
16 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Fog Orchestration for
Internet of Things Services

Zhenyu Wen
University of Edinburgh

Renyu Yang
Beihang University

Peter Garraghan
University of Lancaster

Tao Lin
École Polytechnique Fédérale de
Lausanne

Jie Xu
University of Leeds

Michael Rovatsos
University of Edinburgh

Large-scale Internet of Things (IoT) services such as healthcare, smart cities,

and marine monitoring are pervasive in cyber-physical environments. These

complex IoT services are increasingly composed of sensors, devices, and

compute resources within fog computing infrastructures. Orchestrating such

applications can simplify maintenance and enhance data security and system

reliability. However, efficiently dealing with these services’ dynamic variations

and transient operational behavior is a crucial challenge. This article provides

an overview of the core issues, challenges, and future research directions in

fog-enabled orchestration for IoT services.

Fo
g

Co
m

pu
ti

ng

Cyber-physical environments encom-
pass physical and virtual compo-
nents capable of interfacing and

interacting with existing network infra-
structure, enabling novel applications
in areas such as smart cities, intelligent
transportation, and autonomous vehicles.
The explosive growth in data genera-
tion has led to a focus in both research
and industry on issues related to effec-
tively extracting insights from such data
to assist in the design of cyber-physical
systems. Internet of Things (IoT) ser-
vices typically comprise a set of software
components running in different loca-
tions and connected through dynamic
networks (such as 4G, wireless LAN, and
the Internet). Systems such as data cen-
ters and wireless sensor networks (WSNs)
underpin the data storage and compute
resources required for operating these
components.

Fog computing extends cloud com-
puting by moving computation and data

storage to the edge of the network, allow-
ing for reduced latency and response
delay jitter for applications.1,2 These
characteristics are particularly important
for latency-sensitive applications, such as
gaming and video streaming. In the IoT
environment, existing applications and
physical devices can be leveraged as fun-
damental appliances and composed in a
mashup style to control development cost
and maintenance pressure. Orchestration
is a key concept within distributed sys-
tems, enabling the alignment of deployed
applications with users’ business inter-
ests. We propose a fog orchestrator, to
provide the centralized arrangement
of the resource pool, mapping applica-
tions with specific requests and provid-
ing an automated workflow to physical
resources (deployment and scheduling);
workload execution management with
runtime quality of service (QoS) control;
and time-efficient directive generation to
manipulate specific objects.

MaRCH/aPRIL 2017 17

Fog Orchestration for Internet of Things Services

Motivating Example
Smart cities aim to enhance the quality of
urban life by using technology to improve the
efficiency of services to meet residents’ needs.
Achieving this goal requires integrating mul-
tiple information and communication technolo-
gies in a secure, efficient, and reliable way to
manage city facilities effectively. Such systems
consist of two major components:

•	 sensors integrated with real-time monitoring
systems, and

•	 applications integrated with the collected
sensor (or device) data.

Currently, IoT services are rudimentary, and only
integrate with specific sensor types. This results
from the lack of existing universally agreed
standards and protocols for IoT device communi-
cation, and represents a challenge to achieving a
global ecosystem of interconnected things.

To address this problem, an alterna-
tive approach is to use an IoT service orchestra-
tion system to determine and select the best IoT
appliances for dynamic composition of holistic
workflows for more complex functions. As Fig-
ure 1 shows, our proposed orchestrator manages

all layers of an IoT ecosystem to integrate differ-
ent standalone appliances or service modules into
a complex topology. The orchestrator’s primary
responsibility is selecting resources and deploy-
ing the overall service workflow according to
data security, reliability, and system efficiency
requirements. It’s centralized only at a conceptual
level and can be implemented in a distributed and
fault-tolerant fashion, without introducing a sin-
gle point of failure.

An appropriate combination of these stand-
alone IoT appliances can facilitate more advanced
functionality, helping to reduce costs
and improve the user experience. For exam-
ple, mobile health systems can provide remote
monitoring, real-time data analysis, emergency
warning, and so on. Data collected from wear-
able sensors that monitor patient vitals can be
continuously sent to data aggregators and, if the
system detects abnormal behavior, it can imme-
diately notify hospital personnel, who can take
appropriate measures.

Although such functionality can be devel-
oped within a standalone application, this
provides limited scalability and reliabil-
ity. The implementation of new features leads
to increased development efforts and risk of

Figure 1. An orchestration scenario for an e-health service. Different Internet of Things (IoT)
appliances (diverse types of sensors and fog nodes) are orchestrated as a workflow across all layers of
the fog architecture. The fog orchestrator acts as a controller deployed on a workstation or cloud data
center and across all organization layers based on global information.

Cloud data center

Fog node (storage)
Fog node

(data cache)

Fog node
(local compute)

Fog node (agent)

Fog layer
Real-time data collection, processing
Data caching, agenting, load-balancing

Cloud layer
Massive data processing
Massive machine learning

Sensor layer

Body monitor
HumidityMotion

Light

Aggregator …

…

…

Hospital
alarm

Mobile

…

GPS

Fog orchestrator

Resource
manager

Status
monitorPlanner

Orchestrator

Fog Computing

18 www.computer.org/internet/ IEEE INTERNET COMPUTING

 creat ing a monolithic applicat ion inca-
pable of scaling effectively due to conflicting
resource requirements for effective operation.
In addition, increased application complexity
leads to tedious, time-consuming debugging.
The use of orchestration allows for more flex-
ible formation of application functionality to
scale and reduces the probability of failure cor-
relation between application components.

Fog-Enabled IoT Application
Traditional Web-based service applications are
deployed on servers within cloud data centers
that are accessed by end devices such as tab-
lets, smartphones, and desktop PCs. In contrast,
IoT applications deployed within fog comput-
ing systems consist of the cloud, fog node, and
“things,” as Figure 1 shows. In this context, a
fog node is defined as equipment or middle-
ware and is served as an agent that collects data
from a set of sensors. This data is then trans-
mitted to a centralized computing system that
locally caches data and performs load balanc-
ing. Things include sensors and devices with
built-in sensors. Similar to Web-based service
applications, the cloud provisions centralized
resource pools (compute, storage) to analyze
collected data and automatically trigger deci-
sions based on a predefined system logic. The
most significant difference, however, is the use
of fog nodes that transmit data to cloud data
centers. For example, most wearable sensor data
is collected and preprocessed by smartphones
or adjacent workstations. This can either sig-
nificantly reduce transmission rates or improve
their reliability.

Web-based and IoT applications differ in
several other ways. First, IoT communica-
tion is performed using a hybrid centralized-
decentralized approach depending on context.
Most message exchanges between sensors or
between a sensor and the cloud are performed
using fog nodes. Purely centralized environ-
ments are ill-suited for applications that have
soft and hard real-time requirements. For
example, neighboring smart vehicles need to
transfer data between other vehicles and traf-
fic infrastructure to prevent collisions. Such
a system was piloted in New York City using
Wi-Fi to enable real-time interactions to assist
drivers in navigating congestion and to com-
municate with pedestrians or oncoming vehi-
cles.3 Furthermore, given the huge number of

connected devices, the data volume generated
and exchanged over an IoT network is pre-
dicted to become many orders of magnitude
greater than that of conventional Web-based
services, resulting in significant scalability
challenges.

Interoperability is another aspect where
Web-based and IoT applications diverge. Soft-
ware-defined networking technologies enable
the decoupling of software control and hetero-
geneous hardware operations. This approach
provides an opportunity to dynamically achieve
different quality levels for different IoT applica-
tions in heterogeneous environments.4 Moreover,
application-level interoperability benefits from
Web technologies, such as the RESTful architec-
ture, that provide a high level of interoperability.
Using these technologies, an abundance of pro-
gramming APIs can be distributed across entire
fog domains and utilized to increase the flexibil-
ity of loosely coupled management.5 Lightweight
APIs, such as RESTful interfaces, result in agile
development and simplified orchestration with
enhanced scalability when composing complex
distributed workflows.

A third aspect is reliability. Physical systems
make up a significant part of IoT applications,
thus the assumptions that can be made regard-
ing fault and failure modes are weaker than
those for Web-based applications. IoT appli-
cations experience crash and timing failures
stemming from low-sensor battery power, high
network latency, environmental damage, and
so on. Furthermore, the uncertainty of poten-
tially unstable and mobile system components
increases difficulties in predicting and captur-
ing system operation. Therefore, an IoT applica-
tion workflow’s reliability needs to be measured
and enhanced in more elaborate ways.

IoT Application Orchestration
Challenges
As we’ve shown, existing IoT applications are
diverse in terms of reliability, scalability, and
security. Diversity among fog nodes is a key issue;
location, configuration, and served functionalities
of fog nodes all dramatically increase this diver-
sity. This raises an interesting research challenge —
namely, how to optimize the process of determining
and selecting the best IoT appliances and fog
components to compose an application workflow
while meeting nonfunctional requirements such
as security, network latency, and QoS.

MaRCH/aPRIL 2017 19

Fog Orchestration for Internet of Things Services

Scale and Complexity
As more IoT manufacturers develop hetero-
geneous sensors and smart devices, selecting
optimal components becomes increasingly com-
plicated when considering customized hardware
configurations and personalized requirements.
For example, some applications can only operate
with specific hardware architectures (for exam-
ple, ARM or Intel) or operating systems, whereas
applications with high security requirements
might require specific hardware and protocols
to function. Orchestration needs not only to
cater to such functional requirements, it must
do so in the face of increasingly larger work-
flows that change dynamically. The orchestrator
must determine whether the assembled systems,
comprised of cloud resources, sensors, and
fog nodes, coupled with geographic distribu-
tions and constraints are capable of provision-
ing complex services correctly and efficiently.
In particular, the orchestrator must be able to
automatically predict, detect, and resolve issues
pertaining to scalability bottlenecks that could
arise from increased application scale.

Security Criticality
In the IoT environment, multiple sensors, com-
puter chips, and communication devices are
integrated to enable the overall communica-
tion. A specific service might be composed
of a multitude of components, each deployed
within different geographic locations, resulting
in an increased attack vector of such objects.
Fog nodes are particularly vulnerable to such
attacks, especially in the context of network-
enabled IoT systems, where attack vectors can
include human-caused sabotage of network
infrastructure, malicious programs provoking
data leakage, or even physical access to devices.
A large body of research focuses on cryptogra-
phy and authentication toward enhancing net-
work security to protect against cyberattacks.6
Furthermore, in systems comprising hundreds
of thousands of electronic devices, it’s crucial to
effectively and accurately evaluate the security
and measure risks to present a holistic security
and risk assessment.7 This becomes challeng-
ing when workflows are capable of changing
and adapting at runtime. For these reasons,
approaches that can dynamically evaluate the
security of dynamic IoT application orchestra-
tion will become increasingly critical for secure
data placement and processing.

Dynamicity
Another significant characteristic and chal-
lenge for IoT services is their ability to evolve
and dynamically change their workflow compo-
sition. This problem, in the context of software
upgrades through fog nodes or the frequent
join-leave behavior of network objects, will
change the internal properties and performance,
potentially altering the overall workflow exe-
cution pattern. Moreover, handheld devices
inevitably suffer from software and hardware
aging, which will invariably result in changing
workflow behavior and its device properties (for
example, low-battery devices will degrade the
data transmission rate). Finally, application per-
formance will change owing to their transient
and/or short-lived behavior within the system,
including spikes in resource consumption or
data generation. This leads to a strong require-
ment for automatic and intelligent reconfigura-
tion of the topological structure and assigned
resources within the workflow, and importantly,
that of fog nodes.

Fault Diagnosis and Tolerance
Scaling a fog system increases the probability
of failure. Some rare software bugs or hardware
faults that don’t manifest at small scale or in
testing environments, such as stragglers,8 can
have a debilitating effect on system perfor-
mance and reliability. At the scale, heterogene-
ity, and complexity we’re anticipating, different
fault combinations will likely occur.9 To address
these system failures, developers should incor-
porate redundant replications and user-trans-
parent, fault-tolerant deployment and execution
techniques in orchestration design.

Key Research Directions
Several research directions are key to tackling
the challenges we’ve outlined. Within lifecy-
cle management, these include optimal selec-
tion and placement in the deployment stage;
dynamic QoS monitoring and providing guaran-
tees at runtime through incremental processing
and replanning; and big data-driven analytics
and optimization approaches that leverage data
mining to improve orchestration quality and
accelerate optimization for problem solving.

Component Selection and Placement
The recent trend in composing cloud applications
involves connecting heterogeneous services

Fog Computing

20 www.computer.org/internet/ IEEE INTERNET COMPUTING

deployed across multiple data centers. Such a
distributed deployment helps improve IoT appli-
cation reliability and performance within fog
computing environments. As mentioned ear-
lier, it also exposes appliances to new security
risks and network uncertainty. Ensuring high
levels of dependability for workflows composed
by multiple systems is a considerable challenge.
Numerous efforts have focused on QoS-aware
composition of native virtual machine-based
cloud application components, but neglect the
proliferation of uncertain execution and security
risks among interactive and interdependent com-
ponents within IoT services.10,11

Parallel computation algorithm. Optimiza-
tion algorithms or graph-based approaches are
typically time- and resource-consuming when
applied on a large scale, and necessitate parallel
approaches to accelerate the optimization pro-
cess. Recent work provides possible solutions
to leverage an in-memory computing frame-
work to execute tasks in a cloud infrastruc-
ture in parallel.12 However, realizing dynamic
graph generation and partitioning at runtime to
adapt to the shifting space of possible solutions
stemming from the scale and dynamicity of IoT
components remains an unsolved problem.

Late calibration. To ensure near-real-time inter-
vention during IoT application development,
one approach is to use correction mechanisms
that could be applied even when suboptimal
solutions are deployed initially. For example, in
some cases, if the orchestrator finds a candidate
solution that approximately satisfies the reli-
ability and data transmission requirements, it
can temporarily suspend the search for further
optimal solutions. At runtime, the orchestrator
can then continue to improve decision results
with new information and a reevaluation of
constraints, and use task- and data-migration
approaches to realize workflow redeployment.

Dynamic Orchestration with Runtime QoS
Apart from the initial placement, all workflow
components dynamically change in response to
internal transformations or abnormal system
behavior. IoT applications are exposed to uncer-
tain environments where execution variations
are commonplace. Because of the degradation
of consumable devices and sensors, capabilities
such as security and reliability that initially

were guaranteed will vary, resulting in the ini-
tial workflow being no longer optimal or even
totally invalid. Furthermore, the structural
topology might change according to the task-
execution progress (that is, a computation task
is finished or evicted) or will be affected by
the execution environment’s evolution. Abnor-
malities might occur owing to the variabil-
ity of combinations of hardware and software
crashes, or data skew across different manage-
ment domains of devices due to abnormal data
and request bursting. This will result in unbal-
anced data communication and subsequent
reduction of application reliability. Therefore,
dynamically orchestrating task execution and
resource reallocation is essential.

QoS-aware control and monitoring. To capture
the dynamic evolution and variables (such as
dynamic evolution, state transition, and new IoT
operations), we should predefine the quantitative
criteria and measuring approach of dynamic
QoS thresholds in terms of latency, availability,
throughput, and so on. These thresholds usually
dictate upper and lower bounds on the metrics as
desired at runtime. In our setting, complex QoS
information processing methods such as hyper-
scale matrix update and calculation would lead
to many scalability issues.

Event streaming and messaging. We can depict
performance metric variables or significant
state transitions as system events, and process
event streaming in the orchestration framework
through an event messaging bus, real-time pub-
lish-subscribe mechanism, or high-throughput
messaging systems (such as Apache Kafka).
This would significantly reduce communication
overhead and ensuring responsiveness. Subse-
quent actions automatically could be triggered
and driven by a cloud engine (such as the Ama-
zon Lambda service).

Incremental Computation in Orchestration
IoT services can often be choreographed through
workflow or task graphs to assemble different IoT
applications. In some domains, the orchestration is
supplied with a plethora of candidate devices with
different geographical locations and attributes.
In some cases, orchestration would typically be
considered too computationally inten sive, as
it’s extremely time-consuming to perform opera-
tions including prefiltering, candidate selection,

Fog Orchestration for Internet of Things Services

MaRCH/aPRIL 2017 21

and combination calculation while considering all
specified constraints and objectives. Static models
and methods become viable when the application
workload and parallel tasks are known at design
time. In contrast, in the presence of variations and
disturbances, orchestration methods typically rely
on incremental scheduling at runtime (rather than
straightforward complete recalculation by rerun-
ning static methods) to decrease unnecessary com-
putation and minimize schedule makespan.

Proactive recognition. Localized regions of self-
updates become ubiquitous within fog environ-
ments. The orchestrator should record staged
states and data produced by fog components
periodically or in an event-based manner. This
information will form a set of time series of
graphs and facilitate the analysis and proactive
recognition of anomalous events to dynamically
determine such hotspots.13 The data and event
streams should be efficiently transmitted among
fog components, so system outage, appliance
failure, or load spikes will rapidly feed back to
the central orchestrator for decision making.

Incremental design and implementation. Based
on the time series of graphs, researchers or
developers should comprehensively study the
similarities and dependencies between succes-
sive graph snapshots to determine the feasibility
of incremental computation. Approaches such
as memorization, self-adjusting computation,
and semantic analysis could cache and reuse
portions of dynamic dependency graphs to
avoid unnecessary re-computation in the event
of input changes. Intermediate data or results
should be inherited as far as possible, and the
allocated resources that have been allocated
to the tasks should also be reused rather than
be requested repeatedly. Through graph analy-
sis, operators can determine which subgraphs
change within the whole topology by automat-
ing subgraph partitioning and matching to sig-
nificantly reduce overall execution time.

Systematic Data-Driven Optimization
IoT applications include numerous geographi-
cally distributed devices that produce mul-
tidimensional, high-volume data requiring
different levels of real-time analytics and data
aggregation. Therefore, data-driven optimiza-
tion and planning should have a place in the
orchestration of complex IoT services.

As researchers or developers select and dis-
tribute applications across different layers in
the fog environment, they should consider the
optimization of all overlapping, interconnected
layers. The orchestrator has a global view of
all resource abstractions, from edge resources
on the mobile side to compute and storage
resources on the cloud data center side. Pipelin-
ing the stream of data processing and the data-
base services within the same network domain
could reduce data transmission. Similar to the
data-locality principle, we can also distrib-
ute or reschedule the computation tasks of fog
nodes near the sensors rather than frequently
move data, thereby reducing latency. Another
potential optimization is to customize data-
relevant parameters such as the data-generation
rate or data-compression ratio to adapt to the
performance and assigned resources to strike
a balance between data quality and specified
response-time targets.

A major challenge is that decision opera-
tors are still computationally time consuming.
To tackle this problem, online machine learn-
ing can provision several online training (such
as classification and clustering) and prediction
models to capture the constant evolutionary
behavior of each system element, producing
time series of trends to intelligently predict
the required system resource usage, failure
occurrence, and straggler compute tasks, all of
which can be learned from historical data and
a history-based optimization (HBO) procedure.
Researchers or developers should investigate
these smart techniques, with corresponding
heuristics applied in an existing decision-mak-
ing framework to create a continuous feedback
loop. Cloud machine learning offers analysts a
set of data exploration tools and a variety of
choices for using machine learning models and
algorithms.14

Early Experience and Initial Results
Based on the design philosophy and methods
discussed, we propose a framework that can
efficiently orchestrate fog computing environ-
ments. As Figure 2 demonstrates, to enable plan-
ning and adaptive optimization, we attempted
to manage the composition of applications in
parallel under a broad range of constraints. We
implemented a parallel genetic algorithm-based
framework (GA-Par) on Spark to handle orches-
tration scenarios involving the composition of a

Fog Computing

22 www.computer.org/internet/ IEEE INTERNET COMPUTING

large set of IoT applications. More specifically,
in our GA-based algorithm, each chromosome
represents a solution of the composed workflow
and each chromosome’s gene segments represent
the IoT applications. We normalize the utility of
security and network QoS of IoT appliances into
an objective fitness function within GA-Par to
minimize the security risks and performance
degradation.

Specifically, to strike a balance between
accuracy and time efficiency, we separate the
total individual population into parallel com-
pute partitions dispersed over different com-
pute nodes. To maximize parallelism, we set up
and adjust the partition configuration dynami-
cally to make partitions fully parallelized while
considering data shuffling and communication
cost with the topology change. To guarantee
that we can gradually obtain optimal results,
we dynamically merge several partitions into
a single partition and then repartition it based
on runtime status and monitored QoS. Further-
more, we can maintain the quality of each solu-
tion generation by applying an elitist method,
where each partition’s local elite results are
collected and synthesized into a global elite.

The centralized GA-Par master aggregates the
full information at the end of each iteration,
and then broadcasts the list to all partitions to
increase the probability of finding a globally
optimal solution. To address data skew issues,
we also conduct a joint data-compute optimi-
zation to repartition the data and reschedule
computation tasks. We performed some initial
experiments on 30 servers hosted on Amazon
Web Services as the cloud data center for the
fog environment. Each server is hosted as an
r3.2xlarge instance with 2.5-GHz Intel Xeon
E5-2670v2 CPUs, 61-Gbyte RAM, and 160-
Gbyte disk storage.

Simulated data can help us illustrate the
effectiveness of composition given IoT require-
ments. For this, we randomly select four types
of orchestration graphs with 50, 100, 150, and
200 workflow nodes, respectively. For each
node within a workflow, we stochastically pre-
pare 100 available IoT appliances as simulated
agents. The security levels and network QoS
levels are randomly assigned to each candidate
agent. We compare our GA-Par with a stand-
alone genetic algorithm (SGA), using metrics
quality, execution time, and fitness score (with

Figure 2. Main functional elements of our fog orchestrator. The planning element is responsible for
selection and placement, runtime monitoring and control during execution, and data-driven decision
optimization. Our parallel genetic algorithm (GA) solver accelerates the handling of optimization
issues raised in the planning and optimization phase. Initial results demonstrate that the proposed
approach (GA-Par) can outperform a standalone genetic algorithm (SGA) in terms of both time and
quality (QoS = quality of service).

Planning

Termination checkTermination check

Elitism
updation

Elitism
updation

Slave
P P

Slave
P P

Genetic
operation

Genetic
operation

Genetic
operation

Genetic
operation

Population Population Population Population

Master

Elitist list

Execution

Optimization

Selection and placement
with constraints

Runtime QoS
monitor and control

Data-driven feedback-control
(Data mining, machine learning)

Incremental
computation

Fog orchestrator

Early experience on orchestration and experimental results
GA-based parallel optimization solver with feedback control

10,000

7,500

5,000

2,500

50 100 150 200

The size of work�ow

50 100 150 200

The size of work�ow

Ti
m

e
(s

)

400

300

200

100

Sc
or

e

SGA
GA-Par

SGA
GA-Par

Fog Orchestration for Internet of Things Services

MaRCH/aPRIL 2017 23

lower values indicating better results) to evalu-
ate them. As Figure 2 shows, GA-Par outper-
forms SGA. GA-Par time consumption is nearly
50 percent of that of SGA, while the quality of
appliance selection in GA-Par is always at least
30 percent higher than that of SGA. However,
our approach’s scalabi lity is st i l l slight ly
affected by increasing numbers of compo-
nents and requests, indicating that we still
need to explore opportunities for incremen-
tal replanning and online tuning to improve
both time efficiency and effectiveness of IoT
orchestration.

M ost recent research related to fog comput-
ing explores architectures within massive

infrastructures.1 Although such work advances
our understanding of the possible computing
architectures and challenges of new comput-
ing paradigms, there are presently no studies
of composability and concrete methodologies
for developing orchestration systems that sup-
port composition in the development of novel
IoT applications. Our prototypical orchestra-
tion system exploits some of the most promis-
ing mechanisms to tackle these challenges. In
future work, we will evaluate the orchestration
effectiveness in the massive-scale production
system and further improve the time efficiency
by incremental re-planning.

Acknowledgments
This work is supported by the China NKR&D Program

(2016YFB1000103), National 863 Program (2015AA01A202),

Natural Science Foundation of China (61421003), and the

European Commission’s FP7 Programme (FP7/2007-2013)

through grant 600854. Renyu Yang is the corresponding

author for this article.

References
1. F. Bonomi et al., “Fog Computing and Its Role in the

Internet of Things,” Proc. Mobile Cloud Computing,

2012, pp. 13–16.

2. S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing:

Concepts, Applications, and Issues,” Proc. Workshop

Mobile Big Data, 2015, pp. 37–42.

3. M.D. Dikaiakos et al., “Location-Aware Services over

Vehicular Ad Hoc Networks Using Car-to-Car Commu-

nication,” IEEE J. Selected Areas in Comm., vol. 25, no.

8, 2007, pp. 1590–1602.

4. Z. Qin et al., “A Software Defined Networking Archi-

tecture for the Internet-of-Things,” Proc. IEEE Network

Operations and Management Symp., 2014; doi:10.1109/

NOMS.2014.6838365.

5. S. Nastic et al., “Provisioning Software-Defined IoT

Cloud Systems,” Proc. Int’l Conf. Future Internet of

Things and Cloud, 2014, pp. 288–295.

6. R. Roman, P. Najera, and J. Lopez, “Securing the Inter-

net of Things,” Computer, vol. 44, no. 9, 2011, pp. 51–58.

7. A. Riahi et al., “A Systemic Approach for IoT Security,”

Proc. Int’l Conf. Distributed Computing Systems, 2013,

pp. 351–355.

8. P. Garraghan et al., “Straggler Root-Cause and Impact

Analysis for Massive-Scale Virtualized Cloud Data-

centers,” IEEE Trans. Services Computing, preprint, 20

Sept. 2016; doi:10.1109/TSC.2016.2611578.

9. R. Yang et al., “Reliable Computing Service in Massive-

Scale Systems Through Rapid Low-Cost Failover,” IEEE

Trans. Services Computing, preprint, 21 Mar. 2016;

doi:10.1109/TSC.2016.2544313.

10. Z. Zheng, Y. Zhang, and M.R. Lyu, “Investigating QoS

of Real-World Web Services,” IEEE Trans. Services

Computing, vol. 7, no. 1, 2014, pp. 32–39.

11. Z. Wen et al., “Cost Effective, Reliable and Secure

Workflow Deployment over Federated Clouds,” IEEE

Trans. Services Computing (TSC), preprint, 17 Mar.

2016; doi:10.1109/TSC.2016.2543719.

12. J.E. Gonzalez et al., “GraphX: Graph Processing in a

Distributed Dataflow Framework,” Proc. 11th Usenix

Conf. Operating Systems Design and Implementation,

2014, pp. 599–613.

13. K. Yamanishi and J. Takeuchi, “A Unifying Framework

for Detecting Outliers and Change Points from Non-

Stationary Time Series Data,” Proc. 8th ACM SIGKDD

Int’l Conf. Knowledge Discovery and Data Mining (SIG-

KDD 02), 2002, pp. 676–681.

14. M. Heller, “Review: 6 Machine Learning Clouds,”

Infoworld, 11 May 2016; www.infoworld.com/arti-

cle/3068519/artificialintellegence/review-6-machine-

learning-clouds.html.

Zhenyu Wen is a postdoctoral researcher in the School

of Informatics at the University of Edinburgh. His

research interests include multiobjective optimization,

artificial intelligence, and cloud computing. Wen has

a PhD in cloud computing from Newcastle University.

Contact him at zwen@inf.ed.ac.uk.

Renyu Yang is a researcher in the School of Computer

Science and Engineering at Beihang University. His

research interests include dependable distributed

systems and cloud computing. Yang has a PhD in

computer science and engineering from Beihang Uni-

versity. Yang is the corresponding author; contact him

at yangry@act.buaa.edu.cn.

Fog Computing

24 www.computer.org/internet/ IEEE INTERNET COMPUTING

Peter Garraghan is a lecturer in the Department of Com-

puting and Communications at the University of

Lancaster. His research interests include distributed

systems and large-scale cloud data centers. Garraghan

has a PhD in computer science from the University of

Leeds. Contact him at p.garraghan@lancaster.ac.uk.

Tao Lin is a master’s student in the School of Computer and

Communication Sciences at the École Polytechnique

Fédérale de Lausanne (EPFL), Switzerland. His research

interests include scalable machine learning and cloud

computing. Lin has a BS in electrical engineering from

Zhejiang University. Contact him at tao.lin@epfl.ch.

Jie Xu is a chair professor of computing at the University

of Leeds. His research interests include large-scale dis-

tributed computing and dependability. Xu has a PhD in

advanced fault-tolerant software from Newcastle Uni-

versity. Contact him at j.xu@leeds.ac.uk.

Michael Rovatsos is a senior lecturer in the School of Infor-

matics at the University of Edinburgh. His research

interests include multiagent systems, distributed artifi-

cial intelligence, and social computation. Rovatsos has

a PhD in computer science from the Technical Univer-

sity of Munich. Contact him at mrovatso@inf.ed.ac.uk.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

