
CloudAP: Improving the QoS of Mobile Applications
with Efficient VM Migration

Yunkai Zhang, Renyu Yang, Tianyu Wo, Chunming Hu, Junbin Kang, Lei Cui

State Key Laboratory of Software Development Environment
 Beihang University

Beijing, China
 {zhangyk, yangry, woty, hucm, kangjb, cuilei}@act.buaa.edu.cn

Abstract — Mobile computing is increasingly growing in terms of
massive computation as well as user demand and use of mobile
devices. Remote execution techniques enrich the service
experience of mobile devices by leveraging the resource pools of
computation and storage capabilities of the cloud data center.
However, the user experience and quality of service will be
severely affected due to the inherent high latency and low
bandwidth of a WAN environment. In this paper, we introduce a
cloud base station "CloudAP" which is a small-scale computing
infrastructure close to mobile users with local network access. In
addition, we present a two-tier architecture consisting of
CloudAP and Cloud center and show how to synthesize them to
form a general computing environment. Furthermore, we
propose a prompt execution environment migration scheme
implemented by an efficient whole-system VM migration. It
makes the execution environment move following the location of
mobile device. Our experimental results demonstrate that the
proposed architecture is effective and the execution environment
migration scheme is efficient, consisting of up to 10ms and 30s for
service downtime and execution environment switch time
respectively. These improvements make vital contributions to
user experience and QoS in mobile pervasive environment.

Keywords —Mobile computing, Execution environment, Whole-
system VM migration

I. INTRODUCTION
In recent years, smartphones experience an increasingly

prevailing trend. It has been reported that the amount of
smartphone users worldwide exceeded 1 billion in the third
quarter of 2012 and continues to grow sharply. People
increasingly use their smartphones for a variety of tasks, such
as gaming, navigation, software services etc. However, the
intrinsic limitations of mobile devices such as low battery
volume or poor resource configuration impede further
facilitation of these applications.

The emergence of Mobile computing has resulted in
overcoming the challenge of resource restrictions of mobile
devices by using Cloud resources. Cloud computing provides
elastic resource management and application hosting,
compensating for the resource poverty of mobile devices and
growing demand of mobile users. In particular, it is the remote
execution technique that makes utilizing computer software on
mobile devices feasible. By leveraging OS-level virtualization
techniques and cloud infrastructures, resource intensive
applications can be executed within cloud infrastructure and
the results are transmitted to the thin device client.
Nevertheless, the WAN latency is still a non-negligible factor

and can damage the usability drastically by degrading the
system response [3].

To cope with this high latency, Mahadev et al. [2]
introduce the concept of Cloudlets: trusted, resource rich
computers or clusters in the vicinity of mobile users. Mobile
users can then rapidly instantiate custom virtual machines
(VMs) on the Cloudlet where the required software executes.
However, the service’s continuous execution is not guaranteed
due to the lack of integration between Cloudlets and Cloud.
For example, when a user using software on a mobile device
moves to a Cloudlet area, the user has to discard his current
execution environment before instantiating a new one in the
Cloudlet. Furthermore, the time required to customize a VM in
the Cloudlet is relatively long (taking 60-90 seconds). Tim et
al. [12] and Rahimi et al. [10] extend the concept of Cloudlet,
but they have not yet solved the problems introduced by
Cloudlet. Thus, there is a critical need for a mechanism that
focuses on how to keep the service uninterrupted and conserve
the execution environment transparently in order to facilitate a
more pervasive and seamless access to software service for
mobile users.

In this paper, we propose the concept “CloudAP”
inspired by the access point in communication fields
representing a small-scale cloud infrastructure close to the
mobile devices and advocate an efficient 2-tier architecture for
remote software execution with both Cloud center and
CloudAP taken into consideration. Furthermore, we present an
efficient execution environment migration scheme, which is
implemented by whole-system VM migration, to make the
execution environment move according to the location shift of
mobile devices. We perform experiments to measure the
feasibility of the presented architecture and evaluate the
efficiency of the execution environment migration scheme.
Our experimentations demonstrate that the “CloudAP + Cloud
center” architecture can improve the Quality of Service (QoS)
of software service significantly especially in the interaction
delay. Moreover, the switch time of execution environment
can be limited to 24-30 seconds, while the service downtime
only lasts for roughly 10 milliseconds. In this way, the service
interruption time is diminished to an acceptable interval.

In particular, the major contributions of the work in this
paper can be summarized as follows:

• The introduction of an efficient software remote
execution architecture combining CloudAP with Cloud
center.

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.195

1374

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.195

1374

• The design and implementation of an optimized whole-
system VM migration approach which fulfills rapid
migration and effective reconstruction of user’s
software execution environment.

The remaining sections are structured as follows: Section 2
presents a use case of CloudAP based execution environment;
Section 3 presents an overview of the architecture proposed;
Section 4 describes the performed approaches and
implementations; Section 5 shows the experimental results;
Section 6 discusses related work; finally, Section 7 presents the
conclusions and discusses future work.

II. CLOUDAP-BASED EXECUTION ENVIRONMENT
In this section, we present a use case to illustrate the idea

of CloudAP more concretely. The selected use case is based
on Software as a Service (SaaS) commodity model [1] which
is a typical framework for remote software execution.

SaaS provides an efficient means for users to execute
applications which are beyond the computation ability of their
thin mobile devices. They are executed on remote cloud
servers while the results are transmitted and displayed on the
client by using VNC viewer, XenDesktop, THINC[4], Muse[5]
etc. It is extremely beneficial for users to even use a Windows
or iOS application on their Android-based devices. For
example, the user can continue editing the unfinished
document using his tablet PC. However, due to the long
distance between users and the cloud data center, a number of
challenges still need to be addressed. The most obvious
obstacle is the interaction latency in the WAN environment.
This latency has a negative impact on the QoS of applications
and the thin client in particular is vulnerable to this
performance degradation. To bridge the gap between the QoS
requirement and existing network latency, CloudAP is
introduced.

Inspired by the pervasiveness and ease-to-use of base
station in communication realm, CloudAP can be regarded as a
small computing station providing both the software execution
and transparent access for nearby users. It can be deployed in
public places such as café, classrooms, meeting rooms etc.

 As shown in Figure 1, when user A enters into an area
covered by the certain CloudAP, he can directly run
applications in the local CloudAP resource pools with a better
QoS guarantee in comparison with those running in a remote

Cloud center. In addition, users such as User B in a poor
network environment can easily move into a nearby CloudAP
covered area resulting in better service quality. More than that,
the execution environment for User B can be maintained
constantly via VM live migration between CloudAP and the
Cloud center dynamically. Even when User B leaves from
CloudAP area, his execution environment will be transferred
back to the Cloud center for further utilization. In this way, the
unfinished workloads can be transparently migrated in the
background autonomously and then continue executing after
migration. This seamless execution environment switch-over
and conservation cannot be fulfilled in previous Cloudlet
architecture.

To achieve the above scenarios, a two-tier architecture is
proposed considering both CloudAP and remote public Cloud
center. In addition, an efficient VM migration approach is also
introduced to support the rapid and uninterrupted switch-over
of the software execution environment.

III. SYSTEM ARCHITECTURE OVERVIEW
To address the issue of interactive latency of remote

public cloud, CloudAP which is close to mobile devices is
proposed. It is a small-scale computing infrastructure which
can provide software service to the nearby mobile users by a
low-latency, one-hop and high-bandwidth wireless network.
Moreover, CloudAPs are not isolated but constitute an
integrated two-tier architecture with the Cloud center.

Two-tier architecture is essential in many aspects. First,
users can acquire a better software service near a CloudAP and
can still concede to the service provided by remote Cloud
center even if no CloudAP is available nearby. In addition, if a
mobile device which runs software switchovers between the
CloudAP and Cloud center, the execution environment can
migrate following user’s location seamlessly.

The two-tier architecture proposed is shown in Figure 2.
The system is comprised of two main components from each
tier: Cloud center and a group of CloudAPs. The configuration
comparisons can be observed in Table I. Each CloudAP is
consist of several servers and the amount of devices which can
access to one single server depends on the configurations of
those servers. Basically, a common server can support around
ten VMs simultaneously and each user’s execution
environment is capsulated into an isolated VM. Additionally,
Cloud center can be connected by scores of CloudAPs in our
scenario.

To support the federation and cooperation between tiers
in this architecture, CloudAP and Cloud center are connected
by high-bandwidth network and the message transmission is

Figure 1. CloudAP Usercase Scenario

TABLE I. CLOUDAP VS CLOUD CENTER

Options CloudAP Cloud Center
Network LAN WAN
Sharing Few users Large numbers of users

Software Execution
Ability

Yes Yes

Latency Low High
Bandwidth High Low

Scale Small Large

13751375

through agent mechanism. That is, the agent is the
representative of each tier and it communicates with each
other via protocols or interfaces. As CloudAPs spread sparsely,
the interactions among them are not considered in this paper.

In Cloud center, users can use the software service from
the Portal. Registry is employed to registry CloudAP agent
and to maintain the status of each running CloudAP agents.

The CloudAP infrastructure consists of four main
components: Portal, which is the interface provided for users
to customize the software services; VM schedule manager,
which invokes specified scheduling strategy when VM
placement occurs; VM Migration Controller, which controls
the actions to migrate selected VM and execution environment
between CloudAP and Cloud center; AP Agent, which
communicates with agent in Cloud center and instructs other
components to fulfill their functionalities.

Portal provides the web interface, which can be visited
by users through LAN network. All available softwares
provided by the service provider are visible on the Portal, and
users can rapidly instantiate customized service software in the
CloudAP from the portal.

AP Agent manages the entire communication and
protocols with the Cloud center. The geographical location of
mobile device near a CloudAP can be captured by the AP
agent. Once there is a message indicating a certain device’s
location switchover between the CloudAP and Cloud center,
the agent will parse the message and send operation
instructions to VM migration controller, migrating the
corresponding execution environment. In addition, AP agent
negotiates with the Cloud center exchanging information such
as status of user’s execution environment, resource utilization
of servers etc.

VM schedule Manager is the resource scheduler of this
small-scale computing infrastructure. Load-balancing and
resource utilization efficiency can be achieved by the VM
schedule Manager.

VM migration controller is a core component which
performs actual actions while a customer changes his
geographical location and VM migration is carried on
subsequently. Once an execution environment migration is
triggered by the AP agent, the VM packaging the entire
execution environment should be migrated between the
CloudAP and Cloud center. This effective migration process

should be supervised by the controller until the holistic
execution environment is duplicated into local servers.

Since previously well-studied solutions to VM
consolidation problems [7-9] and our previous work [6, 19]
could be adopted in the VM scheduling and software remote
execution, we assume that certain strategies have been
deployed in these components. In this paper we will therefore
mainly focus on the enhancement mechanisms in software
execution environment migration to address the challenges we
are facing.

IV. DESIGN AND IMPLEMENTATION
In the scenario, the software execution environment is

entirely capsulated within a VM. For this reason, if we migrate
the VM between Cloud center and CloudAP, the execution
environment will be migrated subsequently. Because the
Cloud center and CloudAP are in fact two isolated datacenters,
there is no shared disk storage existed between them.
Consequently, an efficient whole-system VM live migration
mechanism should be designed and implemented in order to
maintain the user’s holistic execution environment.

A. Design
Whole-system migration enables the migration of the

whole-system state of a VM including its CPU state, memory,
disk storage data as well as the network state from the source
to the destination machine. The migration of network state can
be handled by VPN [20] or IP tunneling [21] techniques and
the majority of previous literatures focus on the mechanisms
to migrate memory and local disk states.

Luo et al. [11] propose a three-phase migration (TPM)
mechanism to migrate the VM in three stages: pre-copy,
freeze-and-copy and post-copy. In the pre-copy phase, both
the memory and disk storage data are iteratively transferred to
the destination. In the post-copy phase, the dirty block is
synchronized according to the block-bitmap which is transfer
in the free-and-copy phase. The approach proposed by
Bradford et al. [13] is similar but lacks in the disk post-copy
time. In this approach, the synchronization of dirty disk is
parallel to the memory migration and all the read operations of
VM in the destination are blocked until the end of dirty disk
synchronization.

All these approaches don’t work well in the CloudAP
scenario because of the relatively long VM switch time (the

Figure 2. System Architecture Overview

13761376

duration from when the migration initiates to when the VM
runs in the destination). A minimal VM switch time indicates
that the user can promptly switch the execution environment
into a better CloudAP environment where lower latency and
higher bandwidth will facilitate the promotion of QoS. During
the memory pre-copy phase, the dirty memory is transferred
iteratively until the number of dirty memory is within a low
threshold. The multiple iterations of dirty memory pre-copy
may take long time for the write-intensive application. With
respect to disk, the huge amount of disk data has to be
transmitted which results in long-term pre-copy.

To shorten the VM switch time during migration, we
present an innovative method in which the disk is post-copied
and the memory is migrated through a hybrid pre/post copy
approach. Furthermore, we adopt the COW (copy-on-write)
file system to set up the VM disk image. COW file system
comprises base image and cow image. The base image is the
VM template which is able to run standard OS and always
remains read only. Any data added or changes made by the
running VM will be written to the cow file. The base image
which is always large can be stored in both CloudAP and
Cloud Center well-planned in advance. Therefore, we just
need to post-copy the image file to the destination.

Due to the high frequency of access to memory pages,
pure post-copy will lead to frequent memory page fault and
the degradation of VM performance. A hybrid memory
migration approach including both pre-copy and post-copy is
introduced to mitigate the performance decline. Specifically,
memory is pre-copied in a single round and the remaining
dirty memory pages are post-copied after the VM running in
the destination.

As demonstrated in Figure 3, our system operates in three
stages: memory pre-copy, freeze-and-copy and post-copy. The
whole memory of VM is copied to the destination in pre-copy
way. The VM service is unavailable only in freeze-and-copy
phase. Whole disk storage data and dirty memory pages are
synchronized in the post-copy stage.

In the first phase, whole memory pages are transferred to
the destination with a single round. As the VM is still running,
the memory will be modified by the running VM. A dirty-
bitmap is used to record these dirty pages. In the following
freeze-and-copy phase, the migrated VM is suspended on the
source machine and CPU states are transferred to the
destination. Additionally, the dirty-bitmap need to be
transferred for the synchronization of inconsistent memory
states in the next phase. Afterwards, the migrated VM is
resumed on the destination in the post-copy phase. Due to the
inconsistency of memory states, a dirty page pulling request
occurs once a dirty page in the dirty-bitmap is accessed to.
Meanwhile, the source pushes dirty memory pages to the
destination according to the dirty-bitmap. Similarly, as the
whole cow disk image data is still in the source, all the sectors
in the image file should be set dirty in a block-bitmap. The
source pushes dirty blocks to the destination in accordance
with the block-bitmap while the destination uses the same
block-bitmap to pull the dirty blocks requested by the
migrated VM.

B. Implementation of whole-system migration
In this subsection, we describe how the migration of

whole-system VM states can be realized and the detailed
implementations are presented below. The hybrid memory
migration has been implemented on the QEMU-KVM (version
kvm-84) in our previous work [22], thus we will mainly
introduce the disk post-copy mechanism in this paper.

The simulation of disk I/O is achieved in KVM by its
QEMU module. Disk I/O operations of guest VM are
eventually transformed to file operations on the disk image
files. The work of mapping the VM sector to the file offset of
image files is achieved by the virtual block driver. Firstly, the
sector_num of guest VM disk is converted into the virtual
sector_num of disk images. Then the virtual sector_num of
disk image is mapped to the file offset of corresponding image
file.

As mentioned in the last subsection, a COW file system
is used to set up the VM disk image and only the cow disk
image need to be post-copied. At the beginning of post-copy
stage, all virtual sectors of cow disk image should be marked
dirty in the block-bitmap. Subsequently, the dirty sectors are
post-copied by using both PULL and PUSH approaches until
all disk states are completely synchronized.

The dirty sector is pulled only when it is being operated
by the VM in the destination. The entire I/O requests are
intercepted during the post-copy phase. If an I/O request is

Figure 3. Overview of the migration process

Define An I/O request R<FD, OP, BLK_NUM,>, where FD is
the image file, BASE or COW, OP is the operation, WRITE or
READ, BLK_NUM is the operated sector number
1. An I/O request R<OP, BLK_NUM> is intercepted.
2. if FD == BASE or bitmap[BLK_NUM] == 0 then
3. goto 9
4. else if R.OP == WRITE then
5. send the syn request for bitmap in source
6. else if R.OP == READ then
7. send the pull request and syn the sector
8. set bitmap[BLK_NUM] = 0
9. submit or handle the request.

Figure 4. Pseudo-code for handling I/O request at destination

13771377

received, the destination performs as follows (shown in Figure
4): If the request is operated to the base image rather than the
cow image or the operated sector is not a dirty sector, it will be
submitted or handled directly. Otherwise, if it is a write
request (line 4-5), the source block-bitmap should be
synchronized simultaneously. If the request is a read (line 6-7),
a pull request for the dirty sector is sent to the source machine.
The corresponding bitmap will be updated after the sector is
synchronized (line 8).

To shorten the disk post-copy time, the source end should
not only receive and handle pull requests but also push the
dirty sectors to destination actively. The source pushes the
dirty sectors according to block-bitmap which is continuously
synchronized with the destination. Furthermore, the read
operations to the dirty sectors must be blocked before these
sectors are pulled from the source, which will bring about
overheads of I/O performance. If most dirty sectors can be
pushed in advance rather than pulled when they are being
operated, the overheads can be reduced significantly.
Fortunately, analysis of disk I/O characteristics [12, 14] can
contribute to predicting the disk I/O behavior and push the
suitable dirty sectors to the destination intelligently.

It can be drawn from the analysis of disk I/O
characteristics that read operations have a strong locality and
continuity. If a read operation occurs to one dirty sector, the
backward dirty sectors adjacent to this sector have a high
probability to be accessed to. Therefore, once a pull request
for one dirty sector is received in the source, we can push the
backward neighboring dirty sectors to the destination. Figure 5
lists the pseudo-code for the two components of the source’s
performance – active push (line 1-9) and pull service (line 1-7)
– both of which operate as two concurrent threads. The active
push component starts from a pivot sector and pushes
backward dirty sectors to the target in each iteration. Once a
pull request is received, the pull service component shifts the
pivot to the location of the pulled sector and starts to push
from that location.

The implementation of system is illustrated in Figure 6.
The I/O request of guest process is passed through the file
system layer, block layer and virtual block layer in the QEMU
(operations 1-3). The virtual block driver firstly checks the
bitmap and sends a pull request for dirty sectors which will be
received and handled by the pull service daemon in the source
(operations 4-6). Thereafter, it submits or handles the I/O to
the guest VM. The active push is operated concurrently with
the pull operation. The source then fetches the dirty sectors
according to the bitmap and sends them to the destination
(operations a-c). All these dirty sectors are received by the
receive daemon at the destination. Eventually, the replay
daemon replays the dirty sector data based on the bitmap
(operations e-g).

Moreover, the push efficiency can be further enhanced by
leveraging data compression approaches. If we consider the
sector to be a continuous array composed of binary bits, our
experimentations demonstrate that a long serial bit 0 or 1 is
contained in most dirty sector arrays. Therefore, we can
compress the dirty sector data before transferring to the
destination and decompress it before replaying at the
destination. We adopt the RLE (Run-Length Encoding)
strategy encoding and compressing the sector data. In this way,
a 4KB sector can be compressed to 54-4096 bytes
substantially improving the transmission efficiency.

V. EXPERIMENTS AND EVALUATION
In this section, we will discuss and explain the feasibility of

the proposed CloudAP based two-tier architecture and then
assess the efficiency of execution environment switch-over
introduced by the advocated approaches.

Before explaining the experiments, the following metrics
are presented to measure the effectiveness of execution
environment migration:

Downtime is the time interval during which software
service is entirely unavailable. Because the software execution
environment is entirely encapsulated in the VM, it is the
interval from when the VM pauses on the source machine to
when it resumes on the destination.

Switch time is the duration from when the migration is
initiated to when the VM resumes and starts to run in the
destination. When the switch time is over, the VM can execute

Define: The pivot and current is the location of the last pulled
sector and being pushed sector respectively.
1. ActivePush:
2. current = pivot = 0;
3. while there exists dirty sectors do
4. if the pivot changes then
5. set current= pivot
6. if bitmap[current] == 1 then
7. set bitmap[current] = 0
8. push this sector data to the destination
9. current++
Define An request R<type,sector>, where type shows the pull
for sector or syn for bitmap, the sector is the sector number.
1. PullService:
2. A pull/syn request R<type,sector> is received
3. if bitmap[R.sector] == 1 then
4. set bitmap[R.sector] = 0
5. if R.type == pull then
6. transmit sector data immediately
7. set pivot = R.sector

Figure 5. Pseudo-code for disk post-copy algorithm at source

Figure 6. The implementation of disk post-copy

13781378

in destination although several operations for state
synchronization are still needed.

Total migration time is the duration from when the
migration starts to when the VM runs independently in the
destination. A migration is finished when the states are fully
synchronized on the destination and the VM does not rely on
the source.

Amount of migrated data is the amount of data
transmitted during the whole migration time. It contains the
memory state, storage state, CPU state, etc.

A. Experimental Environment
We use two sets of machines to simulate the Cloud center

and CloudAP. Cloud center is formed using 16 x dell servers
with each machine consisting of Intel(R) Core(TM) i7
860@2.80GHz CPU, 4GB memory and 320GB disk. CloudAP
consists of 3 machines with the same configurations. The
QEMU-KVM version is kvm-84. The VM running the
software is configured with 512MB of memory and 10GB disk
and the format of VM disk is qcow2 while the disk image
contains a 10GB base disk image and a 250MB cow image.

The network bandwidth between CloudAP and Cloud
center is limited to 100Mbps. The mobile device can be
connected to the CloudAP with Wi-Fi (54 Mbps) and Cloud
center through simulated 3G network (average 5Mbps
bandwidth and 35 ms latency) respectively. Both the Cloud
center and CloudAP is capable of running the following
software: Abiword, OpenOffice and Firefox. An Android 4.0
tablet device with Exynos 4210 @1.4GHZ is used to execute
the software through VNC.

B. Experimental Results
1) QoS improvement in two-tier architecture
 To manifest the feasibility of the proposed two-tier remote

software execution architecture, we emulate the typical
behavior of a user who tries to use Abiword, a popular text
editing remote executed software on his own mobile phone.
We execute operations such as page scrolling, text input and so
forth connecting to Cloud center and CloudAP respectively and
record each interactive response delay. The delay time is
calculated by monitoring and capturing network packets of
VNC. As illustrated in Table 2, the average delay time
surpasses 0.5 seconds and the value for some operations such
as page scrolling and text dragging is even greater than second,
far beyond the expectation of users to some extent. By contrast,
the delay for most operations in the case of CloudAP is rather
lower, which only takes less than 0.1s. Obviously, it is
acceptable for users in this order of magnitude.

2) Efficient execution environment migration
One achievement of our architecture is that the execution

environment can be migrated according to the change in user’s
location. The execution environment migration is implemented
by the VM migration which may cause a temporal downtime
and a moment of turbulent service. An efficient execution
environment migration should contain two aspects: 1) short
software service downtime during which the software service is
unavailable; 2) short VM switch time during which the
software service is available but inefficient.

We implement the execution environment migration
experiment between Cloud center and CloudAP. The service
downtime and VM switch time are illustrated in Table 3. It is
obvious that the service downtime can be limited in 10
milliseconds, which can be nearly neglected. The total VM
switch time is limited within 30s which is acceptable for user to
sacrifice this time for obtaining a better software service.

3) Migration performance comparison
To prove that our VM migration scheme is efficient, some

comparisons with current migration schemes are made in our
experiments. We first realize the TPM[11] and deltas-apply[13]
scheme in the hypervisor KVM, and then contrast our proposed
approach against them with respect to the downtime, total VM
switch time, total migration time as well as the amount of data
transferred.

In order to compare the migration downtime with the TPM
and deltas-apply scheme, the VM with the same software
execution environment is migrated between Cloud center and
CloudAP. As can be observed from Figure 7, our scheme
outperforms the other two. The downtime of all the software
can be reduced significantly to only 10 milliseconds in
comparison to approximately 2-3s in other schemes. The
reason for this phenomenon is that only memory bitmap is
transmitted in freeze-and-copy stage using our proposed hybrid
memory migration scheme. In contrast, several dirty memory
pages and disk states (or block-bitmap) have to be transferred
during this stage in the other two schemes, giving rise to
relatively long downtime.

TPM Deltas Ours TPM Deltas Ours TPM Deltas Ours
1

10

100

1000

10000

1955

9.5

2020

FirefoxAbiword

do
w

nt
im

e(
m

s)

OpenOffice

 downtime(ms)

2100
1930

10 9.6

3060 3020

Figure 7. downtime of different schemes

TABLE III DOWNTIME AND SWITCH TIME

Workload Downtime(ms) Switch time(s)
Abiword 9.5 24.16

Openoffice 10 25.93
Firefox 9.6 29.91

TABLE II USER EXPERIENCE COMPARISON BETWEEN CLOUDAP AND
CLOUD CENTER

Operations Cloud center(s) CloudAP(s)
Page scrolling 1.08 0.54

Text input 0.32 <0.10
Text selection 0.51 <0.10
Color change 0.53 <0.10

Table insertion 0.52 <0.10
Text dragging 1.04 0.34
Text centering 0.32 <0.10

13791379

Figure 8 presents the comparison of switch time among
different migration strategies and the results indicate that our
approach reaches an average 67.29% switch time reduction
compared with other schemes. The improvement benefits from
not only disk post-copy strategy but also the elimination of
iterative dirty memory transfer time caused by pre-copy mode.
It is no doubt that this improvement can significantly accelerate
the switch over of user’s execution environment thereby
substantially promoting the user experience.

Figure 9 shows the comparison in terms of total migration
time among different schemes. With the migration procedure
decomposed to three phases, the total migration time of the
TPM scheme contains disk pre-copy time, memory migration
time and post disk synchronization time. By contrast, the total
migration time of deltas-apply is just the sum of disk pre-copy
time and memory migration time, due to the fact that the disk
synchronization is in parallel to memory migration. Unlike
these two above, our approach experiences memory migration
time and disk post-copy time without disk pre-copy procedure.

We can observe from Figure 9 that our scheme takes the
lowest memory migration time among three different schemes.
For example, in case of OpenOffice, it takes about 24.2s to
migrate all memory pages, achieving approximately 52.4% and
52.6% reduction against TPM scheme (50.73s) and deltas-
apply scheme (51s) respectively. This is because the proposed
hybrid memory copy strategy shortens the convergence period
of memory pages iterations by leveraging pull copy combined
with memory push copy. Moreover, the large amount of disk
pre-copy time (approximately 23s) can be totally omitted due
to our disk post-copy strategy. Although our scheme takes a
slight longer time (roughly 13.6s) during disk post
synchronization than the other two schemes, the total migration
time is greatly reduced by at most 58.1% in all circumstance.

Figure 10 illustrates the amount of migration data in
different schemes and it is obvious that the migration data can
be greatly diminished thereby reducing migration time in our
proposed scheme. The amount of memory data transferred in
our scheme (276.8MB for Abiword) is much less than the other
two (542MB and 544.2MB respectively) due to the fact that
most multiple iterations of dirty memory pages are avoided in
hybrid memory copy mode. Considering Firefox, the entire
migration data is only 481.66M reaching roughly 55.4% and
56.5% decrease compared with TPM and delta-apply scheme
respectively. Apparently, the disk data is copied at most one
time during the disk post-copy phase. By contrast, all the disk
data has to be transmitted during disk pre-copy stage and the
dirty sectors should be transfer once again in post-copy stage.
Additionally, there is no denying that the data compression
approach also plays a significantly important role in decreasing
the transmitted data.

VI. RELATED WORK
This section describes and discusses the most relevant

related work towards handling problems in remote execution
and whole-system migration of virtual machines.

Remote Execution of resource-intensive application has
been previously analyzed. Mahadev et al. [2], present a concept
called Cloudlet representing a trusted, resource-rich computer
or cluster of computers that is well-connected to the Internet
and is available for use by nearby mobile devices. The idea of
Cloudlet is derived from the high latency which can exert
negative impacts on interactive response time and QoS of
mobile users. Verbelen et al. [3] extend the Cloudlet by
providing a dynamic Ad hoc Cloudlets execution environment
in which devices can join, share their resources and form a
network Cloudlet. However, the current approaches only focus
on a single Cloudlet or resource aggregation and cooperation
mechanisms among different Cloudlets but neglect the
collaboration mechanism and synthetic model between Cloud
center and Cloudlets. Rahimi et al. [10] introduce a model to
increase both performance and scalability of rich mobile
applications leveraging a tiered cloud architecture. The authors
in this paper focus on solving a resource allocation problem
considering multiple QoS factors. Nevertheless, how to migrate
the service efficiently is not discussed. In contrast, this paper
presents a combined architecture including both Cloud center
and CloudAP to overcome the performance degradation caused
by WAN high latency. We also propose an optimized VM
migration approach to support the conservation of holistic
execution environment between Cloud center and CloudAPs.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

437.91

817.04816.7

417.51

795.75793.7

OursDeltasTPM

FirefoxOpenOffice

am
ou

nt
 o

f m
ig

ra
tio

n
da

ta
(M

B)

 disk synchronization
 memory migration
 disk precopy

Abiword

TPM Deltas Ours DeltasTPM Ours

1080.79
1107.34

481.66

Figure 10. the amount of data transferred of different schemes

0

10

20

30

40

50

60

70

80

90

100

110

34.81

74

FirefoxOpenOffice

tim
e

co
ns

um
pt

io
n(

s)

Abiword

 disk post synchronization
 memory migration
 disk precopy

73.9
76.06 75.6

39.12

102.93

97.7

43.15

TPM Deltas Ours TPM Deltas Ours TPM Deltas Ours

Figure 9. migration time of different schemes

TPM Deltas Ours TPM Deltas Ours TPM Deltas Ours
0

20

40

60

80

29.9

97.795.2

24.2

7473.7

25.9

75.675.1

sw
itc

h
tim

e(
s)

 switch time(s)

Abiword OpenOffice Firefox

Figure 8. switch time of different schemes

13801380

Whole-System migration has also been discussed widely
within the research community. A simple way to migrate a VM
is freeze-and-copy, which first freezes the VM to copy its
whole-system state to the destination, and then restarts the VM
at the destination. Internet Suspend/Resume [15-18] is a mature
project using freeze-and-copy to capture and transfer a whole
VM system. It results in a severe downtime due to the large
size of memory and storage state. To replicate the bulk data in
disk storage with less disruption across WANs, Bradford et al.
[13] proposed a block level solution combining pre-copying
with write throttling to concurrently apply the write access to
both local and remote disk during the migration. However, it
may cause long I/O block time and redundant data transfer
caused by overwrites. Luo et al. [11] proposed a three-phase
migration (TPM) algorithm to reduce the downtime caused by
bulk data of disk migration. They suggested using a block-
bitmap to track all write access to the local disk during the disk
migration. Then, the dirty data are re-sent to the target host
according to the block-bitmap in the last phase of migration.
The three-phase may increase total migration time and bring
about I/O overhead. The largest drawback of above two
mechanisms is the long switch time. The post-copy [23]
strategy can significantly reduce the VM switch time but may
incur the severe performance degradation during migration.
Experiments illustrate that our approach achieves a better
performance compared with them above.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a two-tier architecture comprised

of Cloud center and CloudAP and show how they can be
cooperated to form a comprehensive mobile computing
environment where the QoS of the mobile applications is
greatly enhanced. Additionally, we present an effective
execution environment migration scheme implemented by an
efficient whole-system VM migration to make the execution
environment move according to the mobile device’s location
shift. Specifically, a set of optimizations are proposed to
minimize the costs such as down-time span, switch time, total
migration time and data transferred etc. during the execution
environment migration. Our experimental results show that our
proposed scheme can decrease the downtime and execution
environment switch time to up to 10 milliseconds and 30
seconds respectively, improving the user experience and QoS
dramatically in mobile environments.

As future work, we plan to develop a more comprehensive
resource scheduling mechanism between CloudAP and Cloud
center. In addition, many users accessing to the CloudAP
simultaneously may cause resource overhead, degrading the
service quality. In order to form a more integrated architecture,
the software execution environment should not only move
following the location of mobile device but also perceive
current resource loads in CloudAPs.

ACKNOWLEDGMENTS
The work in this paper has been supported in part by the National

Basic Research Program of China (973) (No. 2011CB302602), China
863 program (No. 2011AA01A202), and National Nature Science
Foundation of China (No. 61170294, 91118008, 61272165).

REFERENCES

[1] B. Gain. (2010, January 1) Cloud Computing & SaaS In 2010 Processor
Mag. 12.

[2] Satyanarayanan, Mahadev, et al. "The case for vm-based cloudlets in
mobile computing." Pervasive Computing, IEEE 8.4 (2009): 14

[3] Verbelen, Tim, et al. "Cloudlets: Bringing the cloud to the mobile user."
Proceedings of the third ACM workshop on Mobile cloud computing
and services. ACM, 2012.

[4] Baratto, etc al. "THINC: a virtual display architecture for thin-client
computing." ACM SIGOPS Operating Systems Review. Vol. 39. No. 5.
ACM, 2005.

[5] Yu, Weiren, et al. "Muse: a multimedia streaming enabled remote
interactivity system for mobile devices." Proceedings of the 10th
International Conference on Mobile and Ubiquitous Multimedia. ACM,
2011.

[6] I. Solis Moreno, et al. "Improved Energy-Efficiency in Cloud
Datacenters with Interference-Aware Virtual Machine Placement," in
Proccedings of The IEEE 11th International Symposium on Autonomous
Decentralized Systems ISADS, Mexico City, 2013.

[7] Beloglazov, et al.. "Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing." Future
Generation Computer Systems 28.5 (2012): 755-768.

[8] Hermenier, Fabien, et al. "Entropy: a consolidation manager for
clusters." in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments. ACM,
2009.

[9] Khanna, Gunjan, et al. "Application performance management in
virtualized server environments." Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP. IEEE, 2006.

[10] Rahimi, M. Reza, et al. "MAPCloud: mobile applications on an elastic
and scalable 2-tier cloud architecture." in Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility and Cloud
Computing. IEEE Computer Society, 2012.

[11] Luo, Yingwei, et al. "Live and incremental whole-system migration of
virtual machines using block-bitmap." 2008 IEEE International
Conference on Cluster Computing(Cluster). IEEE, 2008.

[12] Akoush, Sherif, et al. "Activity Based Sector Synchronisation: Efficient
Transfer of Disk-State for WAN Live Migration." 2011 IEEE 19th
International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2011

[13] Bradford, Robert, et al. "Live wide-area migration of virtual machines
including local persistent state." in Proceedings of the 3rd international
conference on Virtual execution environments(VEE). ACM, 2007.

[14] Shen YL, Xu L. "Efficient disk I/O characteristics analysis method based
on virtual machine technology." Journal of Software, 2010,21(4):849-
862. http://www.jos.org.cn/1000-9825/3492.htm

[15] Kozuch, M, et al. Internet Suspend/Resume. Fourth IEEE Workshop on
Mobile Computing Systems and Applications, 2002.

[16] C. P. Sapuntzakis, et al. “Optimizing the Migration of Virtual
Computers. OSDI”, 2002.

[17] M. Kozuch, M. Satyanarayanan, T. Bressoud, C. Helfrich, S.
Sinnamohideen. Seamless Mobile Computing on Fixed Infrastructure.
Computer, July 2004.

[18] R Chandra, N Zeldovich, C Sapuntzakis, MS Lam. The Collective: A
Cache-Based System Management Architecture. NSDI ’05: 2nd
Symposium on Networked Systems Design & Implementation, 2005.

[19] Zhong, Liang etc. al. "A Virtualization-based SaaS Enabling Architecture
for Cloud Computing." In Autonomic and Autonomous Systems (ICAS),
2010 Sixth International Conference on, pp. 144-149. IEEE, 2010.

[20] T. Wood , et al. CloudNet: dynamic pooling of cloud resources by live
WAN migration of virtual machines. in Proceedings of the 2011 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments(VEE).ACM, 2011

[21] Travostino F et al. Seamless live migration of virtual machines over the
MAN/WAN[J]. Future Generation Computer Systems, 2006, 22(8): 901-
907

[22] Chen,Yang etc. al. " Live Migration of Virtual Machines Based on Hybrid
Memory Copy Approach." Chinese Jouinal of Computers
34.12(2011):2278-2291. http://cjc.ict.ac.cn/qwjs/view.asp?id=3515

[23] Hines etc.al "Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning."in Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments(VEE). ACM, 2009.

13811381

