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Abstract. Deep Learning (DL) models are deployed as jobs within
machines containing GPUs. These DL systems - ranging from a singular
GPU device to machine clusters - require state-of-the-art resource man-
agement to increase resource utilization and job throughput. While it
has been identified that co-location - multiple jobs co-located within the
same GPU - is an effective means to achieve this, such co-location incurs
performance interference that directly debilitates DL training and infer-
ence performance. Existing approaches to mitigate interference require
resource intensive and time consuming kernel profiling ill-suited for run-
time scheduling decisions. Current DL system resource management are
not designed to deal with these problems. This paper proposes Horus, an
interference-aware resource manager for DL systems. Instead of leverag-
ing expensive kernel-profiling, our approach estimates job resource uti-
lization and co-location patterns to determine effective DL job place-
ment to minimize likelihood of interference, as well as improve system
resource utilization and makespan. Our analysis shows that interference
cause up to 3.2x DL job slowdown. We integrated our approach within
the Kubernetes resource manager, and conduct experiments in a DL clus-
ter by training 2,500 DL jobs using 13 different models types. Results
demonstrate that Horus is able to outperform other DL resource man-
agers by up to 61.5% for resource utilization and 33.6% for makespan.

Keywords: Machine learning systems · Performance interference ·
Deep Learning · GPU scheduling · Cluster resource management

1 Introduction

Deep Learning (DL) is an increasingly important type of machine learning algo-
rithm with significant potential for touching many aspects of society [12]. The
rapid growth in the number of DL practitioners and the data they require in
their computations has created a necessity for both individually powerful, as
well as large-scale clusters of machines equipped with GPUs - specialized hard-
ware accelerators - to facilitate the vast amounts of computation DL entails at
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reduced training time. These systems, which we refer to as DL systems, use
resource management frameworks to perform DL scheduling and job placement
(i.e allocation of DL jobs onto GPUs). An important goal for DL systems is to
maximize the effective utilization of these expensive resources through minimiz-
ing makespan, job waiting, and job completion time (JCT).

DL systems, particularly clusters, experience issues associated with GPU
underutilization and long queuing times [19]. One cause of such underutilization
is that DL resource managers disallow co-location of multiple DL jobs within
the same GPU [13,25]; a characteristic shared within other resource managers
such as Kubernetes and Yarn that were originally designed for CPU-based work-
loads [16,35]. Instead, the majority of DL resource managers focus on reducing
network latency and locality [3,13,25]. This inability to co-locate DL jobs within
the same GPU results in reduced resource utilization, longer queuing times and
reduced cost efficiency within DL systems.

Recent DL resource managers have been proposed that make placement deci-
sions by consolidating DL jobs onto fewer machines to minimize workload and
JCT [3,13,37]. However, while DL resource managers now exist that allow for
co-location [29,37], there has been little attention drawn to the performance
interference which arises between multiple DL jobs training within the same
GPU. Performance interference (which we refer to as interference), results in
slower training step time and overall epoch time. Previous work has demon-
strated the existence of interference within DL systems, resulting in an 18%
JCT slowdown [37]. Furthermore, as no existing DL resource manager considers
the impact of interference in DL job co-location decisions, this can lead to poor
placement of unsuitable jobs resulting in a higher makespan, increase in JCT,
job eviction and job failures from GPU out-of-memory (OOM) errors [19].

We propose Horus, a DL system resource manager that maximises resource
utilization and minimizes makespan whilst attempting to reduce JCT perfor-
mance degradation by anticipating interference due to co-location. By leveraging
DL model application features ascertained from [40], Horus is able to estimate
the GPU utilization of DL jobs prior to execution, and make better placement
decisions to determine suitable co-location combinations with the lowest interfer-
ence. Our approach avoids the need to profile kernel patterns [6,26], modification
of the GPU thread-block scheduler (commonly proprietary to GPU hardware
manufacturers), and extensive online profiling of job execution in an isolated
GPU at scheduler runtime; all of which are expensive and time consuming pro-
cesses in terms of system development and job placement. Our core contributions
are: (1) Analysis of DL job co-location patterns. We empirically measured
276 unique combinations of interference patterns from co-locating 13 prominent
types of DL jobs comprising both vision and language models (Sect. 5.2). Our
results demonstrate that co-locating DL jobs with high GPU utilization require-
ments leads to a 1.5X–3.2X JCT increase stemming from interference. Moreover,
we observe that interference patterns significantly vary between different DL job
combinations, and that equivalent GPU utilization can exhibit dissimilar JCT
degradation patterns.
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(2) Co-location DL resource manager. Via leveraging GPU utilization
estimation, we construct a cost-based best-fit-decreasing model that determines
suitable placement for DL job co-location (Sect. 4). Horus was integrated into
Kuberentes [16] - an open source cluster manager, and was evaluated by submit-
ting 2,500 DL jobs from different application domains into a GPU cluster under
different workload patterns (Sect. 5). Results demonstrate that Horus achieves
high resource utilization and scheduler performance, and outperforms various
cluster resource managers - including other co-location approaches [35,37]) - with
improvements up to 61.5% and 33.6% for resource utilization and makespan.

2 Background

2.1 Deep Learning

Deep Learning is a type of machine learning algorithm based on neural net-
works. DL models are formed by deep neural networks (DNNs), consisting of
input, hidden, and output layers [12] and have two phases: training and infer-
ence. DL model training requires significant volumes of data [15] to iteratively
minimize an error objective. Larger numbers of layers and units per layer results
in higher number of floating point operations (FLOPs) to execute [32]. GPUs are
frequently used to accelerate DL model training due to their ability to rapidly
perform FLOPs execution using thousands of processing cores. For example,
Nvidia GPUs define abstraction over a group of cores as streaming multiproces-
sors (SMs), which are used to execute GPU kernels. A complex DL model (i.e
expressed by model depth and width) will result in greater number of FLOPs,
and thus a higher GPU utilization in comparison to simpler DL models that
leverage the same batch size and GPU architecture [1].

2.2 Deep Learning Resource Managers

Due to the growing number and scale of DL jobs that require training on TB-
scale data, researchers and businesses leverage DL systems: powerful machines
or clusters of machines to accelerate training. Users submit jobs to a DL system
via a web portal or command line interface with specified job configurations (e.g.
batch size, model, dataset) comprising one or more tasks that execute within a
container. DL jobs are assigned resources and allocated onto machines through
use of a resource manager to increase system resource efficiency to satisfy a spec-
ified Service Level Agreement (SLA). Existing DL system resource managers1

have focused on a specific sub-set of objectives including minimizing makespan,
JCT, as well as maximizing system resource utilization and energy-efficiency [4].

Recent studies of production DL systems have identified several challenges:
low utilization of system resources reflected by an average GPU utilization of

1 Which we refer to as DL resource managers.
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Fig. 1. Difference between traditional vs. DL resource managers: DL job co-location
manifesting interference.

52% [19], and long queuing time for DL jobs between 4000 s–8000 s due to head-
of-line blocking [13]. These challenges are exacerbated by DL systems leveraging
non-preemptive traditional schedulers [16,35] that require DL jobs to hold exclu-
sive access to a given GPU. This is particularly problematic in the context of
schedulers due to its negative impact upon job throughput and makespan, sys-
tem availability, and cost efficiency.

Improving upon established approaches, recent DL resource managers have
been designed to address challenges of under-utilization and long queue times via
improvements to network locality and bandwidth [3,13,25]. Another approach
demonstrated to be effective for DL resource managers is enabling the co-location
of DL jobs within the same GPU to execute simultaneously, improving overall
system resource utilization [29,37]. However, few DL resource managers consider
or capture the drawbacks of co-location when performing DL job placement
decisions, including the manifestation of interference that might result (Fig. 1).

2.3 Deep Learning Interference

Interference occurs when multiple processes compete for limited resources within
the same machine [8,23]. Interference of DL jobs co-located within the same GPU
has been shown to result in 18% JCT degradation [37]. This is problematic when
considering that DL jobs may train in the region of hours to days. Hence, in
order for DL systems to fully exploit co-location, DL resource managers should
consider the effects of interference when performing DL job placement.

Profiling DL job resource usage (notably GPU utilization) allows DL resource
managers to minimize interference resultant from co-location. GPU interference
differs from that of CPU interference because of their processor architectures.
GPUs use a thread-block scheduler to schedule compute or memory intensive
kernels to streaming multiprocessors, and leverage single instruction multiple
data parallelism on many cores, whereas CPU uses multiple instruction multiple
data parallelism on fewer cores. Precisely calculating interference for different co-
located DL job combinations is challenging due to the diversity in model types
and kernels that are implemented in different DL libraries [2].
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Table 1. Studied DL models in Vision (Cifar10 [21]) and NLP (WikiText-2 [24], News-
Commentary v14-en-zh [36]

Model Type Batch size

MobileNetV2 [27], GoogLeNet [31], ResNet [15],
VGGNet [30], DenseNet [17], SqueezeNetV1 [18],
ShuffleNetV2 [22], ResNeXt [38], MNASNet [33],
PyramidNet [14], DualPathNetwork [7]

CNN 64, 128, 256

LSTM [11], Transformer [34] RNN 16, 32, 64

While there exist several GPU resource managers that minimize interfer-
ence [6,26], such approaches require extensive online profiling of job kernel access
patterns at scheduling runtime. This is challenging as profiling DL job resource
usage (e.g. instruction per cycle, DRAM throughput, compute efficiency) to
infer interference by creating suitable performance profiles may extend DL job
training within the regions of minutes to hours. Additionally it must be per-
formed for every new DL model type submitted into the system. This results in
considerable resource overhead when using profiling tools such as nvprof and
nv-nsight-cu-cli, as well as increased DL system makespan. We believe an
alternative approach is to understand how DL model types and model configu-
rations result in varying DL job resource usage patterns, in order to infer inter-
ference for different co-location combinations. This would allow for DL resource
managers to co-locate DL jobs more effectively through considering the impact
of interference in placement decisions.

3 Deep Learning Interference Study

This section presents our analysis of different interference profiles for co-located
DL jobs. While there have been prior studies into GPU interference [6,39],
the majority of works use few or relatively simple DL models types and con-
figurations (i.e. LeNet, Multilayer perceptron, MNIST). We conduct a micro-
benchmark of different co-location combinations with heterogeneous configura-
tions of prominent DL model types, and study their influence upon resource
utilization and interference profiles.

3.1 Setup

A wide variety of DL jobs were deployed within a DL system (4 x Nvidia Geforce
1080, Intel i7-6850k, Nvidia Docker 2, CUDA Toolkit 10.0), and using the DL
library frameworks AllenNLP [10] and Pytorch 1.1. Leveraging methods estab-
lished within prior studies of GPU interference [6,39], micro-benchmarking was
conducted by co-locating paired combinations of DL jobs within the same GPU
device, and then measuring the corresponding JCT performance degradation
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Tdeg from interference during DL job training. Performance degradation is cal-
culated as

Tdeg =
|Tcolo − Tsolo|

Tsolo
(1)

where Tcolo is the time taken for a co-located DL job to reach a fixed time epoch,
and Tsolo is the time taken for the same DL job training in isolation.
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The DL job micro-benchmark comprises 13 unique DL model architectures
including both convolution neural networks (CNNs) and recurrent neural net-
works (RNNs) from computer vision domains and natural language processing
as shown in Table 1. Each model is then further modified with different model
configurations such as residual blocks, projection dimensions, and scale param-
eters. DL models were selected due to their usage within previous DL resource
managers [13,25,37] and prominence in the machine learning community. This
provided a total of 24 unique DL model configurations, and 276 unique co-
location combinations (300 when including DL jobs in isolation) for profiling.
Each DL job is trained for a fixed set of five epochs to capture a stable perfor-
mance profile. Analysis metrics were collected from monitoring the DL system,
using nvidia-smi to collect statistics for GPU utilization, PCIe bandwidth and
GPU memory usage.

3.2 Analysis

We found that co-located DL jobs that require high GPU utilization results in
greater JCT slowdown from higher interference. For example, co-locating two
VGG19 models (each requiring 90%+ utilization in isolation) results in over a
3.2X JCT increase. Figure 2a shows that for all co-located job combinations,
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Fig. 3. Horus scheduler framework overview

GPU overcommitment (i.e. the cumulative GPU utilization requirement greater
than 100% of a GPU device) results in an average JCT increase of 42%. In
contrast, pairs of co-located DL jobs that individually require less than 50%
utilization are less likely to experience overcommitment, and, as a result, can
be co-located with similar sized jobs with minimal interference JCT increases of
1–10%. Moreover, we observed that the degree of JCT increase stemming from
interference varies quite substantially, even for jobs with similar DL job utiliza-
tion levels in isolation. This phenomena can be seen in kernel access patterns
shown in Fig. 2b, whereby co-locating VGG with either LSTM (1 layer, hidden
dimensions 128) or MNASNet (Depth 1.3) results in an equivalent GPU utiliza-
tion of approximately 147%, however results in a 1.3X and 3.03X JCT increase.
The reason for this behaviour is due to convolution kernels being intrinsically
more compute intensive in contrast to GEMM kernels, as well as different mem-
ory transfer and compute patterns when contending for resources [6].

4 The Horus Framework

4.1 Overview

Horus is designed to operate within DL resource managers that leverage GPUs,
and comprises two main components as shown in Fig. 3: the Resource Estimator,
and Resource Scheduler. At submission time, the estimator calculates the GPU
utilization of an executing, or incoming DL job, ascertained via online metric
collection or prediction [40] (detailed in Sect. 4.2). The scheduler assigns DL
jobs to GPUs by ranking their suitability to support co-location. Our approach
attempts to greedily maximize GPU utilization to minimize makespan whilst
attempting to avoid placement decisions that lead to severe interference causing
JCT slowdown (detailed in Sect. 4.3).

Our resource manager can be deployed within a single DL system, or within
a cluster integrated within existing resource managers such as Kubernetes [16].
In the context of clusters, Horus uses a shared-state, centralized architecture
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due to its suitability to handle long jobs (an common characteristic of DL job
training), as well as providing a view of overall global cluster for high quality
scheduling decisions [9,28]. A centralized cluster view is maintained through a
shared centralised repository, with monitoring agents deployed in each machine
reporting application and system utilization metrics for placement decisions.

4.2 Resource Estimator

Estimation of Expected GPU Utilization: While our framework does not
modify any underlying DL libraries to function, it does require DL model uti-
lization to be provided. Such utilization patterns can be provided via execution,
or prediction. For Horus we have leveraged the prediction technique from Yeung
et al. [40] to avoid executing each and individual incoming job j, which operates
by traversing the computation graph, extracting model features and eventually
estimating its GPU utilization, i.e. E(GUtilj). Such features are well known and
frequently modified by Machine Learning researchers and developers [27,32,33],
hence it is relatively straight forward for practitioners to manually extract, or
automatically collect such metrics via graph analysis tools such as TensorFlow
profiler2 and TorchScript3.

Estimation of Expected GPU Memory: The only exception for straight
forward metric collection the total job memory size (MiB) due to initialization
and optimization of individual DL libraries. However, it is possible to estimate
the minimum expected memory usage in bytes by considering the following four
factors involved in both forward Mf and backward passes M b [12]: (i) the batch
size of data B, (ii) the number of activations A, (iii) number of gradients G and
(iv) the number of parameters P . In addition to an initialization overhead δ, the
overall estimated memory requirement for a given DL job j can be expressed as:

E(GMemj) = E(Mf
j ) + E(M b

j ) + δ = (B ∗ A + P ) + B ∗ G + δ (2)

The expectation of both GPU utilization and GPU memory will be used for
node capacity check in the scheduler in case of tackling an incoming job.

4.3 Resource Scheduler

This section describes our scheduling approach to effectively co-locate DL jobs
and handle potential placement issues from interference. We observe that in
order to maximize GPU utilization, it is necessary to allow co-location of DL
jobs onto the same GPU. Gandiva [37] employs a random trial-and-error strategy
to co-locate DL jobs. In their approach, by monitoring the job in isolation and
application throughput, a job is killed or migrated to another node randomly
using an undefined threshold value and time period. In such an approach, it is

2 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler.
3 https://pytorch.org/docs/stable/jit.html.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler
https://pytorch.org/docs/stable/jit.html
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possible for random job migration to be allocated with another incompatible job
leading to equal or greater performance slowdown.

To alleviate the performance degradation stemming from co-location inter-
ference, the core of resource scheduling is to understand the compute resource
requirement prior to job execution and incur as less overhead (cost) as possible.
We design the cost to reflect the selection preference of a node mainly consid-
ering GPU memory usage and GPU utilization, respectively. We can therefore
determine the most suitable placement based on per-node cost inference.

Cost Inference: We break down the cost of scheduling job j onto an individual
GPU k (denoted by j → k):

Costj→k = CGMem
j→k + CGUtil

j→k + εjobType
j (3)

We add up the incurred cost of running job j regarding GPU memory usage and
GPU utilization increase, followed by a calibration ε due to DL jobs type.

In particular, the cost of GPU memory CGMem
j→k is referred to as a weighted

proportion of GPU memory usage (Eq. 4), in light of the key implication – higher
current GPU memory usage causes a higher chance of OOM and JCT slowdown.

CGMem
j→k = ω ∗ GMemused

k

GMemtotal
k

(4)

where GMemtotal is the total GPU memory of the device and ω is used to
customize and indicate the performance impact.

As there exists a relationship between increased GPU utilization of co-located
DL jobs and JCT slowdown (Sect. 3.2), we penalize the combinations of co-
located DL jobs when over-commitment manifests – the total forthcoming GPU
utilization (i.e., current GPU utilization GUtilcurrk and the estimated increment
E(GUtilj)) exceeds 100%. Likewise, we add a penalty hyperparameter φ ∈ [1, 2]
to tweak the slowdown impact due to GPU over-commitment:

GUtilj→k = GUtilcurrk + E(GUtilj)

CGUtil
j→k =

{
φ ∗ |GUtilj→k − 100|, if GUtilj→k > 100
100 − GUtilj→k, if GUtilj→k ≤ 100

(5)

The implication behind this piecewise cost setup is to pack a job so that the host
node can approach to 100% GPU utilization without resource over-commitment.
For instance, higher remaining GPU capacity results in a higher cost. On the
other hand, once over-commitment occurs, the cost will be increasingly aug-
mented, which indicates a reduced scheduling probability of the node, consider-
ing job’s performance.

Similarly, as observed in Fig. 2b, different DL model architectures exhibit var-
ious degrees of JCT slowdown from interference, thus a niceness hyperparameter
ν is added to accommodate this behaviour (Eq. 6. Our scheduling approach will
favour a particular DL job types based on ν selection.

εjobType
j =

{
ν, if Cjobtype is CNN
0, otherwise

(6)
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Algorithm 1. Best Fit Decreasing Job Scheduling Algorithm
Input: (J , S) // k jobs in the queue and current cluster state
Output: (scheduleStatus, NodeBindingResult res)

1: J ← DescendSort(J) // a job collection via descend sort by jobs’ GPU util
2: res ← dict()

3: for j in J do
4: if hasAllocatableResources(j, S) then
5: N ← getFeasibleNodes(j, S) //capacity check(CPUs, Mems, GPU Mems)
6: G ← getAllGPUs(N )
7: λ ← j.requestedGPU ; σ ← GetMinRequiredNodeNum(j),
8: if len(N ) < σ then
9: continue

10: CG→j ← GetCosts(G, j) // use Eq. 3 to calculate cost for each GPU
11: G+ ← AscendSort(CG→j).topK(λ)
12: res ← Put(j, G+)

13: if Len(res) > 0 then
14: BindNodes(res, j)
15: return ScheduleResults.SCHEDULED, res
16: else
17: return ScheduleResults.EMPTY, Nil

Cost-Based Best-Fit-Decreasing Job Scheduling: Algorithm 1 outlines
our scheduling solution. At each scheduling time, the scheduler will collect the
current DL system state, and fetch job collection J from the queue. We adopt
a best-fit-decrease like algorithm to prioritize jobs with larger GPU requests,
avoiding their long-time starvation. To do so, we firstly sort the job collection
J according to the pertaining GPU utilization (Line 1). We then iteratively
attempt to find and bind resources for each job. Specifically, we firstly check the
resource capacity and filter out available candidate nodes N that can satisfy all
requirements of job j in terms of CPU, memory and GPU memory (Lines 4–9).
GPU collection G is obtained from the pertaining candidate nodes. For instance,
the GPU memory requirement is inferred by using Eq. 2 discussed in Sect. 4.2.
We can further assess the incurred cost stemming from running the job j on
each GPU of G, separately, via the cost estimation in Eq. 3 (Line 10). To reduce
possible interference, the best fit is to select the nodes with minimized impact
in case of placing j. Hence the scheduler prefers nodes that host the selected
GPUs (G+) with λ least costs (Lines 11–12), and finalizes placement decisions
by sending binding requests to the scheduler (Lines 13–17).

Job Failover and Rescheduling: In some scenarios, it is possible for our
approach (as well as other DL resource managers) to encounter issues associated
with OOM errors due to co-located DL jobs exceeding the total GPU memory
capacity resulting from incorrect estimation. We address this issue by using a
separate thread to monitor job progress, and in the event of failure, jobs are
resubmitted onto the scheduling queue. The scheduler will then update the DL
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job request with necessary GPU memory requirements, where GPU memory
must be equal or greater than the job to be included in consideration.

In a worst case scenario whereby each DL job already fully utilizes GPU
resources (i.e. no memory available for packing), our algorithm will pend waiting
jobs until existing jobs terminate and release resources and so act similarly to
traditional DL resource managers. However, we can leverage other priority or
time-sharing primitives to reduce the waiting time.

Complexity Analysis: It is worth noting that at each scheduling cycle, the
scheduler re-considers all available GPUs and nodes, given resource requirements
are satisfied, including the number of GPUs, and the available GPU memory
against the least expected memory calculated in Eq. 4. The time complexity of
the capicity check procedure (Lines 4–5) is O(kNG) where k denotes the size of
pending jobs, while N and G represent the number of nodes and GPUs in the
DL system, respectively. In addition to O(NlogN) used for sorting and asymp-
totically O(N) in top-K selection, the overall complexity remains O(kNG). The
scheduling can therefore scale well with the increment of either node or GPU
scaling-out. Since our scheduler uses a placement algorithm for co-location is
greedy, we do not guarantee algorithm optimality. Nevertheless, we find it is less
invasive and less time consuming in improving scheduling effectiveness.

5 Evaluation

5.1 Experiment Setup

System: Horus was deployed onto a 12-GPU cluster with each node containing
4 x Nvidia RTX 2080 Ti GPUs, an AMD Ryzen 1920X 12 Core Processor (2
threads per core) with 10Gb Ethernet network, and 128 GB DDR4 memory. Each
node was installed with Ubuntu Disco 19.04 and Nvidia driver 430.50. In our
experiments, the DL libraries (AllenNLP [10], Pytorch 1.1) and CUDA toolkits
responsible for DL job instantiation and execution were stored in a Docker con-
tainer. Our cluster uses the Kubernetes 1.15.2 resource management framework
due to its prominence within the resource management community. cAdvisor
and DCGM were configured to extract data at 1 s and 250 ms intervals, respec-
tively, as initial trial runs indicated that these parameters resulted in effective
job throughput given our cluster configuration.

Comparative Algorithms: To evaluate the Horus scheduling co-location algo-
rithm described in Sect. 4.3, we have designed and implemented two additional
scheduling algorithms for comparison:

� First in First Out (FIFO): Emulating slot-based approaches established
in big data cluster schedulers such as Kubernetes [16] and YARN [35], FIFO
assigns the next incoming DL job onto an idle GPU without job co-location.
As threshold values are not defined in prior work, the timing period was
set at 0–60 s so that all DL jobs achieve stable performance patterns, and
we configure the performance threshold to 50% informed by interference
patterns (Fig. 2a).
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� Opportunistic Bin Packing (OBP): Assigns DL jobs based on GPU
memory availability. The algorithm assigns and co-locates DL jobs based
on estimated memory requirements prior to submission via exploiting our
memory estimation model described in Eq. 4. During job submission time,
if a GPU with higher memory is available than estimated memory, then the
scheduler will opportunistically allocate a schedule for that job to that GPU.

With the exception of FIFO, preemption was enabled for all algorithms.
Our preemption strategy is triggered when a GPU is overcommitted (thresh-
old defined by operator) or an idle GPU. This preemption allows previously
co-located DL jobs experiencing interference to be rescheduled to another GPU.
Horus have configured to operate job collection size J = 15 based on initial
experiment runs to provide a sufficient number of candidate DL jobs for place-
ment.

Workload: Experiments were conducted using a mixture of DL job types gen-
erated from Table 1, as well as new DL model configurations and model types
(LSTM, Transformer), resulting in Horus being exposed to approximately 50%
new DL jobs not used in predictor training. Selected models and datasets lever-
aged in our experiments are well established in micro-benchmarking DL resource
managers [13,25,37]. Submitted DL jobs use a distribution between 3 min to 2 h
following DL job sizes derived from JCT of production systems [13]. Jobs are
characterized as short/long (<800 s or ≥800 s) and light/heavy (<60% or ≥60%
GPU utilization). JCT was controlled by terminating jobs at specified epoch
numbers to emulate JCT patterns of production systems, as well as train suf-
ficient DL jobs in a reasonable time frame. For our experiments we focused
on DL jobs requiring a single GPU for training, following established practice
from other co-location DL schedulers [29]. This is because between 50%–86% of
total production DL jobs have been shown to require a single GPU [5,13,19]
and hence we have attempted to capture a broad spectrum of different job and
model types. Our objective is to study changes in workload makespan and JCT
due to interference from DL job co-location. Furthermore, locality—a key focus
within prior DL cluster schedulers [13,25,37]—introduces a non-intuitive dimen-
sion of JCT heterogeneity even for jobs running in isolation, making it difficult
to fairly measure potential trade-off gains between resource utilization against
JCT increase when co-locating DL jobs.

Metrics: Algorithm effectiveness was measured using the following metrics:
Cluster GPU Resource Utilization: GPU utilization of all devices, Job Comple-
tion Time (JCT): End-to-end completion time for a DL job, commencing from
the start of job execution and finishing at job completion. Workload Makespan:
The total span-time to complete all DL jobs from en-queuing through to comple-
tion. Moreover, we have also measured parameters for general cluster resource
utilization (CPU, memory, disk).

Experiment Runs: Each algorithm scheduled 100 DL jobs for each workload
pattern five times each, successfully training a total of 1,500 DL jobs; equivalent
to approximately 66 days of DL system GPU computation.
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Fig. 4. Experiment results for comparing DL resource manager operation.

5.2 Results

Makespan: In all experiment runs, Horus was able to successfully schedule all
DL jobs with the lowest makespan as shown in Fig. 4a. This is demonstrated
by a makespan of 204 min, and is equivalent to a 33.6% improvement against
FIFO, and a 22.2% improvement over OBP as shown in Table 2. The reason
for a lower makespan is due to Horus being able to perform better placement
decisions for co-locating DL jobs, by leveraging our GPU utilization estimator
to avoid underutilization and OOM errors from overcommitment. We observe
that OBP has the second lowest makespan for all experiments. FIFO has the
highest makespan at 306.9 min due to longer queueing times for DL jobs waiting
to acquire exclusive access to an idle GPU for training.

Table 2. Workload makespan, GPU utilization and JCT statistics.

Objective Algorithm Avg. St. dev Change

Makespan (mins) FIFO 306.9 1.15 -

OBP 238.6 4.9 22.2%

Horus 204.0 8.5 33.6%

Utilization (%) FIFO 43.1 16.7 -

OBP 59.7 27.2 38.5%

Horus 69.6 26.9 61.5%

JCT (s) FIFO 1869.7 1054.3 -

OBP 2277.5 1293.1 21.8%

Horus 2193.8 1307.3 17.3%

Utilization: Horus is able to achieve high overall cluster resource utilization
in all experiment runs as shown in Table 2 and Fig. 4b, reflected by an average
69% utilization in comparison to FIFO (43%) and OBP (60%). This is resultant
of the Horus algorithm determining better co-location combinations for DL job
placement to maximize GPU utilization from predicted memory and utilization
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requirements of DL jobs described in Sect. 4.3. While OBP achieve relatively high
utilization compared to FIFO due their ability to perform co-location, OBP is
able to achieve higher utilization as a result of its rapid scheduling cycle.

JCT: Figure 4c and Table 2 (JCT) shows the average JCT for DL jobs. We
observe that FIFO achieves the fastest JCT at 1869.7 s, due to DL jobs acquir-
ing exclusive GPU access disallowing co-location and thusly no interference. In
contrast, we observe that all co-location algorithms experience JCT slowdown
between 17.3%–21.8%. A note of particularly interest is Horus’s ability to effec-
tively co-locate and reduce makespan to achieve higher DL job throughput will
paradoxically expose the DL cluster to greater interference and consequent JCT
slowdown. Horus does however still achieve a lower JCT in comparison to OBP,
and when considering our gains to resource utilization and makespan, we view
this as an acceptable trade-off.

Scalability: Horus has been evaluated through empirical means in a DL cluster
of comparable scale found in recent works [25,29]. As discussed in Sect. 4.2, our
algorithm complexity is a linear combination between the nodes and GPUs.
Moreover, Horus was evaluated using established communication mechanisms
in the Kubernetes framework for orchestrating job deployments and file system
mounting, which has been demonstrated to scale to thousands of machines [16].

6 Related Work

DL Resource Managers: Gandiva [37] focuses primarily on improving the
time-sharing, by enabling DL job context-switching, and extracting job through-
put (e.g. minibatch per second) thus allowing ‘random-and-trial’ job co-location
placement and eviction upon performance slowdown. Tiresias [13], focuses on
improving average JCT and job starvation time. It does so by profiling network
latency, consolidating distributed DL jobs and implementing a multi-level feed-
back queue, which adjusts job priorities. Optimus [25] implements a performance
predictor model, which at runtime, adjusts the number of required parameter
servers or workers. It assumes job convergence is predictable, which in many
cases is difficult to ascertain [13]. All of the above DL cluster schedulers are
complimentary to our work as they focus on addressing various challenges and
scheduling objectives, related to locality, time-sharing and average JCT. Horus
focuses on DL workload makespan and GPU utilization, as well as making place-
ment decisions based on interference between co-located DL jobs in GPUs.

Interference-Aware Resource Managers: The study of GPU interference
is an established area [6,26], whereby approaches leverage heavy static profiling
of GPU kernel access patterns within isolated machines to classify the work-
load types at the job submission time, identifying suitable placements. There
also exist various cluster schedulers which reduce performance interference of
heterogeneous CPU workloads [8,9,20]. As discussed in Sect. 2, these cluster
schedulers are not designed to effectively handle GPU scheduling, particularly
DL clusters due to differences in hardware, workload, and long queuing times
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[19]. Horus builds upon these ideas, proposing a prediction discussed in Sect. 4.2
which complements other GPU interference-aware resource managers [29,39], by
using lightweight profiling to characterize DL job utilization patterns.

GPU Interference Analysis: Interference analysis and fine-grained GPU ker-
nel scheduling is an established field of research within the hardware architecture
community. Researchers have proposed various solutions to mitigate kernel inter-
ference in GPU kernel scheduling [6]. All established DL cluster schedulers do
not incorporate GPU kernel scheduling characteristics during job scheduling due
to heterogeneous DL system hardware and DL frameworks. As an alternative
to threadblock scheduling and kernel prediction, Horus uses application features
to ascertain job utilization to alleviate GPU interference in DL systems, and
provides a study focused on DL job interference due to co-location.

7 Conclusions

In this paper we have presented Horus, a resource management framework for
Deep Learning systems that achieves high job throughput and resource efficiency
via effective DL job co-location. Horus performs intelligent placement and co-
location of DL jobs in GPUs by estimating job utilization patterns using model
features without requiring DL library modification or heavy kernel profiling at
scheduler runtime. From our analysis, we have empirically shown the diversity
of interference profiles manifesting between co-located DL jobs, and can result
in up to 3.2X increase within their completion time. We have created a resource
estimator and scheduler integrated into existing DL cluster resource managers.
Through experiments we have shown that Horus is capable of reducing makespan
by up to 33.6% and improving cluster GPU utilization by 61.5%.
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