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Abstract—Recent advances in location-acquisition and mobile
sensing technologies have enabled tracking of vehicle movements
(i.e., trajectory data). Massive trajectory datasets are processed
routinely (often in real-time) to provide support for many new
types of IoV (Internet of Vehicles) applications (e.g., traffic
congestion management, and load-coordination across electric ve-
hicle charging stations). High-volume, high-velocity data emitted
by IoV applications introduces issues with efficient spatial and
temporal queries over massively redundant datasets, typically
represented as a collection of longitude-latitude tuples. In this
paper we present SMTP, a new storage method based on the
recognition of trajectory patterns to reduce the storage space for
the trajectory data. An adaptive algorithm for mining trajectory
patterns from the data is developed, and it recognizes frequent
trajectories as patterns according to the geo-space relationships
between trajectories. A combinatorial optimization algorithm is
then introduced to decide which trajectory patterns should be
used for trajectory storage, thereby removing redundant data
and saving space. The recognized and saved patterns also help
to accelerate queries to the trajectory data. Several large IoV
datasets from the real world are used to validate the effectiveness
of the proposed method. Experimental results show that storage
space for trajectory data can be reduced by 38% while a typical
query to the data can be accelerated by approximately 40%.

Index Terms—IoV; Trajectory Patterns; Trajectory Pattern
Mining; Vehicle Trajectories

I. INTRODUCTION

The ubiquitous exploitation of trajectory data has been
driven by recent advances in location-acquisition, mobile
sensing, and IoV technologies [5]. The growing use of data
such as position, sensing data etc. together with rapidly urban
development leads to the large volume and highly redundant
trajectory data. In reality, the real-time location information
of vehicles is leveraged by many taxi corporations to re-
alize a timely scheduling of vehicles [10] [19]. To detect
the number of event and speed of data, it is mandatory to
investigate efficient trajectory data management algorithms
and approaches. The service (e.g., Uber [4]) and infrastructure
providers (e.g., Amazon Web Services [1]) can utilize our
trajectory data management method to provision effective and
reliable IoV application that not only reduces operational
cost (especially storage overheads) but also improve query
processing efficiency [20] [21].

IoV applications are typically spatio-temporal data manage-
ment and query processing applications that require varying
level of accuracy driven by decision making scenarios (e.g.

Fig. 1: Trajectories in road network of Beijing

traffic flow management, scheduling of taxi service etc).
Traditionally, each GPS point within a trajectory is repre-
sented in longitude-latitude tuple PT denoted by <longi-
tude,latitude,timestamp>. This form is intuitive but primarily
suffers from two fundamental problems: imprecision stemming
from record errors and space complexity due to high volume
and velocity of trajectory data samples [6]. In practice, in
a real-time location query, merely the road and distances
are required, rather than a complete series of GPS position
information. Inevitably, utilizing original GPS data would
increase the query time complexity and the storage overhead.

With the increasing scale of vehicles and road networks,
the probability of repetitive trajectories increases. In Figure
1, the thickness of a line represents the trajectory number
in Beijing road network. Apparently, numerous trajectories
manifest in the ring and backbone roads in Beijing. As vehicle
trajectories are directly related to road network layout, spatio-
temporal search queries in IoV application are represented as
<rid,dis,t> (i.e., road and distance). In addition, compression
approaches based on road network are further proposed in
[11] [17]. However, these methods have not fully taken ad-
vantage of road networks and the lossy compression cannot
satisfy different accuracy requirements in the IoV applications,
resulting in ineffective query processing. In fact, frequent
trajectory has been applied in the frequent trajectory mining
and path planning [9] [14]. The most frequent subsegments
that constantly appear in many trajectories can be recognized
as a trajectory pattern [8]. Undoubtedly, defining, detecting
and leveraging frequent trajectory patterns to represent the po-
sitions can mitigate the storage redundancy whilst accelerating
the trajectory queries.

Frequent trajectory mining methods are proposed in exist-



ing literature [8] [13] [15] [17]. However, those approaches
generate a large number of subsets of frequent trajectories,
making it infeasible to apply into current large-scale IoV
applications that typically contain high volume trajectory data.
Therefore this raise two research challenges: 1) how to effi-
ciently recognize frequent trajectory patterns based on large-
scale tracking data; 2) how to effectively overlay the real-
time vehicle trajectories over geo-space patterns for removing
redundant data. Due to the sheer volume and velocity of
trajectory data, these problems continue to be intractable. In
this paper we present SMTP for reducing the storage space
of the trajectory data, based on the recognition of trajectory
patterns. An adaptive algorithm to mine trajectory patterns
from the data is then developed, and it recognizes frequent
trajectories as patterns according to the geo-space relationships
between trajectories. Afterward, we formulate and apply a
combinatorial optimization to decide which trajectory patterns
should be utilized to store original trajectories, thereby remov-
ing redundant data and saving space. Large-scale IoV datasets
from the real world are used to validate and experimental
results demonstrate that the storage space can be reduced by
38% and the query can be accelerated by approximately 40%.
In particular, the contributions of this paper are as follows:

• An adaptive trajectory pattern mining algorithm based
on geo-space relationships between trajectories, fully
covering the road network and avoiding the generation
of a large number of frequent subsets;

• An efficient combinational optimization algorithm that
greedily selects trajectory patterns for roads in each
trajectory;

• An implementation of a holistic data storage method that
mitigates the storage redundancies and accelerates queries
based on trajectory patterns.

The rest of the paper is organized as follows: Section II
presents the formal definitions of concepts and problems.
Section III describes SMTP in detail. The experiments are
shown in Section IV. Section V reviews related work and we
conclude our work in Section VI.

II. PROBLEMS DEFINITION

In this section, we will define a set of key concepts and
problems. Specifically, original trajectory T can be regarded
as a sequence composed of a number of GPS points (PTs).
Many road segments (RSs) constitute a road R. Road network
(RN) is a directed graph that includes a set of road intersections
and pertaining roads. After a map matching (MM) procedure,
a GPS point PT will be transformed into map-matched point
(MMP), and the trajectory T is converted to the map-matched
trajectory (MMT). A trajectory pattern tuple (TPT) contains
the trajectory pattern TP and distance-timestamp tuples. Based
on the trajectory pattern TP, trajectory NT is represented by
a TPT sequence. More details can be found in Table I. Based
on these concepts, we describe the fundamental problems as
follows:

Trajectory Pattern. TP=<pid,(RS1,RS2· · ·RSp),attributes>,
where pid is the identifier and (RS1,RS2· · ·RSp) is a valid
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Fig. 3: Example of trajectory pattern optimization

path in RN while attributes include distance and direction
etc. p is defined as the RS number and the distance is the
accumulated road distance of the specific path. We define
min sup as the minimized occurrence number of the TP
within the connecting MMTs, and min len as the minimized
RS number that the RS set should contains. These two metrics
are significantly important and will be emphatically discussed
in our paper.

Trajectory Pattern Mining. Given a road network RN, the
historical trajectory set MMTS will be obtained after map-
matching. We can discover the trajectory patterns TPS from
MMTS. Figure 2 demonstrates the line-line relationships in
geo-space, mainly including Disjoint, Overlap, Touch, Con-
tain, Equal and Cross etc. According to the definition of
trajectory pattern, TP consists of road segments. The trajectory
patterns will thus have those relationships correspondingly.
In the frequent pattern mining, all non-empty subsets of a
frequent itemset must be frequent itemsets [18]. Therefore
we can conclude that each sub-trajectory of a trajectory
pattern must be a trajectory pattern. This indicates that we
should avoid the occurrence of substantial generations of
trajectory pattern subsets during the pattern recognition from
numerous historical trajectories. Moreover, different roads
have distinctive traffic flows, resulting in the asymmetrical
distribution of trajectories. It is obviously observable from
Figure 1 that the ring roads and backbone roads in Beijing have
more trajectories. Therefore uniform min sup and min len
are extremely difficult to define. It is very likely to omit
many important roads by assigning large values, or reserve
infrequently-occurred roads as trajectory patterns by small
values. It is significantly vital to excavate trajectory patterns by
fully leveraging road network information and avoiding excess
sub-trajectory patterns.

Trajectory Pattern Combinational Optimization. Given a
trajectory pattern set TPS, a map-matched trajectory MMT, the
problem we have to deal with is to select suitable trajectory



TABLE I: The definitions of key concepts

Abbreviation Name Definition
PT GPS Point Tuple PT=<longitude,latitude,t>. PT represents a GPS position at time t. PT is a longitude-latitude tuple.
T Trajectory T=<PT1,PT2· · ·PTn>, n is the number of PT. A trajectory T is a sequence of GPS points ordered

by time.
RS Road Segment RS=<rid,Nodestart,Nodeend,attributes>, rid is the identifier, and Nodestart is the start point

represented in <longitude,latitude> tuple. Nodeend is the end point, and attributes include distance
and direction etc.

R Road R=<Rid,(RS1,RS2· · ·RSm),attributes>, Rid is road identifier, and RSi is the ith road segment in
road R. m is the number of road segments, and attributes include the road name, distance and direction
etc. A road is defined as a sequence of RSs.

RN Road Network RN=G(V,E). V is the set of road intersections and Nodes represented in <longitude,latitude> tuple.
E is the set of roads. A road network RN is a directed graph.

MM Map Matching A procedure that maps or overlays original trajectory T to the existing road network RN.
MMP Map-Matched Point MMP=<rid,dis,t>. MMP is the reuslt of PT matched to RN, rid is the identifier of matched RS,

and dis is the distance from the matched point to the Nodestart of RS.
MMT Map-Matched Trajectory MMT=<MMP1,MMP2· · ·MMPl>, l is the number of MMP. A MMT is a sequence of MMPs after

T is map-matched to RN.
MMTS Map-Matched Trajectory Set MMTS=<MMT1,MMT2· · ·MMTs>, MMTS is the set of MMT.
TP Trajectory Pattern TP=<pid,(RS1,RS2· · ·RSp),attributes>. pid is the identifier, (RS1,RS2· · ·RSp) is a valid path in RN,

and attributes include size p, distance and direction etc.
TPS Trajectory Pattern Set TPS=<TP1,TP2· · · TPt>, TPS is the set of TP.
TPT Trajectory Pattern Tuple TPT=<pid,(<dis1,t1>,<dis2,t2>· · ·<disq ,tq>)>. disi is the distance from ith point to the

Nodestart of trajectory pattern, and ti is the timestamp of ith point. Including the pid of TP, TPT
is a sequence of distance-timestamp tuple, namely <distance,timestamp>.

NT Trajectory Based On Trajecto-
ry Pattern

NT=<TPT1,TPT2,MMPi· · · TPTr>. r is the number of TPTs and MMPs. NT is a trajectory based
on trajectory pattern.

CR Redundancy Removal Ratio CR=1-ST ′

ST
, ST is the storage space of trajectory T, and ST’ is the storage after removing redundancy.

patterns to generate a new trajectory NT, substituting the
original one. For each RSi, it has a trajectory pattern set TPSi

where TPSi contains the RSi. The problem can be formalized
as follows:

Minimize:
n∪

i=1

TP
′
i

Subject to:

TP
′
i =


TP j

i , if TP j
i ∈ TPSi = ⟨TP 1

i , · · ·TPm
i ⟩

and 1 ≤ j ≤ m

Ø, if TPSi = Ø

(1)

As one trajectory pattern in TPSi, TPj
i is used to create NT

instead of MMPi.
More specifically, in road network RN, the road segment

RS might belong to many trajectory patterns. Consequently a
MMP in the MMT can be represented by different trajectory
patterns. TPS1 shown in Figure 3 can be illustrated as an
example. Some road segments may not belong to any trajec-
tory pattern because trajectory patterns cannot cover all roads.
The objective is to achieve the optimal redundancy removal
effects, thus the total number of trajectory patterns should be
minimized as possible (see Equation 1). Instead of MMP, we
want to use trajectory patterns to represent the trajectory as
more as possible. For a MMT=<MMP1,MMP2· · ·MMPj>, we
assume that the road segment in MMPj belongs to trajectory
pattern set TPSj . In order to get the optimal combination,
the algorithm needs to traverse all the paths in the candidate
graphs which contain trajectory pattern sets from TPS1 to
TPSj . The original complexity of this problem is O(mj), where
m is the number of trajectory patterns in candidate trajectory
pattern set, and j is the number of MMP in MMT. The data
is collected frequently in the IoV scenario, indicating a large

number of GPS points within a trajectory. Consequently, the
algorithm needs to figure out the targeted trajectory patterns
timely in order to meet requirements of real-time traffic
processing and analysis.

III. SOLUTIONS

In this section we will present our solutions SMTP in detail.
We will introduce the overview followed by description of
each key component.

A. Overview

As shown in Figure 4, SMTP is composed of four compo-
nents: Map Matcher, Trajectory Pattern Miner, Trajectory
Optimizer and Querier.

Map Matcher. The original trajectory T will be pre-
processed and matched to the road network RN.

Trajectory Pattern Miner. This module excavates trajec-
tory patterns from a large set of matched trajectories MMTS.

Trajectory Optimizer. Trajectory Optimizer selects the
optimal trajectory patterns based on the aforementioned op-
timization problem to create NT.

Querier. Querier will perform the storage operations and
execute queries based on trajectory patterns.

In particular, Map Matcher divides each trajectory into
sub-trajectories according to distance and time of adjacent
GPS points. During the matching procedure, Map Matcher
also obtains candidate road segments RSs by the similarity
of distance, direction and the driving rules of roads. After
map-matching, the original trajectory T is converted to MMT
which is represented in road network. In order to reduce the
subsets of trajectory patterns and mine trajectory patterns fully,
Trajectory Pattern Miner adopts an adaptive algorithm based
on geo-space relationship of trajectories. We implement a
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Fig. 4: System overview: components and workflow
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greedy algorithm in the Trajectory Optimizer to timely choose
trajectory patterns. At last, user can query the trajectories from
the Querier based on trajectory patterns.

B. Trajectory Pattern Miner

According to the geo-space relationships among trajectories
discussed in Section II and trajectories in Figure 1, the geo-
space relationships of Disjoint, Overlap, Contain and Touch
are ubiquitous. The geo-space relationships among trajectories
are valuable but ignored by many trajectory pattern mining
algorithms. In Figure 5, we can find several observations: the
trajectory pattern TP1 is disjoint with TP3 and TP4. TP1 and
TP2 overlap in road a. TP2 and TP3 touch at road intersection
V6 and TP3 contains TP4(they both have the same road
b). Typically, a vehicle often changes directions at the road
intersection, resulting in the varying trajectories related to road
intersection. In road network RN, the road intersections are
key variations and connections for trajectories, significantly
affecting the mining of trajectory pattern. For example, the
road V13V9 includes road segments r1, r2 · · · rn, making the
road V13V9 be a trajectory pattern and min len=1. According
to our rules, r1, r2,· · · rn, r1r2, r2r3, · · · ,rn−1rn,· · · , r1r2 · · ·
rn are trajectory patterns. Namely, ri· · · rj (1 ≤ i ≤ j ≤ n)
is a trajectory pattern and the number of trajectory pattern
generated by road V13V9 is n2+n

2 , namely C2
n+1. Assuming

min len is m, the number is C2
n−m+2.

In the Contain relationship, a trajectory pattern of size
n can generate n2 sub-trajectory patterns. Meanwhile, The
connection of adjacent trajectory pattern such as Overlap and
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Fig. 6: Distribution of different roads in Beijing
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Fig. 7: Trajectory number of different length

Touch can create new trajectory pattern, which facilitate the
number reduction of trajectory pattern. Due to the enormous
differences of traffic flows among different roads, the min sup
and min len will be significantly impacted. According to
OpenStreetMap [2], the roads of Beijing can be categorized
into different highways. Through the mining from road in-
tersections, we can reduce the generation of subsets and
mine the trajectory patterns of Touch. To deal with different
traffic flows, we adopt an adaptive approach to dynamically
determine the value of min sup according to road types. We
further propose an efficient algorithm that can automatically
excavate trajectory patterns by using geo-space relationships
and road types.

The adaptive trajectory pattern mining algorithm starts to
mine from road intersections and uses different min sup
according to road types. To accurately determine min len,
we analyze the distribution of trajectory length and select the
largest concentration of length range. We count the number of
trajectories in different road types and the number of different



Algorithm 1 Trajectory Pattern Mining Algorithm

Input: (1) MMTS;(2) RN.
Output: (1) TPS.

1: TPS ← Ø
2: //construct the whole Trie Root from MMTS
3: for each MMT in MMTS do
4: append MMT to Trie Root
5: end for
6: //mining TP of each Inter from Root
7: for each Intersection Inter in RN do
8: get the minimum min sup of Inter
9: nodeTrie←ConstructNodeTrie(Inter,min sup, min len)

10: TP ← GetPath(nodeTrie, min sup,min len)
11: TPS ← TP
12: end for
13: return TPS
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Fig. 8: An example of trajectory pattern mining

trajectory length. The road distribution is shown in Figure 6
and we calculate the number of trajectories passing different
roads from the training set. The mining algorithm adjusts the
min sup adaptively according to the statistics. As shown in
Figure 7, the length are tail-distributed and the length of most
trajectories is less than 100 after the map-matching. Thus we
set several parameters of min len below 100.

Algorithm 1 depicts the holistic procedure. It takes the set
of map-matched trajectories MMTS and road network RN as
input, and set of trajectory patterns TPS as output.

At first, we assign to the set of trajectory pattern TPS
an empty set (line 1), and then construct a whole Trie tree
[12] Root and Node’ list List from all map-matched historical
trajectories (lines 3-5). Each node in Root represents a road
segment and the number of trajectories passing the road
segment. Each node in the list includes all the occurring
positions of the road segment in Root. Secondly, we make
sub-Trie nodeTrie start in each intersection Inter according to
the Root and List (line 7). Afterwards the algorithm determines
min sup adaptively according to the sub-Trie information,
such as the road type and trajectory number(line 8). Finally, the
algorithm adds the trajectory which appears to be more than
min sup and the size is larger than min len as a trajectory
pattern to TPS(lines 10-11). At the same time, we can also
obtain the trajectory pattern’s road segment list, distance,
size and direction etc. The most advantage of the mining
algorithm is the complete utilization of intersection and road
type information.

In Figure 8, the Root consists of road segments or inter-
sections A, B · · · I, the Node’ List comprises Node items.

Algorithm 2 Trajectory Pattern Optimizing Algorithm

Input: (1) MMT.
Output: (2) NT.

1: lastCandidate ← Ø, currentCandidate ← Ø, NT ← Ø
2: for each MMP in MMT do
3: currentCandidate ← GetCandidateTP(MMP)
4: if lastCandidate is Null then
5: lastCandidate ← currentCandidate
6: end if
7: tempCandidate ← lastCandidate ∩ currentCandidate
8: if tempCandidate is Null then
9: NT ← one trajectory pattern in lastCandidate

10: lastCandidate ← currentCandidate
11: else
12: lastCandidate ← tempCandidate
13: end if
14: end for
15: NT ← one trajectory pattern in lastCandidate
16: return NT

For example, the intersection C occurs 3 times in Root. After
creating Root and Node’ list, the algorithm can easily construct
NodeTrie of each road intersection. The road intersection C
occurs 4 times in nodeTrie. Let min sup be 2 and min len be
2, and consequently the path CF is a trajectory pattern.

C. Trajectory Optimizer

As discussed in Section II, we can get new trajectory
NT by combining trajectory patterns. In order to find the
optimal solution, we have to traverse all the paths of the
graph consisting of multiple trajectory pattern sets. To utilize
more trajectory patterns in NT and reduce time complexity, we
greedily select the candidate trajectory patterns of adjacent
MMP. To this end, we propose an approximate algorithm
based on trajectory pattern matching.

Algorithm 2 shows the details. At first, the algorithm takes
map-matched trajectory MMT as input and trajectory based on
trajectory pattern NT as output. The algorithm searches and
finds each trajectory pattern set currentCandidate of MMP in
MMT (line 3). It then gets the intersection with lastCandidate
of last MMP in sequence (line 7). This process repeats until the
intersection set tempCandidate is empty. Finally, our approach
will find the longest matching trajectory pattern which contains
all the prior MMPs (lines 8-13), and get the NT (line 16). The
core philosophy of the greedy algorithm is that it refers to the
trajectory pattern which contains more MMPs.

Analysis: As for the time complexity, the algorithm exam-
ines each intersection of adjacent trajectory pattern sets and
the time complexity is O(m2) where m is the trajectory pattern
set’s number of a specific MMP. As a result, the overall time
complexity is O(m2n), where n is the number of MMPs in
MMT. Apparently, compared to the time complexity O(mn)
of original algorithm, the proposed algorithm is more efficient
and feasible to current IoV scenarios.

D. Querier

Based on the above design and implementations, we further
extend the trajectory pattern based representation mechanism
into the underlying storage and data query to realize the
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mitigation of data redundancies and the improvement of query
performance. In reality, trajectory NT by using the trajectory
patterns is able to reduce the number of data items, resulting
in a sound redundancy removal effectiveness. When querying,
the model can calculate the distance according to the trajectory
pattern directly.

Consider a case study of the trajectory T containing 9 GPS
points in Figure 9 to illustrate the storage space reduction.
The number of data items of T is 27. Assume that the data
type of latitude and longitude is double, while timestamp
is int. Double variable and int variable need 8 bytes and 4
bytes respectively. Therefore, the total storage of trajectory
T should be 180 bytes. If the trajectory T is represented in
NT=<pid,(<dis1,t1>,<dis2,t2>· · ·<dis9,t9>)>, the number
of data items of NT is 19 and the format of attributes are
as below: pid and timestamp are int while distance is double,
resulting in a holistic 112 bytes storage.

With regards to the query aspect of the trajectory T path,
due to the road segments V7V4, V4V1, V1V2, V2V3 involved
in the trajectory pattern, we can easily get the path between
dis1 and dis9. The model can get the accurate position directly
when querying the real-time location. In real IoV systems
and applications, queries are primarily based on the road
network. The road list and distance of trajectory pattern will
be extremely beneficial and generally applicable to those
trajectory data storage models.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate the effectiveness of the proposed
trajectory pattern mining algorithm on its ability of reducing
redundant data and improving query processing.

A. Experimental Setup

Road Network. We use the map within the 5th Ring
roads of Beijing from OpenStreetMap. The longitude ranges
from 116.199814 to 116.554159, and the latitude ranges
from 39.750665 to 40.027734. The map of this area contains
106,792 road nodes, 28,972 roads, 151,237 road segments and
37,034 road intersections.

Datasets. Different value of min sup and min len will
impact the effectiveness of the proposed trajectory pattern
mining algorithm. Therefore, we vary min sup according to

the statistics of training set. With regards to mining trajectory
patterns, we evaluate the effects by several min lens. In this
experiment, we considered 1,000,000 trajectories generated by
different vehicles.

Algorithms and Implementation. All algorithms of SMTP
are implemented in Java and run on a cluster of server-
s. Each server is equipped with Intel(R) Xeon(R) E5-2650
CPU(2.00GHz) and 256 GB memory. The following metrics
are quantified:

1) Road Coverage Ratio: RC = NRS′

NRS , where NRS is the
number of distinct RSs in RN, and NRS’ is the number of
different RSs in TPS;

2) Redundancy Removal Ratio: this ratio CR indicates the
reduction degree;

3) Query Time Ratio: QTR = QTP
QLL , where QTP is the time

of querying trajectory based on trajectory pattern, and QLL is
the trajectory query time based on longitude-latitude tuple.

We discuss the impact of parameter values in different
trajectory pattern mining algorithms in Section IV-B and then
evaluate the optimization algorithm of redundancy mitigation
in Section IV-C. We also compare the query processing effi-
ciency of trajectory based on trajectory pattern with longitude-
latitude tuple method in Section IV-D.

B. Trajectory Pattern Mining
We discuss the impact of different parameter values on

adaptive and general trajectory pattern mining algorithms.
Figure 10(a) depicts that the road coverage ratio varies with
min sup and min len in both adaptive and general algorithm.
The road coverage ratio decreases as min len increases in
both algorithms. The reason is because the trajectory patterns
decrease while min len increases. Due to all intersections in
the road network and dynamic min sup, the road coverage
ratio RC of adaptive algorithm is higher than that of general
algorithm. We can conclude that the adaptive algorithm has a
larger road coverage ratio than the general algorithm.

Figure 10(b) shows that the Touch relationship ratio varies
with min sup and min len in adaptive and general algorithm.
The Touch relationship ratio means that the trajectory patterns
of Touch relationship account for all the trajectory patterns.
Figure 10(c) is the Contain relationship ratio variation. It
is observable that the Touch relationship ratio of adaptive
algorithm surpasses the general algorithm, but the Contain
relationship ratio of adaptive algorithm is lowest. More trajec-
tory patterns of Touch relationship indicates that we are able
to combine them to create more trajectory patterns easily, and
less trajectory patterns of Contain relationship means that the
mining algorithm generates less subsets. This is due to the
fact that the adaptive algorithm makes use of the geo-space
relationship and reduces the generation of subsets.

Holistically, the adaptive algorithm outperforms other ap-
proaches in road coverage aspect with less trajectory patterns
generated.

C. Redundancy Mitigation
As discussed in Section II and III, a GPS point contains 20

bytes if it is represented in PT tuple. However, by using the
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Fig. 10: Trajectory pattern mining: (a) road coverage ratio; (b) touch relation ratio; and (c) contain relation ratio
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Fig. 11: Redundancy removal ratio and parameter impacts

MMP, the total storage requirement of representing a location
point can be reduced to 16 bytes assuming that data type of rid
and t is int and dis is double. In particular, by using MMP and
PT, the lossless redundancy removal ratio will be 1-16η20η = 1

5
(assuming that η is the number of GPS points in T, the total
storage of T in MMP formulation will be 16η, and the storage
of T in PT formulation will be 20η). When representing in
NT and PT, the lossless redundancy removal ratio will be:

CR = 1−
4φ+ 12ϱ+ 16ς

20η
(2)

where η is the number of GPS points in T and φ is the
number of trajectory patterns referred while ϱ is the number
of distance-time tuples and ς is the number of MMP in NT.
The total NT storage can be calculated by 4φ+12ϱ+16ς , and
the resultant T will be 20η. Additionally, due to ϱ + ς = η,
the CR can be induced to CR = 8

20 - (φ+ς)
5η . In fact,

lim
φ=0,ς=η

φ+ ς

5η
=

1

5
(3)

lim
φ=1,ς=0,η→∞

φ+ ς

5η
= 0 (4)

According to Equation 3 and 4, we can conclude that the ratio
is between 20% and 40%. Obviously, the trajectory pattern sets
will lead to extra storage cost. Assume min len=10, adaptive
algorithm will generate more than 120,000 trajectory patterns
which take around 137 MB space. However, compared with
the huge amount of trajectories in the IoV system, the overhead
of these trajectory patterns and road network is acceptable and
can be neglected.
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Fig. 12: Query time ratio under path Query
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Fig. 13: Query time ratio under where Query

Figure 11 shows the redundancy removal ratio varies with
changes in min sup and min len in context of greedy algorith-
m. We can see that the redundancy removal ratio can reach
about 38%, which is approximate to the theoretical boundary
40%. Based on this, it can be concluded that the greedy
algorithm achieves a perfect performance.

D. Query

To evaluate the query performance, we make a comparison
between the query efficiency of trajectories stored in trajectory
pattern and longitude-latitude tuple methods.

Figure 12 illustrates the effectiveness of path query, the
QTR decreases with the increment of trajectory length, and
the query speed of trajectory based on trajectory pattern is
observably faster than trajectory based on longitude-latitude
tuple. Because the trajectory pattern has the road list and
trajectory NT has deviated distances, the method can get the
road list and distance directly. For most trajectories within



the length of 1,000, comparing to the time of query based
on longitude-latitude tuple, the time of path query based on
trajectory pattern is merely 60% approximately. Namely the
query path based on trajectory pattern can be accelerated by
40%.

Figure 13 demonstrates the comparison of where query.
Given one location, where query is to find all occurring times
at the location in one trajectory. The query time ratio QTP
varies with trajectories as different trajectories have distinct
number of same locations and the query needs different time
to calculate. We can observe that the query based on trajectory
pattern is generally faster than longitude-latitude tuple due to
the road and distance.

In conclusion, the query based on trajectory pattern is faster
than conventional trajectory based on longitude-latitude tuple
which can attribute to the use of trajectory patterns.

V. RELATED WORK

Trajectory data has been a significant research focus for
years and many systems are proposed. Those approaches
mainly stored trajectories in spatio-temporal databases. Geo-
databases such as PostGIS [3] focus on Geo-data processing
and optimizing. Distributed databases such as MD-HBase [16]
based on HBase [7] which achieve high insertion and efficient
geographical query by using multi-dimension index. These
systems basically store the trajectory with longitude-latitude
tuple structure. Without considering the high repeatability of
vehicle trajectories in real world, such systems often suffer
from problems of huge storage redundancy and low query
efficiency.

Recently road network has been used for trajectory data
storage. A nonmaterialized trajectory model, for example, is
proposed in [6]. In this model, the spacial dimension is stored
by road network and time dimension is stored as road offset
and timestamp. Map matching trajectory compression is intro-
duced in [11]. Press [17] processes trajectory by compressing
its spatial and temporal information further. More specially,
assuming that the trajectory is always along the shortest path,
Press uses shortest path and Huffman coding to compress
the trajectory. However, in the complex road environments,
the vehicle trajectory is always changeable and the shortest
path is not always suitable. Meanwhile, the adopted lossy
compression approach could decrease the query accuracy.

Frequent pattern mining is an important research area in
data mining. Frequent patterns can be used to accelerate the
path computation on a road network [9]. Trajectory pattern
is proposed in [8] and has been used widely. A driving
pattern mining algorithm based on traffic flows determining the
frequent support is proposed in [9] which needs extra traffic
information. Methods in [13] [15] [17] treat trajectory as string
and calculate the occurring frequency.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, based on the recognition of trajectory patterns,
we have proposed the SMTP for storing a very large set of
vehicle trajectories. The patterns are recognized according to

the geo-space relationships between trajectories. And patterns
are stored selectively so as to remove any redundancy included
in the original trajectory data. The queries of vehicle trajecto-
ries are now pattern-based and allow potential acceleration.
We have conducted extensive experiments to evaluate the
performance of SMTP using real IoV data sets. Experiment
results show that storage space for trajectory data can be
reduced by 38% while a typical query to the data can be
accelerated by approximately 40%. In the future we will
continue to explore the possibilities of faster pattern mining
methods and more efficient indexing of trajectory patterns.
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