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A platform for orchestrating networked Machine Learning (ML) applications over 
distributed environments is described. ML applications are transformed into automated 
pipelines that manage the whole application lifecycle and production-grade 
implementations are automatically constructed. We present AUTOSTEER, a software 
platform that can deploy ML applications on various hardware resources interconnected 
using heterogeneous network resources, across cloud and edge devices. Device 
placement optimization and model adaptation are used as control actions to support 
application requirements, and maximize the performance of ML model execution over 
heterogeneous computing resources. The performance of deployed applications is 
continually monitored at runtime to overcome performance degradation due to incorrect 
application parameter settings or model decay. Three real-world applications are used to 
demonstrate how AUTOSTEER can support application deployment and runtime 
performance guarantees. 

 
Machine Learning (ML) systems and applications are intrinsically non-deterministic and need to operate 
in an environment which is constantly-evolving, and contains ever-changing data. Typically, a  networked 
machine learning application consists of a variety of components for data collection, device control, model 
inference (e.g., speech recognition, object detection), which are deployed and managed at different 
locations, i.e. either on locally managed servers or remotely in cloud data centers or edge environments.  
       ML applications executing over a networked platform are arguably complex systems which have to 
be continuously updated and maintained. ML applications need to be transformed into automated 
pipelines that manage the whole application lifecycle and build production-grade machine learning 
implementations. A pipeline workflow, typically in the form of a graph representing the component 
interconnections in an ML application, can comprise: data management, model learning (model selection, 
training and hyper-parameter selection), model testing and validation and model deployment. Thereafter,  
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run time management is responsible for ensuring performance guarantee, i.e., end-to-end model 
performance optimization and model update1, so that the deployed ML applications can be dynamically 
modified to run time environment.   
       Doing so manually is generally unrealistic and not scalable, particularly when thousands of ML 
applications are submitted and maintained in edge and cloud platform that may be composed of hundreds 
of devices with heterogeneous hardware and software specifications. Continuous and automatic 
orchestration plays a pivotal role in deploying, managing and synchronizing models of the ML 
applications across multiple tiers in a distributed computing environment. For instance, the trained 
models  will be published and delivered to specific cloud servers or edge devices to run inference. Some 
specific applications, e.g., federated learning tasks require on-device training, indicating more complex 
device placement and model synchronization.  Moreover, model decay arising from changes in data, 
would inevitably diminish model accuracy over time.  Hence, an orchestrator calls for observation of the 
performance deviation and redeployment of the updated models.  
       Deploying such networked machine learning systems, particularly in an IoT and edge environment 
can be challenging due to the difficulty in managing the complexity of heterogeneous network and 
hardware resources.  A variety of devices are used for data exchange, model training and data analysis 
encompassing edge devices (such as IoT gateways and base stations) and servers (such as GPU, CPU, 
and TPU-based devices). Existing ML model development can be computationally expensive and 
resource intensive, which impede the effective deployment of applications, particularly those with strict 
latency requirements to resource-constrained devices.  
       In this article, we propose a platform solution to deployment and runtime management for the 
pipelines of networked machine learning applications.  We devise AUTOSTEER, a management system 
that can automatically deploy networked machine learning applications over heterogeneous network and 
hardware resources while ensuring their performance through deployment plan optimization and model 
adaptation. At runtime, AUTOSTEER continually monitors the performance of deployed applications and 
automatically performs model update to mitigate performance degradation caused by obsolete 
application parameters setting or model decay. Finally, we use three real-world applications that are 
executed  upon AUTOSTEER to showcase how the mechanisms are engaged in the application 
deployment and run-time maintenance.  
 

MOTIVATION 
 
Motivating Examples 
We primarily categorize the networked machine learning applications into a) centralized off-site ML 
applications that can be trained offline or offsite, and b) distributed on-site/federated ML applications that 
must build their models using local dataset on individual device and, in some cases, share and aggregate 
models with other peer devices.    
 
       Centralized off-site learning applications. A smart home application allows users to observe the 
occupancy of their house, remotely control the smart devices (e.g., LEDs, air conditioner) via smartphone 
and even automatically control the smart devices. For example, a smart home application can 
automatically adjust the temperature of air conditioners based on the occupancy, weather and so on.  
 
       Distributed on-site/federated learning applications. A high-quality brain tumor detection 
application relies on a huge amount of magnetic resonance imaging (MRI) data that is only locally 
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available and managed within a specific institution domain due to GDPR and other privacy regulations. 
A shared model is typically distributed to different data owners and trained locally. Locally-trained models 
will be combined into a consensus model.   
 
Research Scope and Overview 
In general, the pipeline for such an application can be depicted as the workflow in Figure 1. The pipeline 
starts with and augments an initial model that has been trained offline along with a reference to meta 
data and the associated data sources on which the model has been trained.  Thereafter, the workflow 
management platform typically addresses two fundamental problems:  planning for device placement 
and model adaptation in the deployment phase and model execution performance guarantee in the 
runtime phase.   
       Determining the placement of ML components on available resources remains a key challenge -- 
especially due to heterogeneity of resources. Additionally, models have to be converted, for example 
through model pruning2, post-training quantization3, and identifying a “focus” for the associated model 
through distillation techniques. This enables the generated models to best fit the target device, balancing 
the model size with accuracy of prediction. Significant recent efforts in this area include TinyML and 
EdgeML.  
 

 
FIGURE 1. Conceptual Workflow 
 
 
       Once the plan of deployment comes into effect, run time management ensures that the model 
performance can be monitored and overcomes model staleness. In the automated and continuous 
pipeline, triggers can be used to update application parameters or retrain the stale model with fresh data 
when performance observably degrades due to dynamic environment changes, such as network speed 
drop, workload bursting, model drift or lack of generalization. For applications of federated learning and 
distributed training, the platform run time also needs to enforce efficient on-device training.  
       A key focus of this work is to devise an orchestration system for supporting multiple ML model 
development and performance optimization. Additionally, the system needs to scale to support both 
application size and resource heterogeneity. To underpin precise performance monitoring and anomaly 
detection while measuring platform health and resource utilization, we also need to track and inspect 
(distributed) system fingerprints -- consisting of various performance indicators and application metrics 
such as drift and prediction scores. 
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CHALLENGES 
 
We elaborate on these specific challenges facing the ML workflow platform in the following notable 
aspects: 
 
Complexity of device placement and model adaptation. Planning for a pipeline of a given ML application 
indicates a mapping procedure between awaiting models and available computing resources on the 
devices. To accommodate the specific demands of diverse distributed or federated learning applications, 
infrastructure resources have become increasingly heterogeneous, making the planning a far more 
intricate task: 
 
       1) Device placement: Successfully deploying sizeable components of the ML applications served in 
the platform requires stringent capacity check and optimization solution under numerous constraints. The 
manifestation of heterogeneity intrinsically stems from the static attributes of the hardware, such as CPU, 
GPU, memory, SSD and network bandwidth, and of the software including operating system version, 
clock speed, and particularly software libraries.  The compatibility of a given hardware or library version 
even becomes a hard constraint, for any violations of such requirements would completely fail the 
deployment. For example, some components are compiled for ARM MALI cannot be executed on Nvidia 
GPU. The network constraints, such as bandwidth sharing among co-located components or network 
latency specified by each individual component, will further exacerbate the planning complexity.  
 
       2) Model adaptation: The advancement of deep models such as Recurrent Neural Network (RNN) 
and Convolutional Neural Network (CNN) leads to the substantially increased parameter number and the 
resultant computational cost, which hinders the real-world model deployment into embedded and edge 
devices. Hence, model pruning and compression can be used to reduce model size, remove redundant 
weights such that pre-trained models can better adapt to portable devices with limited resources (e.g. 
memory, CPU, power and bandwidth) and be applied into real-time applications.  
 
       3) Enabling dependent components within a pipeline: Each individual ML model has its own 
specification and format of input and output data. Dependencies are referred to as the interactions, such 
as the data flows and remote callings, among interconnected components. This would be problematic 
and challenging particularly when components deployed on various devices are interconnected via 
different network types and protocols. Hence, it is imperative to design an effective data messaging 
system to orchestrate the data flow and manage the network traffic across different models whilst 
considering the particular specification and data format. 
 
       Optimized runtime management. Improper application parameter setting or model decay could result 
in poor performance of a ML application and even failures. The first task of runtime management is to 
perform end-to-end and intra-application optimization. Application parameters (e.g., model accuracy, 
task off-loading rate) need to be adjusted at runtime to ensure the allocated resource can guarantee the 
expected performance level. To do so, the orchestration system should be capable of automatically 
detecting any performance degradation of the deployed applications and then dynamically work out the 
optimal configuration to rescue the abnormal performance. Secondly, in the face of any model failures, 
the orchestration system should automatically perform local on-device training while synchronize and 
aggregate the up-to-date global models on the fly. 
 



VIEW FROM THE CLOUD 

   5 

 

 

       Low-cost platform monitoring and troubleshooting. Monitoring is one of the primary issues in 
maintaining ML applications and systems; outline or anomaly detection is important to find out 
unexpected model prediction or any system-wide issues in the early stage. However, anomaly detection 
and trouble-shooting could be challenging as high-quality labeled data is sparse and difficult to obtain 
and hence only semi-supervised or unsupervised approaches could be applied. The overhead is another 
non-negligible consideration when designing application instrumentation and metric collection. This 
usually indicates a tradeoff between the accuracy and granularity of the measured data. Hence, the 
platform solution of infrastructure monitor should have an overall co-design of metric sampling, storage 
and real-time analysis. 
 

SYSTEM DESIGN 
 
In response to the aforementioned challenges, we develop AUTOSTEER, an orchestration platform for 
application deployment and runtime management. In this section we mainly highlight a set of key 
techniques used for implementing the orchestration mechanism. Figure 2 describes the architecture of 
AUTOSTEER.  
 
Automatic Application Deployment 
Application and resource specification. The user submits a ML application with execution logic, pre-
trained models and specifies the pertaining requirements such as model accuracy, end-to-end latency, 
etc. To achieve an automatic deployment, we need to translate these knowledge to machine-
understandable language. We use a UML-based visual domain specific language4 that can easily 
represent the component dependencies within an application and specify the format and source of input 
and output of each individual component. As a result, the interactions between components, such as 
data flows and service calls, are loosely-coupled through interfaces and agnostic about any model 
updates. Apart from the application specification, standardized resource specification is the key to 
automatic and efficient deployment. we exploit5 for specifying the available underlying computing 
resources and the hardware and software requirements of each application.   
 
       Planning optimization for device placement. To navigate the algorithmic complexity, the orchestrator 
in AUTOSTEER adopts two optimization techniques: gradient based optimization6 and reinforcement 
learning (RL)7. Gradient-based approaches work upon a realistic model to formalize an optimization 
problem and usually have relatively low time complexity without the need of apriori knowledge or 
experience, which are therefore suitable for new applications. In contrast, RL-based methods can learn 
the optimal planning from the experiences and can better support the uncertainties compared the 
Gradient-based solutions. 
       We also construct an efficient data messaging subsystem where two types of dependencies are 
defined -- data flow and service call. Since the orchestration system needs to deliver a large volume of 
data in distributed environments, high system throughput becomes a critical system objective. We employ 
the publish/subscribe paradigm implemented in Apache Kafka to underpin the data flows. The service 
call, on the other hand, is implemented through RESTful APIs, as the precise command delivery is the 
primary goal. Both the AUTOSTEER publish/subscribe and RESTful paradigms can be implemented 
upon a vast majority of network types and protocols, hence capable of supporting most networked 
machine learning applications.   
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FIGURE 2. The Architecture of AUTOSTEER 

 
Model Adaptation 
Computation optimization aims to improve the execution efficiency of different computation units 
associated with the model (e.g., vector-vector, vector-matrix and matrix-matrix operations) on various 
hardware. Optimizing the execution pipeline of the computation graph of a neural network can further 
improve model performance. We use TensorRT along with the adjustment of weights and numerical 
precision associated with the activation function (e.g., INT8 and FP16).  Model architecture optimization 
improves the efficiency of on-device computation through well-designed models such as MobileNetV2, 
ShuffleNet etc., -- part of the TensorFlow-Lite toolkit).  We use YOLOv38 to strike a balance between 
computation efficiency and model accuracy.   
        In addition, more advanced and customizable approaches such as neural architecture search 
(NAS)9 and model compression can be implemented in AUTOSTEER further. NAS automates the search 
of an optimal network structure with the aid of reinforcement learning or Genetic Algorithm (GA) based 
approaches. However, it is computation-intensive and tends to be problematic given the portable devices 
with limited resources. Model compression is thus extensively studied in three notable aspects: model 
pruning that removes the redundant parameters within the networks; quantization that reduces the 
weights precision and knowledge distillation10 that trains a new small model based on a larger model. 
Quantization is the most straightforward approach at the risk of precision degradation and model pruning 
is the most well-established approach but requires extra calibration process. Integrating mixed 
techniques in the platform is already underway for building more adaptive and robust models. 
 
End-to-end Application Optimization 
In a networked machine learning system, computational and network resources are dynamically available 
at different levels. Application parameters such as input rate and the targeted accuracy need to be 
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adjusted, in response to the ever-changing traffic congestion, to assure the end-to-end latency or system 
throughput. 
       We specify model parameters based on extensive benchmarking experiments and transform the 
problem of finding the “best” setting of parameters into an optimization problem using techniques such 
as convex optimization, evolution based and gradient based methods. Reinforcement learning is an 
alternative approach that uses statistical or deep learning model where the application parameters are 
the actions of the agent, and the available computing resources represent the environment. The system 
performance is represented by the reaction of the environment to the actions. As opposed to the 
optimization-based approaches that have better interpretability but need extra hand-crafted modeling 
process, the reinforcement learning based approaches have better representation capabilities and can 
learn to set optimal application parameters from experience. 
 
Model Update 
Coping with the drift. During the lifecycle of a ML application, the relationship between the input variables 
and the performance of the targeting prediction inevitably experiences constant change and drift over 
time. The model drift usually originates from the following aspects: 1) invalid measurement indicator: the 
replacement of data collection devices may give rise to different value spaces and a broken device could 
always deliver nil reading. 2) concept drift: data distribution or statistical characteristics, which is uncertain 
and frequently varying over time, may lead to concept drift. 3) data drift: The model effectiveness is also 
prone to inherent changes such as the seasonal temperature rise and fall. Drifts can be roughly 
categorized into several classes: sudden drift (sudden change of the data pattern). gradual/incremental 
drift (new pattern that replaces the old ones within a period of time), and reoccurring drift (old patterns 
re-pop up later).  
       It is imperative to detect such drifts, understand the degree of drift and intervene the model for 
adapting to changing environments.  There are three representative classes of drift detection: 1) error 
rate based approaches focus on the online detection of errors or sudden changes for triggering the model 
update. 2) data distribution based approaches mainly measure the statistical similarities between the 
original data and the new data and check if the difference is sufficient for model update. 3) hypothesis 
test based approaches, built upon the previous two methods, apply various hypothesis tests to quantify 
further the severity of model drift. Based on these approaches, our solution can determine when to 
intervene according to the starting and ending points of the drift, where to intervene, i.e., localizing the 
concept/data drift in the feature space.  and how to intervene, in the light of the type and degree of the 
drift, by adaptively choose model update strategies. The most straightforward approach is the model 
retraining and updating. For concept drift, we ensemble several base classifiers or utilize knowledge 
transfer learning for the emerging new target variables.  
 
       System implementation. The amount of data engaged in the model update has an impact on the 
training effectiveness and the system overhead: less data can reduce computation and storage cost but 
only reflect the latest data distribution; more data is beneficial for reshaping models with higher precision, 
along with increased overhead. We employ an adaptive window-based solution to select the optimal data 
amount used for on-device training and/or global model synchronization via ADWIN11 algorithm: instead 
of using a fixed time window, the algorithm calculates the drift rate from all possible windows and selects 
the best cut that reveals the optimal drift level. We modularize and implement the drift detection and 
alarming system in AUTOSTEER. The detection module is responsible for data retrieval and extraction 
of data statistical properties, and we then leverage hypothesis tests to evaluate the drift degree. Once 
the alarming system confirms the existence of the model drift, we employ techniques in Section Model 
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Adaptation for efficient on-device training. For federated learning applications, once local model has been 
updated, we also trigger gradient aggregation to keep the global model up-to-date.  
 
Infrastructure Monitor and Maintenance 
To learn how the applications perform, we either collect general-purpose telemetry metrics in a black-
box manner or instrument, as an integral part of the models, subsystems or system services, in a white-
box manner. The metric tracking and tracing system of our orchestration infrastructure collects system 
logs, model metrics (task execution status, prediction statistics and evaluation metrics as baselines), 
system metrics (request latency, error rates, network status, etc.), and resource metrics (CPU utilization, 
memory utilization, GPU usage, etc.) in real time, and ships them to a centralized analytic platform. We 
adopt the random sampling mechanism on each agent that is deployed on each physical node, for 
reducing the overhead of data collection. More advanced technologies such as sketch12 can be further 
added. Anomaly Detector comprises real-time event-based processing units, used for identifying per-
application performance degradation while Root-cause Analyzer is implemented to troubleshoot the 
causes of performance degradation based on the collected performance indicators. 

CASE STUDY: EDGE-BASED REAL-TIME VIDEO ANALYTICS 
 
In this section, we showcase a real-world application backed up by the deployment and runtime 
management mechanisms in AUTOSTEER.  
 
       As shown in Figure 3(a), we develop an video analytical application following the edge-cloud 
paradigm. A set of video generating devices (e.g., traffic surveillance cameras, drones, mobile phones) 
produce live video streams which are then processed either on low-power edge devices (e.g. Raspberry 
pi, Jetson Nano, computing chips), or GPU cluster in Cloud datacenters. We prototype the video analytic 
application via object detection models yolo3 and the Wide Area Network (WAN) communication between 
edge devices and the data center is implemented by using the real time video stream transmission 
protocol (RTSP).  
       The heterogeneity of edge nodes and the interplay among the edge and cloud introduce 
uncertainties regarding network latency, hardware slowdown or failures. As discussed in Section End-to-
end Application Optimization, the collected fingerprints and system status are mathematically modeled 
with a hierarchy queuing model that reveals the relationships between the workload offloading rate 
(between the edge and cloud) and the system latency and throughput. We then formulate a min-latency 
optimization problem bounded by a minimal throughput threshold. For model optimization, we implement 
two gradient-based optimization algorithms (i.e., PGD-VAO, PGS-VAO) to ascertain a solution to 
minimizing the overall latency. All components are containerized and deployed at both the edge and the 
cloud side via AUTOSTEER. 
       Figure 3(b) shows the performance of our proposed algorithms under empty, normal and busy 
system workloads. Specifically, we insert video chunks into system buffering queues to simulate different 
workloads. Then, we test our algorithms against other state-of-the-art task-offloading approaches, i.e., 
DeepDecision and FastVA. We can see that with the increase of the workload, the system latency is 
increasing as well. It is also clear that our modelling based algorithms (e.g., PGS-VAO, PGD-VAO, 
FastVA) perform better than non-modelling based algorithms. 
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(a) Illustration of an Edge-Cloud Video Analysis System.       (b) Performance of Workload Optimizer in 
Different System               
                                                                                                      Working Conditions  
FIGURE 3. The Edge-cloud Video Analysis Application and an Early Performance Comparison 

CONCLUSION 
 
Most prior work related to ML applications focuses on algorithm design and optimization for better training 
ML models. Although such work is essential for specific applications, there are few studies on the holistic 
orchestration solution to maintaining the lifecycle of networked ML applications. In this article, we firstly 
highlight several key challenges facing the orchestration systems. We then present a set of techniques 
to deploy ML applications onto resources across cloud and edge devices and assure their runtime 
performance, making models being served free from model decay and performance degradation due to 
inappropriate parameter setting. These assist in finding effective pathways to automating the 
management of networked ML applications at production level, although, admittedly, it still calls for 
significant effort in large-scale engineering practices and integration with wider domain-specific 
scenarios. 
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