
A Flexible and Scalable Affinity Lock for the Kernel

Benlong Zhang, Junbin Kang, Tianyu Wo, Yuda Wang and Renyu Yang
State Key Laboratory of Software Development Environment

Beihang University
Beijing, P.R. of China

{zhangbl, kangjb, woty, wangyuda, yangry}@act.buaa.edu.cn

Abstract—A number of NUMA-aware synchronization algo-
rithms have been proposed lately to stress the scalability in-
efficiencies of existing locks. However their presupposed local
lock granularity, a physical processor, is often not the optimum
configuration for various workloads. This paper further explores
the design space by taking into consideration the physical affinity
between the cores within a single processor, and presents FSL
to support variable and finely tuned group size for different
lock contexts and instances. The new design provides a uniform
model for the discussion of affinity locks and can completely
subsume the previous NUMA-aware designs because they have
only discussed one special case of the model. The interfaces of
the new scheme are kernel-compatible and thus largely facilitate
kernel incorporation. The investigation with the lock shows
that an affinity lock with optimal local lock granularity can
outperform its NUMA-aware counterpart by 29.40% and 58.28%
at 80 cores with different workloads.

Keywords—synchronization algorithms, multi-core algorithms

I. INTRODUCTION

The overhead of synchronization mechanisms often drags
system throughput behind in multiprocessing. The simple
ticket spin lock, which is ubiquitously used in the kernel,
is known to have innate scalability defects. There has been
heated discussion on the design of scalable spin locks in the
early 1990’s, and a group of effective queue locks have been
proposed (e.g., the MCS [1] lock). However, they often provide
different APIs from the ticket lock for the kernel.

Recently a group of NUMA-aware lock schemes [9], [11],
[12] have been proposed. Given the huge disparity of inter-
chip cache access latency [3], [11], these two-level hierarchical
designs are capable of improving synchronization scalability
tremendously by the exploitation of socket-level lock data
affinity. Though reasonable and effective, such locks simply
presuppose the granularity of the first-layer local lock should
be a single processor, which is often not the optimum con-
figuration for different contexts. This approach have left out
several important aspects for the design of affinity locks and
stopped the exploration of the design space ahead of time.

As modern multi-processors exhibit continually increasing
horizontal access latency for a certain core when the target
private cache is becoming farther [3], the cost of synchroniza-
tion also increases drastically with the number and span of
cores involved. The access latency of the cache of a remote
core residing on another processor can be as much as 100
times that of its own cache [3], thus the NUMA-aware locks
divide the cores into several groups in the unit of a physical
processor to lessen the inter-chip communication as much as
possible. However, these constructs have neglected the still

large access latency discrepancies among the cores within a
single processor, because the latency to a nearby private cache
can be as much as 40 times that of the local cache [3].

This paper extends the discussion of NUMA-aware locks
and presents FSL: a flexible and scalable affinity lock for the
kernel. The new lock design relies on the idea that the first-
layer granularity of an affinity lock should be dynamically con-
figured. It provides a uniform model to build affinity locks and
explores the design space consistently and comprehensively. In
this more general discussion, the group size in an affinity lock
should be as small as possible to maximize the exploitation
of the physical affinity of the cores as long as there are new
waiters when the lock holder exits. For those locks with fierce
competition intensity, a 2-core-based sharing can maximize
performance; while for others, a 5-core-based sharing may
be the best choice. The NUMA-aware locks discuss only
one special case of the new scheme and can be completely
subsumed into the new model.

Different from existing affinity locks providing uniform
lock structure for every lock instance, FSL is capable of
providing two instances with customized first-layer group
size and thus heterogeneous construction according to their
specific contexts. Considering the wide range of the number
of processing cores within a physical processor, which can be
as small as 2 in an Intel i3 and as big as 72 in a Tilera TILE-
Gx72 processor, and the various contexts of the kernel locks,
we believe our investigation is worthwhile. The new scheme
requires constant memory space and exports compatible APIs
with the ticket lock. In particular, the contributions of this
work include: (1) the design and implementation of FSL, an
affinity lock for the kernel with flexible first-layer granularity;
(2) the investigation with FSL into different lock contexts and
the conclusion that different lock instances should use different
local lock granularity to maximize scalability.

II. FSL DESIGN

Although existing NUMA-aware locks uniformly adopt a
physical processor as the first-layer local lock granularity, the
optimal group size of an affinity lock is yet still to be discussed.
Considering the big on-chip core number of modern multicore
processors and the tremendous access latency of private caches
[3], contention of a local ticket lock may still considerably
hinder lock performance.

The fundamental rationale of hierarchical affinity locks lies
in the global lock will be hold for a while until relinquished
whereas the local lock is frequently acquired and released
within the group. The global lock should be released under
two circumstances: it has been hold for enough time or there

1 #define CORE_COUNT 80
2 #define CPU_SOCKETS 8
3 #define MAX_GROUPS (CORE_COUNT / 2)
4 #define CACHE_LINE_SIZE 128
5 #define OVERFLOW (1<<(sizeof(__ticket_t)*8))
6 #define CORE_THRESHOLD 25
7
8 typedef struct local_ticket {
9 struct __raw_ticket {

10 __ticket_t head, carry, pad, tail;
11 } ticket;
12 u8 pad[CACHE_LINE_SIZE - 4*sizeof(__ticket_t)];
13 } local_ticket_t
14 __attribute__((__aligned__(CACHE_LINE_SIZE)));
15
16 typedef struct fsl_spinlock {
17 int group_size;
18 __attribute((__aligned__(CACHE_LINE_SIZE)));
19 int core
20 __attribute((__aligned__(CACHE_LINE_SIZE)));
21 /* global lock; */
22 struct __raw_ticket gl_ticket
23 __attribute((__aligned__(CACHE_LINE_SIZE)));
24 /* local locks; */
25 local_ticket_t bl_tickets[MAX_GROUPS];
26 } fsl_spinlock_t;
27
28 #define FSL_SPINLOCK_UNLOCKED(count) \
29 {.group_size=count}

Fig. 1: Lock Definition. The figure above gives the structure of the new
lock on an 80-core machine with 8 sockets.

are no more waiters in this group. It is intuitive that the smaller
a group is, the better the locality will be as the cores are
physically closer to each other. But, contradictorily, the group
size must be big enough to guarantee the group will have
accumulated other waiters at the exit of the current holder to
avoid the frequent release of the global lock which will destroy
the foundation of FSL and thus drag performance down.

A. Flexible Affinity

We believe the group size of FSL should be decided
flexibly by the arrival rate of new comers in this group.
As different lock instances have different new waiter arrival
rate and contention intensity, FSL should flexibly provide
customized group size for them. As Figure 1 displays, the
type fsl_spinlock_t defines the structure of the new
lock. Its first cache line contains the group count of the lock
and is specified at initialization. The second line contains the
identifier of the latest core that has just successfully acquired
this lock instance. The third line stores the global ticket
and the rest are ticket locks of the individual local locks.
Note the group count should be between CPU_SOCKETS and
MAX_GROUPS.

Each local lock is a ticket lock that occupies a single cache
line. Apart from the head and tail fields (usually two bytes
long each) with the same usage as in the ticket lock, the carry
variable is inserted to protect tail from being contaminated
by the carry of head, the process of which will be detailed
later; and the extra pad is filled in for address alignment.

B. Two-Layered Locking

FSL adopts a two-layered locking scheme. The first layer,
privately owned on a group basis, is designed to transfer
possession of the lock between the cores of the group. And
the second layer, which is also a ticket lock, is devised to
pass ownership of the lock among the groups globally. The
gl_ticket is the second layer ticket lock.

1 static __always_inline
2 void fsl_lock (fsl_spinlock_t *lock)
3 {
4 int core, group, threshold;
5 socket_ticket_t *line;
6 struct __raw_ticket inc = {.tail=1};
7 struct __raw_ticket incx = {.tail=1};
8
9 //(1) locate the group;

10 core = task_cpu (current);
11 threshold = CORE_THRESHOLD * lock -> group_size;
12 group = core / lock -> group_size;
13 line = &lock -> bl_tickets[group];
14
15 //(2) acquire the local lock;
16 inc = xadd(&line->ticket, inc);
17
18 //(3.1) acquire and wait for the global lock;
19 if (inc.head == inc.tail ||
20 inc.tail % threshold == 0) {
21 incx = xadd (&lock -> gl_ticket, incx);
22 while (1) {
23 if (incx.head == incx.tail) break;
24 cpu_relax ();
25 incx.head = ACCESS_ONCE
26 (lock -> gl_ticket.head);
27 }
28 }
29
30 //(3.2) wait for the local lock;
31 else {
32 while(1) {
33 if (inc.head == inc.tail) break;
34 cpu_relax();
35 inc.head = ACCESS_ONCE(line -> ticket.head);
36 }
37 }
38
39 //(4) record the core number;
40 lock -> core = core;
41 }

Fig. 2: Lock Acquisition. The xadd instruction is the fetch and inc.

Figure 2 details the procedures to go through to acquire
the lock. First, the thread finds out the group it’s running
on according to the current core identifier. For the platforms
where consecutive core numbers are physically consecutive, as
shown in the figure, the thread gets its group by dividing the
core number with group_size. For those platforms where
interleaved core numbers are physically close (e.g., core 0, 4,
8 and 12 may belong to a processor in a 16-core machine),
this step will be different. Second, the thread takes a seat in
the local ticket by executing the fetch_and_inc instruction
xadd. Third, if the returned value indicates the thread is the
first comer, it will take another seat in the global ticket and
wait in a tight loop until it’s granted. Non-first comers will
enqueue themselves to wait for the local ticket lock. At last,
the new lock holder will update core when it exits the loop.

Similarly, as shown in Figure 3, to release a lock the
lock holder should first find out the target group with core.
Notice we cannot get the core identifier at this time with
task_cpu as the thread might have already been migrated to
a different core. Then the local ticket ownership is relinquished
by increasing the head field. The returned snapshot of the
local ticket tells the state of the local lock. And if there are
more waiters on it tail should be at least bigger than head
by two, otherwise the global_release flag will be set
thus the inter-group lock can be released. Note that the carry
of head should be zeroed once it overflows (in line 20).

As stated above, the effectiveness of the design is largely
based on the assumption that there will be waiters on the socket

1 static __always_inline
2 void fsl_unlock(fsl_spinlock_t *lock)
3 {
4 int core, group_count, head_rounded;
5 int threshold, global_release = 0;
6 socket_ticket_t *line;
7 struct __raw_ticket inc = {.head = 1};
8
9 //(1) locate the group;

10 core = lock -> core;
11 threshold = CORE_THRESHOLD * lock -> group_size;
12 group_count = core / lock -> group_size;
13 line = &lock -> bl_tickets[group_count];
14
15 //(2) release the local lock;
16 inc = xadd (&line -> ticket, inc);
17 head_rounded = (inc.head + 1) % OVERFLOW_BOUND;
18
19 /* clear the carry; */
20 if (!head_rounded)
21 line -> ticket.carry = 0;
22 /* no more waiters in this group; */
23 if (head_rounded == inc.tail)
24 global_release = 1;
25 /* fairness threshold; */
26 if (head_rounded % threshold == 0)
27 global_release = 1;
28
29 //(3) release the global lock;
30 if (global_release) {
31 __add (&lock -> gl_ticket.head, 1,
32 UNLOCK_LOCK_PREFIX);
33 }
34 }

Fig. 3: Lock Release. The add instruction increases the head of the
inter-socket ticket by 1.

ticket when the holder tries to release the lock, thus the global
ticket lock can be hold for a while by the processor before it
is relinquished. The code segment from line 30 to 33 in Figure
3 is expected to be rarely executed.

C. Fairness

Evidently the global lock cannot be permanently hold
until this group becomes empty as other groups may be left
starving. Straightforwardly, relinquishment on threshold can be
an effective strategy for fairness assurance: each group keeps
accounting the times that the lock has been acquired and then
voluntarily give up once the threshold is reached. As indicated
by line 19 and 20 in Figure 2, the new comer at the threshold
value automatically forces itself to wait for the global ticket
lock. Correspondingly, line 26 in Figure 3 shows that a thread
will judiciously choose to release the global lock on the finding
that the granted times of this group has arrived at the threshold,
which is indicated by the current head value of the local lock.

III. EVALUATION

Two benchmarks with disparate critical section length and
consecutive acquisition interval are selected to illustrate the
flexibility of our new lock. All the experiments have been
carried out with linux-kernel-3.12.2 on an Supermicro server,
as detailed in Table I.

TABLE I: Experimental Platform.

Vendor Supermicro L1 D cache 32KB
Processors 8×Intel Xeon E7-8870 L1 I cache 32KB
of Cores 80 L2 cache 256KB
Frequency 2.40GHz LLC 30MB

Scalability: A standard measurement for the scalability of
a lock design is to measure the time of N threads collectively

executing C lock acquisitions and releases, with each thread
allocated C/N times. Then we can get the average time for
a single acquisition and release of the lock under different
contention degree, which is characterized by the number of
threads. A lock construct with satisfactory scalability should
keep the time constant when varying the number of threads.

The system call sys_spinlock(mode, count) is
added to initiate count lock acquisitions and releases of
different locks. The total count C is configured as 1 million,
and we bind each thread to a core to generate reproducible
results. There are three observations on the results in Figure
4. First, of all the FSL configurations, FSL-1 and FSL-80
exhibit the worst performance similar to that of the ticket
lock. From 80 to 2, the lock performance improves with
the group size becoming smaller. FSL-2, FSL-5 and FSL-10
outperform MCS. Second, the 2-core-based FSL achieves the
best performance as it’s intensive contention leads to the short
interval. It outperforms the 10-core-based FSL and MCS by
29.40% and 55.55% at 80 cores. Third, the performance of
the ticket lock is closely related to hardware affinity, which is
characterized by the fact that consecutively adding threads to
a processor does not increase the time but adding processors
will, and resulted in the gaps in its result line. The increased
latency of all FSL configurations are similar, being about 104%
of the ticket lock due to the two-layered locking.

Throughput: We adopt the benchmark dup-close in the
motivation of the corey [3] paper as a survey of the potential
of FSL on applications. Each thread of the multi-threaded
benchmark creates a file descriptor, then repeatedly duplicates
it and closes the result. The threads are also bound to cores,
and the throughput is measured. In this configuration both the
critical section length and the interval are significantly larger.

Figure 5 presents the results. Of all the FSL locks, the
5-core-based FSL yields the maximum throughput, which
outperforms FSL-10 by 58.25% at 80 cores. It can be seen that
performance of FSL-5 is not as good as the ticket lock within
5 cores, but once the threads span to two groups, ticket lock
quickly deteriorates and its throughput remains unacceptable
afterwords. The throughput of FSL-5 remains horizontal and
suffers little decline with the number of cores increasing, and
outperforms the ticket lock by 14.65x at 80 cores.

IV. RELATED WORK

Centralized Locks: The most intuitive spin lock is sim-
ply comprised of a flag variable [1], [2], with each core
repeatedly executing the test_and_set instruction trying
to acquire the lock. To cut off the blind competition, each
waiter can first check the lock state and then carry out
the test_and_set if it’s released, which is known as
the test-and-test_and_set [1], [2] technique. Further-
more, delays, whether being static or dynamic, can be inserted
into various locations of the lock acquisition algorithm to
reduce collision [2]. The ticket lock [10] is centralized as the
two counters incorporated are typically fit into a single cache
line. As have been extensively investigated, these locks have
poor scalability due to their centralized designs.

Queue Locks: The motivation and fundamental rationale
of the queue locks is to distribute the lock data so that
each waiter can have its own locally accessible data. The

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

ti
m

e
(u

s
)

of cores

fsl-1
fsl-80
fsl-20
fsl-10
fsl-5
fsl-2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

of cores

ticket

mcs

fsl-2

Fig. 4: Scalability Test Result. The even core points are omitted (except 80) for display clearness and clarity.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

th
ro

u
g

h
p

u
t(

k
 t

im
e

s
/s

e
c
)

of cores

fsl-5
fsl-10
fsl-20
fsl-2
fsl-1

fsl-80

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

of cores

fsl-5

ticket

Fig. 5: Throughput of dup-close. The even core points are omitted (except 80) for display clearness and clarity.

Anderson [2] lock, and the Graunke and Thakkar’s [5] lock
are both composed of a fixed number of slots, with each slot
prepared for a single thread by sequencing techniques. A major
defect of them, however, is the tremendous space requirement
proportional to the number of threads. Moreover, the fixed slot
size largely casts doubt on their practicality. The MCS lock [1]
represents each waiter with a qnode structure from the stack
of the invoker and delivers satisfactory scalability. K42 [12] is
a variant to make up the interface incompatibility of MCS, but
incurs overhead by a significant margin due to its increased
complexity [4]. The CLH lock [7] is a variant of MCS where
the waiter spins on its predecessor qnode.

NUMA-aware Locks: The cache coherent NUMA nature
of modern multiprocessing machines suggests lock designs
with locality in consideration may have the chance to further
boost performance. HCLH [8] is a hierarchical variant of CLH
that collects requests on each chip into a local queue and
then has them integrated into the global queue. Dave et al.
propose the FC-MCS [9] hierarchical algorithm based on the
flat combining technique and MCS. Then the lock cohorting
model [12] is subsequently proposed for general transforma-
tion from existing NUMA-oblivious locks to NUMA-aware
locks. Tudor et al. [11] observe that performing any operation
on a cache line crossing sockets does not scale and investigate
the potential of hierarchical ticket lock.

V. CONCLUSIONS

This paper proposes that the granularity of an affinity lock
should be flexibly decided according to the contexts of the
lock instances. Then FSL is designed and implemented for
the Linux kernel. The investigation concludes that different
lock instances should adopt different granularities to maximize
scalability. This work provides a generalized model for the
discussion of affinity locks.

VI. ACKNOWLEDGMENTS

The work was funded by China 973 Program (No.2011CB
302602), China 863 Program (No. 2013AA01A213), HGJ

Program (2010ZX01045-001-002-4, 2013ZX01039-002-001-
001), Projects from NSFC (No.61170294, 91118008) and
Fundamental Research Funds for the Central Universities.
Tianyu Wo is the corresponding author.

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Transactions
on Computer Systems, 9(1):21-65, 1991.

[2] Thomas E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 1(1):6-16, Jan. 1990.

[3] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu,
Yuehua Dai, Yang Zhang, Zheng Zhang. Corey: an operating system for
many cores. In Proceedings of 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’08), December, USA.

[4] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris and N. Zeldovich. Non-
scalable locks are dangerous. MIT CSAIL.

[5] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for
shared-memory multiprocessors. Computer 23(6):60-69.

[6] Peter, Anders and Erik. Queue locks on cache coherent multiprocessors.
Parallel Processing Symposium, 1994.

[7] T. S. Craig. Building FIFO and priority-queueing spin locks from atomic
swap. Technical Report UW-CSE-93-02-02, University of Washington.

[8] V. Luchangco, D. Nussbaum and N. Shavit. A hierarchical CLH queue
lock. Proceedings of the European Conference on Parallel Computing,
August-September 2006. Dresden, Germany.

[9] D. Dice, V. Marathe, and N. Shavit. Flat Combining NUMA Locks.
In Proceedings of the 23rd ACM Symposium on Parallelism in Algo-
rithms and Architectures, 2011.

[10] kernel ticket spin lock. Linux source:arch/x86/include/asm/spinlock.h.
[11] Tudor David, Rachid Guerraoui, Vasileios Trigonakis. Everything you

always wanted to know about synchronization but were afraid to ask. In
Proceedings of the 24th ACM Symposium on Operating Systems Prin-
ciples. November 3-6, 2013, Nemacolin Woodlands Resort, Farmington,
Pennsylvania, USA.

[12] D. Dice, V. Marathe, and N. Shavit. Lock cohorting: a general technique
for designing numa locks. 17th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming(PPoPP), pages 247-256,
2012.

