMs might have differentiated QoS, resulting in the different
tolerance level of being overbooked from its own resources.
Available physical capacity can be dynamically adjusted for
VMs that need the resource. A feedback-control approach
is adopted to steer and ensure the resource re-distribution
among co-located VMs depending on their tolerated over-
subscription level. However, this over-subscription mechanism
cannot be directly applied into the computation-intensive
scenario as batch processing jobs due to resource mismatch
described within Section II, and unsuited to handle millions
of running tasks in virtualized or latency-sensitive application
platforms [29]. ROSE is to compact the resource utilization in
a more black-boxing manner for those latency-agnostic tasks.
Over-subscription in big data environments. Centralized
over-subscription in YARN[4] and Mesos[5] re-uses the re-
source allocation strategy used in the centralized scheduling
pipeline. All over-subscription decisions are handled in the
central manager (Yarn RM or MesosMaster) according to
current machine loads that places considerable strain on the
cluster scheduler. The message including machine load level,

where to launch opportunistic tasks is only piggy-backed
by the heartbeat between NM, RM and AM. Afterwards,
opportunistic tasks will be sent, enqueued and launched on the
given NM. The the whole procedure take at least 3 heartbeat
interval, and the time will be several times longer considering
the task retry and re-submission. However, resource usage
changes during this time period and resource mismatch will
result in the inaccurate speculative task distributing, long-time
queuing, cancelling, as well as longer job completion times.
By contrast, ROSE harnesses the decentralized, heartbeat-
decoupled method to filter proper nodes for over-subscription,
and uses the threshold control to flexibly create and control
speculative tasks at any possible moment. Within decentralized
schedulers, Apollo[18] introduces opportunistic scheduling to
take advantage of idle resources. However, randomly selected
tasks can only fill the spare capacity of compute slots and
may lead to blind task dispatching. Mercury[19] adopts a
hybrid scheduling to enhance cluster throughput and reduce
feedback delays. However, both these approaches rely on the
precise queue delay estimation which limit its applicability
when considering volatile workloads behavior. Sparrow[31]
and Hawk[37] perform random-based probing to assign tasks.
However, due to limited visibility of entire cluster resources,
it sacrifices scheduling quality for low-latency and is unlikely
to ascertain an appropriate destination machine under high
load. In comparison, ROSE can comprehensively reuse all idle
resources with accurate machine filtering and task packing.

VIII. CONCLUSION AND FUTURE WORK

We have proposed in this paper a cluster scheduling system,
called ROSE, that uses a multi-layered scheduling architecture
to manage and oversubscribe idle resources in a speculative
fashion. The ROSE system requests intelligently to launch
speculative tasks within machines according to their effective-
ness to oversubscribe resources. We have demonstrated that
ROSE has several desirable advantages, including increased
resource utilization and reduced workload makespan. Judi-
ciously oversubscribed resources for speculative task execution
often increase substantially the gain of resource efficiency.
It is however important to notice that trade-off should be
made elaborately between the job execution with fairness
guaranteed and the effectiveness of resource scheduling to
applications. Quota-based admission control may be enforced
for multiple applications so that those oversubscribed re-
sources can be fairly shared. Additionally, the distributed and
loosely-coordinated scheduling mode within each AM to re-
use idle resources is becoming a necessity when handling
heterogeneous workloads with diverse characteristics. We plan
to enhance further the effectiveness of ROSE in high resource
contention environments, and at the same time reduce the pre-
emption overhead.
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