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Large-scale Internet of Things (IoT) services such as healthcare, smart cities, 

and marine monitoring are pervasive in cyber-physical environments. These 

complex IoT services are increasingly composed of sensors, devices, and 

compute resources within fog computing infrastructures. Orchestrating such 

applications can simplify maintenance and enhance data security and system 

reliability. However, efficiently dealing with these services’ dynamic variations 

and transient operational behavior is a crucial challenge. This article provides 

an overview of the core issues, challenges, and future research directions in 

fog-enabled orchestration for IoT services.
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Cyber-physical environments encom-
pass physical and virtual compo-
nents capable of interfacing and 

interacting with existing network infra-
structure, enabling novel applications 
in areas such as smart cities, intelligent 
transportation, and autonomous vehicles. 
The explosive growth in data genera-
tion has led to a focus in both research 
and industry on issues related to effec-
tively extracting insights from such data 
to assist in the design of cyber-physical 
systems. Internet of Things (IoT) ser-
vices typically comprise a set of software 
components running in different loca-
tions and connected through dynamic 
networks (such as 4G, wireless LAN, and 
the Internet). Systems such as data cen-
ters and wireless sensor networks (WSNs) 
underpin the data storage and compute 
resources required for operating these 
components.

Fog computing extends cloud com-
puting by moving computation and data 

storage to the edge of the network, allow-
ing for reduced latency and response 
delay jitter for applications.1,2 These 
characteristics are particularly important 
for latency-sensitive applications, such as 
gaming and video streaming. In the IoT 
environment, existing applications and 
physical devices can be leveraged as fun-
damental appliances and composed in a 
mashup style to control development cost 
and maintenance pressure. Orchestration 
is a key concept within distributed sys-
tems, enabling the alignment of deployed 
applications with users’ business inter-
ests. We propose a fog orchestrator, to 
provide the centralized arrangement 
of the resource pool, mapping applica-
tions with specific requests and provid-
ing an automated workflow to physical 
resources (deployment and scheduling); 
workload execution management with 
runtime quality of service (QoS) control; 
and time-efficient directive generation to 
manipulate specific objects.
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Motivating Example
Smart cities aim to enhance the quality of 
urban life by using technology to improve the 
efficiency of services to meet residents’ needs. 
Achieving this goal requires integrating mul-
tiple information and communication technolo-
gies in a secure, efficient, and reliable way to 
manage city facilities effectively. Such systems 
consist of two major components:

•	 sensors integrated with real-time monitoring 
systems, and

•	 applications integrated with the collected 
sensor (or device) data.

Currently, IoT services are rudimentary, and only 
integrate with specific sensor types. This results 
from the lack of existing universally agreed 
standards and protocols for IoT device communi-
cation, and represents a challenge to achieving a 
global ecosystem of interconnected things.

To address this problem, an alterna-
tive approach is to use an IoT service orchestra-
tion system to determine and select the best IoT 
appliances for dynamic composition of holistic 
workflows for more complex functions. As Fig-
ure 1 shows, our proposed orchestrator manages 

all layers of an IoT ecosystem to integrate differ-
ent standalone appliances or service modules into 
a complex topology. The orchestrator’s primary 
responsibility is selecting resources and deploy-
ing the overall service workflow according to 
data security, reliability, and system efficiency 
requirements. It’s centralized only at a conceptual 
level and can be implemented in a distributed and 
fault-tolerant fashion, without introducing a sin-
gle point of failure.

An appropriate combination of these stand-
alone IoT appliances can facilitate more advanced 
functionality, helping to reduce costs 
and improve the user experience. For exam-
ple, mobile health systems can provide remote 
monitoring, real-time data analysis, emergency 
warning, and so on. Data collected from wear-
able sensors that monitor patient vitals can be 
continuously sent to data aggregators and, if the 
system detects abnormal behavior, it can imme-
diately notify hospital personnel, who can take 
appropriate measures.

Although such functionality can be devel-
oped within a standalone application, this 
provides limited scalability and reliabil-
ity. The implementation of new features leads 
to increased development efforts and risk of 

Figure 1. An orchestration scenario for an e-health service. Different Internet of Things (IoT) 
appliances (diverse types of sensors and fog nodes) are orchestrated as a workflow across all layers of 
the fog architecture. The fog orchestrator acts as a controller deployed on a workstation or cloud data 
center and across all organization layers based on global information.
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 creat ing a monolithic applicat ion inca-
pable of scaling effectively due to conflicting 
resource requirements for effective operation. 
In addition, increased application complexity 
leads to tedious, time-consuming debugging. 
The use of orchestration allows for more flex-
ible formation of application functionality to 
scale and reduces the probability of failure cor-
relation between application components.

Fog-Enabled IoT Application
Traditional Web-based service applications are 
deployed on servers within cloud data centers 
that are accessed by end devices such as tab-
lets, smartphones, and desktop PCs. In contrast, 
IoT applications deployed within fog comput-
ing systems consist of the cloud, fog node, and 
“things,” as Figure 1 shows. In this context, a 
fog node is defined as equipment or middle-
ware and is served as an agent that collects data 
from a set of sensors. This data is then trans-
mitted to a centralized computing system that 
locally caches data and performs load balanc-
ing. Things include sensors and devices with 
built-in sensors. Similar to Web-based service 
applications, the cloud provisions centralized 
resource pools (compute, storage) to analyze 
collected data and automatically trigger deci-
sions based on a predefined system logic. The 
most significant difference, however, is the use 
of fog nodes that transmit data to cloud data 
centers. For example, most wearable sensor data 
is collected and preprocessed by smartphones 
or adjacent workstations. This can either sig-
nificantly reduce transmission rates or improve 
their reliability.

Web-based and IoT applications differ in 
several other ways. First, IoT communica-
tion is performed using a hybrid centralized-
decentralized approach depending on context. 
Most message exchanges between sensors or 
between a sensor and the cloud are performed 
using fog nodes. Purely centralized environ-
ments are ill-suited for applications that have 
soft and hard real-time requirements. For 
example, neighboring smart vehicles need to 
transfer data between other vehicles and traf-
fic infrastructure to prevent collisions. Such 
a system was piloted in New York City using 
Wi-Fi to enable real-time interactions to assist 
drivers in navigating congestion and to com-
municate with pedestrians or oncoming vehi-
cles.3 Furthermore, given the huge number of 

connected devices, the data volume generated 
and exchanged over an IoT network is pre-
dicted to become many orders of magnitude 
greater than that of conventional Web-based 
services, resulting in significant scalability 
challenges.

Interoperability is another aspect where 
Web-based and IoT applications diverge. Soft-
ware-defined networking technologies enable 
the decoupling of software control and hetero-
geneous hardware operations. This approach 
provides an opportunity to dynamically achieve 
different quality levels for different IoT applica-
tions in heterogeneous environments.4 Moreover, 
application-level interoperability benefits from 
Web technologies, such as the RESTful architec-
ture, that provide a high level of interoperability. 
Using these technologies, an abundance of pro-
gramming APIs can be distributed across entire 
fog domains and utilized to increase the flexibil-
ity of loosely coupled management.5 Lightweight 
APIs, such as RESTful interfaces, result in agile 
development and simplified orchestration with 
enhanced scalability when composing complex 
distributed workflows.

A third aspect is reliability. Physical systems 
make up a significant part of IoT applications, 
thus the assumptions that can be made regard-
ing fault and failure modes are weaker than 
those for Web-based applications. IoT appli-
cations experience crash and timing failures 
stemming from low-sensor battery power, high 
network latency, environmental damage, and 
so on. Furthermore, the uncertainty of poten-
tially unstable and mobile system components 
increases difficulties in predicting and captur-
ing system operation. Therefore, an IoT applica-
tion workflow’s reliability needs to be measured 
and enhanced in more elaborate ways.

IoT Application Orchestration 
Challenges
As we’ve shown, existing IoT applications are 
diverse in terms of reliability, scalability, and 
security. Diversity among fog nodes is a key issue; 
location, configuration, and served functionalities 
of fog nodes all dramatically increase this diver-
sity. This raises an interesting research challenge —  
namely, how to optimize the process of determining  
and selecting the best IoT appliances and fog 
components to compose an application workflow 
while meeting nonfunctional requirements such 
as security, network latency, and QoS. 
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Scale and Complexity
As more IoT manufacturers develop hetero-
geneous sensors and smart devices, selecting 
optimal components becomes increasingly com-
plicated when considering customized hardware 
configurations and personalized requirements. 
For example, some applications can only operate 
with specific hardware architectures (for exam-
ple, ARM or Intel) or operating systems, whereas 
applications with high security requirements 
might require specific hardware and protocols 
to function. Orchestration needs not only to 
cater to such functional requirements, it must 
do so in the face of increasingly larger work-
flows that change dynamically. The orchestrator 
must determine whether the assembled systems, 
comprised of cloud resources, sensors, and 
fog nodes, coupled with geographic distribu-
tions and constraints are capable of provision-
ing complex services correctly and efficiently. 
In particular, the orchestrator must be able to 
automatically predict, detect, and resolve issues 
pertaining to scalability bottlenecks that could 
arise from increased application scale.

Security Criticality
In the IoT environment, multiple sensors, com-
puter chips, and communication devices are 
integrated to enable the overall communica-
tion. A specific service might be composed 
of a multitude of components, each deployed 
within different geographic locations, resulting 
in an increased attack vector of such objects. 
Fog nodes are particularly vulnerable to such 
attacks, especially in the context of network-
enabled IoT systems, where attack vectors can 
include human-caused sabotage of network 
infrastructure, malicious programs provoking 
data leakage, or even physical access to devices. 
A large body of research focuses on cryptogra-
phy and authentication toward enhancing net-
work security to protect against cyberattacks.6 
Furthermore, in systems comprising hundreds 
of thousands of electronic devices, it’s crucial to 
effectively and accurately evaluate the security 
and measure risks to present a holistic security 
and risk assessment.7 This becomes challeng-
ing when workflows are capable of changing 
and adapting at runtime. For these reasons, 
approaches that can dynamically evaluate the 
security of dynamic IoT application orchestra-
tion will become increasingly critical for secure 
data placement and processing.

Dynamicity
Another significant characteristic and chal-
lenge for IoT services is their ability to evolve 
and dynamically change their workflow compo-
sition. This problem, in the context of software 
upgrades through fog nodes or the frequent 
join-leave behavior of network objects, will 
change the internal properties and performance, 
potentially altering the overall workflow exe-
cution pattern. Moreover, handheld devices 
inevitably suffer from software and hardware 
aging, which will invariably result in changing 
workflow behavior and its device properties (for 
example, low-battery devices will degrade the 
data transmission rate). Finally, application per-
formance will change owing to their transient 
and/or short-lived behavior within the system, 
including spikes in resource consumption or 
data generation. This leads to a strong require-
ment for automatic and intelligent reconfigura-
tion of the topological structure and assigned 
resources within the workflow, and importantly, 
that of fog nodes.

Fault Diagnosis and Tolerance
Scaling a fog system increases the probability 
of failure. Some rare software bugs or hardware 
faults that don’t manifest at small scale or in 
testing environments, such as stragglers,8 can 
have a debilitating effect on system perfor-
mance and reliability. At the scale, heterogene-
ity, and complexity we’re anticipating, different 
fault combinations will likely occur.9 To address 
these system failures, developers should incor-
porate redundant replications and user-trans-
parent, fault-tolerant deployment and execution 
techniques in orchestration design.

Key Research Directions
Several research directions are key to tackling 
the challenges we’ve outlined. Within lifecy-
cle management, these include optimal selec-
tion and placement in the deployment stage; 
dynamic QoS monitoring and providing guaran-
tees at runtime through incremental processing 
and replanning; and big data-driven analytics 
and optimization approaches that leverage data 
mining to improve orchestration quality and 
accelerate optimization for problem solving.

Component Selection and Placement
The recent trend in composing cloud applications 
involves connecting heterogeneous services 
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deployed across multiple data centers. Such a 
distributed deployment helps improve IoT appli-
cation reliability and performance within fog 
computing environments. As mentioned ear-
lier, it also exposes appliances to new security 
risks and network uncertainty. Ensuring high 
levels of dependability for workflows composed 
by multiple systems is a considerable challenge. 
Numerous efforts have focused on QoS-aware 
composition of native virtual machine-based 
cloud application components, but neglect the 
proliferation of uncertain execution and security 
risks among interactive and interdependent com-
ponents within IoT services.10,11

Parallel computation algorithm. Optimiza-
tion algorithms or graph-based approaches are 
typically time- and resource-consuming when 
applied on a large scale, and necessitate parallel 
approaches to accelerate the optimization pro-
cess. Recent work provides possible solutions 
to leverage an in-memory computing frame-
work to execute tasks in a cloud infrastruc-
ture in parallel.12 However, realizing dynamic 
graph generation and partitioning at runtime to 
adapt to the shifting space of possible solutions 
stemming from the scale and dynamicity of IoT 
components remains an unsolved problem.

Late calibration. To ensure near-real-time inter-
vention during IoT application development, 
one approach is to use correction mechanisms 
that could be applied even when suboptimal 
solutions are deployed initially. For example, in 
some cases, if the orchestrator finds a candidate 
solution that approximately satisfies the reli-
ability and data transmission requirements, it 
can temporarily suspend the search for further 
optimal solutions. At runtime, the orchestrator 
can then continue to improve decision results 
with new information and a reevaluation of 
constraints, and use task- and data-migration 
approaches to realize workflow redeployment.

Dynamic Orchestration with Runtime QoS
Apart from the initial placement, all workflow 
components dynamically change in response to 
internal transformations or abnormal system 
behavior. IoT applications are exposed to uncer-
tain environments where execution variations 
are commonplace. Because of the degradation 
of consumable devices and sensors, capabilities 
such as security and reliability that initially  

were guaranteed will vary, resulting in the ini-
tial workflow being no longer optimal or even 
totally invalid. Furthermore, the structural 
topology might change according to the task-
execution progress (that is, a computation task 
is finished or evicted) or will be affected by 
the execution environment’s evolution. Abnor-
malities might occur owing to the variabil-
ity of combinations of hardware and software 
crashes, or data skew across different manage-
ment domains of devices due to abnormal data 
and request bursting. This will result in unbal-
anced data communication and subsequent 
reduction of application reliability. Therefore, 
dynamically orchestrating task execution and 
resource reallocation is essential.

QoS-aware control and monitoring. To capture 
the dynamic evolution and variables (such as 
dynamic evolution, state transition, and new IoT 
operations), we should predefine the quantitative 
criteria and measuring approach of dynamic 
QoS thresholds in terms of latency, availability, 
throughput, and so on. These thresholds usually 
dictate upper and lower bounds on the metrics as 
desired at runtime. In our setting, complex QoS 
information processing methods such as hyper-
scale matrix update and calculation would lead 
to many scalability issues.

Event streaming and messaging. We can depict 
performance metric variables or significant 
state transitions as system events, and process 
event streaming in the orchestration framework 
through an event messaging bus, real-time pub-
lish-subscribe mechanism, or high-throughput 
messaging systems (such as Apache Kafka). 
This would significantly reduce communication 
overhead and ensuring responsiveness. Subse-
quent actions automatically could be triggered 
and driven by a cloud engine (such as the Ama-
zon Lambda service).

Incremental Computation in Orchestration
IoT services can often be choreographed through 
workflow or task graphs to assemble different IoT 
applications. In some domains, the orchestration is 
supplied with a plethora of candidate devices with 
different geographical locations and attributes. 
In some cases, orchestration would typically be 
considered too computationally inten sive, as 
it’s extremely time-consuming to perform opera-
tions including prefiltering, candidate selection, 
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and combination calculation while considering all 
specified constraints and objectives. Static models 
and methods become viable when the application 
workload and parallel tasks are known at design 
time. In contrast, in the presence of variations and 
disturbances, orchestration methods typically rely 
on incremental scheduling at runtime (rather than 
straightforward complete recalculation by rerun-
ning static methods) to decrease unnecessary com-
putation and minimize schedule makespan.

Proactive recognition. Localized regions of self-
updates become ubiquitous within fog environ-
ments. The orchestrator should record staged 
states and data produced by fog components 
periodically or in an event-based manner. This 
information will form a set of time series of 
graphs and facilitate the analysis and proactive 
recognition of anomalous events to dynamically 
determine such hotspots.13 The data and event 
streams should be efficiently transmitted among 
fog components, so system outage, appliance 
failure, or load spikes will rapidly feed back to 
the central orchestrator for decision making.

Incremental design and implementation. Based 
on the time series of graphs, researchers or 
developers should comprehensively study the 
similarities and dependencies between succes-
sive graph snapshots to determine the feasibility 
of incremental computation. Approaches such 
as memorization, self-adjusting computation, 
and semantic analysis could cache and reuse 
portions of dynamic dependency graphs to 
avoid unnecessary re-computation in the event 
of input changes. Intermediate data or results 
should be inherited as far as possible, and the 
allocated resources that have been allocated 
to the tasks should also be reused rather than 
be requested repeatedly. Through graph analy-
sis, operators can determine which subgraphs 
change within the whole topology by automat-
ing subgraph partitioning and matching to sig-
nificantly reduce overall execution time.

Systematic Data-Driven Optimization
IoT applications include numerous geographi-
cally distributed devices that produce mul-
tidimensional, high-volume data requiring 
different levels of real-time analytics and data 
aggregation. Therefore, data-driven optimiza-
tion and planning should have a place in the 
orchestration of complex IoT services.

As researchers or developers select and dis-
tribute applications across different layers in 
the fog environment, they should consider the 
optimization of all overlapping, interconnected 
layers. The orchestrator has a global view of 
all resource abstractions, from edge resources 
on the mobile side to compute and storage 
resources on the cloud data center side. Pipelin-
ing the stream of data processing and the data-
base services within the same network domain 
could reduce data transmission. Similar to the 
data-locality principle, we can also distrib-
ute or reschedule the computation tasks of fog 
nodes near the sensors rather than frequently 
move data, thereby reducing latency. Another 
potential optimization is to customize data-
relevant parameters such as the data-generation 
rate or data-compression ratio to adapt to the 
performance and assigned resources to strike 
a balance between data quality and specified 
response-time targets.

A major challenge is that decision opera-
tors are still computationally time consuming. 
To tackle this problem, online machine learn-
ing can provision several online training (such 
as classification and clustering) and prediction 
models to capture the constant evolutionary 
behavior of each system element, producing 
time series of trends to intelligently predict 
the required system resource usage, failure 
occurrence, and straggler compute tasks, all of 
which can be learned from historical data and 
a history-based optimization (HBO) procedure. 
Researchers or developers should investigate 
these smart techniques, with corresponding 
heuristics applied in an existing decision-mak-
ing framework to create a continuous feedback 
loop. Cloud machine learning offers analysts a 
set of data exploration tools and a variety of 
choices for using machine learning models and 
algorithms.14

Early Experience and Initial Results
Based on the design philosophy and methods 
discussed, we propose a framework that can 
efficiently orchestrate fog computing environ-
ments. As Figure 2 demonstrates, to enable plan-
ning and adaptive optimization, we attempted 
to manage the composition of applications in 
parallel under a broad range of constraints. We 
implemented a parallel genetic algorithm-based 
framework (GA-Par) on Spark to handle orches-
tration scenarios involving the composition of a 
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large set of IoT applications. More specifically, 
in our GA-based algorithm, each chromosome 
represents a solution of the composed workflow 
and each chromosome’s gene segments represent 
the IoT applications. We normalize the utility of 
security and network QoS of IoT appliances into 
an objective fitness function within GA-Par to 
minimize the security risks and performance 
degradation.

Specifically, to strike a balance between 
accuracy and time efficiency, we separate the 
total individual population into parallel com-
pute partitions dispersed over different com-
pute nodes. To maximize parallelism, we set up 
and adjust the partition configuration dynami-
cally to make partitions fully parallelized while 
considering data shuffling and communication 
cost with the topology change. To guarantee 
that we can gradually obtain optimal results, 
we dynamically merge several partitions into 
a single partition and then repartition it based 
on runtime status and monitored QoS. Further-
more, we can maintain the quality of each solu-
tion generation by applying an elitist method, 
where each partition’s local elite results are 
collected and synthesized into a global elite. 

The centralized GA-Par master aggregates the 
full information at the end of each iteration, 
and then broadcasts the list to all partitions to 
increase the probability of finding a globally 
optimal solution. To address data skew issues, 
we also conduct a joint data-compute optimi-
zation to repartition the data and reschedule 
computation tasks. We performed some initial 
experiments on 30 servers hosted on Amazon 
Web Services as the cloud data center for the 
fog environment. Each server is hosted as an 
r3.2xlarge instance with 2.5-GHz Intel Xeon 
E5-2670v2 CPUs, 61-Gbyte RAM, and 160-
Gbyte disk storage.

Simulated data can help us illustrate the 
effectiveness of composition given IoT require-
ments. For this, we randomly select four types 
of orchestration graphs with 50, 100, 150, and 
200 workflow nodes, respectively. For each 
node within a workflow, we stochastically pre-
pare 100 available IoT appliances as simulated 
agents. The security levels and network QoS 
levels are randomly assigned to each candidate 
agent. We compare our GA-Par with a stand-
alone genetic algorithm (SGA), using metrics 
quality, execution time, and fitness score (with 

Figure 2. Main functional elements of our fog orchestrator. The planning element is responsible for 
selection and placement, runtime monitoring and control during execution, and data-driven decision 
optimization. Our parallel genetic algorithm (GA) solver accelerates the handling of optimization 
issues raised in the planning and optimization phase. Initial results demonstrate that the proposed 
approach (GA-Par) can outperform a standalone genetic algorithm (SGA) in terms of both time and 
quality (QoS = quality of service).
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lower values indicating better results) to evalu-
ate them. As Figure 2 shows, GA-Par outper-
forms SGA. GA-Par time consumption is nearly 
50 percent of that of SGA, while the quality of 
appliance selection in GA-Par is always at least 
30 percent higher than that of SGA. However,  
our approach’s scalabi lity is st i l l slight ly 
affected by increasing numbers of compo-
nents and requests, indicating that we still 
need to explore opportunities for incremen-
tal replanning and online tuning to improve 
both time efficiency and effectiveness of IoT 
orchestration.

M ost recent research related to fog comput-
ing explores architectures within massive 

infrastructures.1 Although such work advances 
our understanding of the possible computing 
architectures and challenges of new comput-
ing paradigms, there are presently no studies 
of composability and concrete methodologies 
for developing orchestration systems that sup-
port composition in the development of novel 
IoT applications. Our prototypical orchestra-
tion system exploits some of the most promis-
ing mechanisms to tackle these challenges. In 
future work, we will evaluate the orchestration 
effectiveness in the massive-scale production 
system and further improve the time efficiency 
by incremental re-planning. 
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