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Abstract—Software as a Service (SaaS) is a software delivery
and business model widely used by Cloud computing. Instead of
purchasing and maintaining a software suite permanently, cus-
tomers only need to lease the software on-demand. The domain of
high assurance distributed systems has focused greatly on the ar-
eas of fault tolerance and dependability. In a multi-tenant context,
it is particularly important to store, manage and provision data
services to customers in a highly efficient and dependable manner
due to a large number of file operations involved in running
such services. It is also desirable to allow a user group to share
and cooperate (e.g., co-edit) on some specific data. In this paper
we present a dependable data provisioning service in a multi-
tenant Cloud environment. We describe a metadata management
approach and leverage multiple replicated metadata caching to
shorten the file access time, with the improved efficiency of
data sharing. In order to reduce frequent data transmission and
data access latency, we introduce a distributed cooperative disk
cache mechanism that supports effective cache placement and
pull-push cache synchronization. In addition, we use efficient
component failover to enhance the service dependability whilst
avoiding negative impact from system failures. Our experimental
results show that our system can significantly reduce both unused
data transmission and response latency. Specifically, over 50%
network transmission and operational latency can be saved for
random reads while 28.24% network traffic and 25% response
latency can be reduced for random write operations. We believe
that these findings are demonstrating positive results along the
right direction of resolving storage-related challenges in a multi-
tenant Cloud environment.

Keywords-Multi-tenant Cloud; Cloud Storage; Metadata; Co-
operative Disk Cache

I. INTRODUCTION

The increasing maturity of Internet and virtualization tech-
niques is leading to a new delivery and business model –
Software as a Service (SaaS) in multi-tenant Cloud [10] [15].
Specifically, customers only need to lease the software or
service on-demand rather than purchasing and maintaining the
software suite, because all service deployments and manage-
ments are undertaken by software vendors. In recent years, it is
experiencing rapid growth of applications from both industry
and academia, such as Google Apps [6], Citrix XenApp
[2], CloudAP [28] etc. Following pay as you go philosophy,
users will be charged according to the accumulative time or
resource consumption. Apart from effective software execution
mechanism, how to efficiently store, manage and provision
dependable data and file access service is of significant im-
portance due to a large number of file operations during the

service runing.
Network file system (NFS) [20] is adopted by many systems

as their data storage. Despite the rapid and efficient file
operations provided by NFS, the upgrading cost and scalability
issues are still big concerns. In particular, the increasing
expense to purchase hardware servers will become a heavy
burden to service providers especially when current cluster
capacity cannot satisfy the bursting data storage requirements.
System scalability to handle concurrent requests and perfor-
mance issues [29] [26] is also a non-negligible factor to
be considered. Additionally, new personal storage model is
advocated, in which it jointly leverages different user devices
such as PC, laptop and smart phones etc. [12]. For instance,
Eyo [23] proposes a mechanism of such storage sharing
pattern and it could make the most use of user’s storage
capacity. However, unstable network condition in 3G and WiFi
often leads to degraded and unaccepted degree of depend-
ability. In fact, a reliable and effective service could reduce
the economic impact and service degradation for providers
and consumers respectively. Furthermore, Cloud storage has
obviously become a practical facility [22] [27] because it
elastically provisions a large number of storage capacities
through APIs or SDKs, making customers free from dealing
with scalability and failure issues by themselves. However,
data privacy becomes a big issue for Cloud Storage. Users
might be reluctant to put their private or confidential data into
public storage spaces. Moreover, it is also highly desirable
in multi-tenant environment to allow a user group to share
and cooperate (e.g., co-edit) on some specific files. However,
limitations of the approaches mentioned above would impede
the fully-utilized file sharing and collaborative operations.

To this end, combining Cloud storage with user individual
devices whilst providing effective data sharing mechanism
becomes an appropriate candidate solution. A user could de-
termine his own data distribution – private data stored on local
devices and the remaining data in the Cloud. In this context,
some challenges are still far from settled: Firstly, typical key-
value pair storage in Cloud storage or distributed file system
lacks of mutual relationship information among different pairs.
Highly required file attribute descriptions are not included ei-
ther. Secondly, reducing the resource consumption (especially
for network traffic) is a very critical goal. This is due to the fact
that network bandwidth is a scarce resource in multi-tenant
business model. The reduction of network traffic indicates the
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cutting down of economic expense with improved QoS and
increased system capacity. Thirdly, operational latency has
become one of the principal aspects of dependable service
provisioning, especially for interactive applications. In general,
data transmission delay is currently the norm rather than the
exception because the communications among storage devices
are mainly domain-crossing. Furthermore, data synchroniza-
tion and data consistency are also extremely indispensable
during file co-operations in which multiple tenants or software
processes might simultaneously modify a specific data.

In order to deal with these problems, we design and im-
plement D2PS – a dependable data provisioning service. The
core philosophy is to provision an effective data access and
efficient data sharing mechanism among collaborative users or
softwares. The data provenance derives from a unified data
view based on both Cloud storage and individual devices.
Firstly, we adopt a novel metadata to combine both file
attributes and the tree-based hierarchy of all user directories
and files no matter which the original structure is (key-value
or tree). Additionally, metadata local caching and consistency
guarantee are advocated to facilitate the software process
initialization and rapid data access. Furthermore, we use
distributed cooperative disk cache to buffer the frequently-used
data. All above caching mechanisms follow a two-tier caching
architecture which consists of a centralized coordinator and
multiple proxy daemons on every execution nodes. The effec-
tive caching reduces the communication frequency and unused
data transmission. In particular, we leverage hybrid pull-push
approach to achieve bidirectional cache data synchronization,
and incremental transaction with queue-based flow control
to resolve conflicts incurred by simultaneous modification-
s. Specifically, light-weight checkpointing is also used for
rapid component failover, providing effective and dependable
execution environment. Our system is based on iVIC [25],
Alibaba ECS [3] and OSS [7], and the experimental results
show that our system significantly reduce both network traffic
and the response latency. Specifically, over 50% network data
transmission and operational latency can be diminished for the
random read while 28.24% network traffic and 25% response
latency can be reduced for random write operations. The major
contributions in this paper can be summarized as follows:

• An effective metadata management mechanism including
a coordinator-follower based data consistency approach,
and conflict resolving with incremental transaction and
queue-based flow control.

• A two-tier caching approach based on cooperative disk
cache with a pull/push synchronization mechanism.

• A dependable data provisioning service with transparent
component failover, providing a unified data view com-
bining both Cloud storage and individual devices.

The remaining sections are structured as follows: Section
II presents the problem and system overview; Section III
describes the metadata management approach and Section IV
depicts the detailed design of cooperative disk cache; The
evaluation is presented in Section V; Section VI shows related
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Fig. 1: System architecture overview

work and we finally conclude the paper with future work.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

In multi-tenant SaaS execution environment, key objectives
in dependable data provisioning are: data sharing within a
group, data isolation among different groups, data or file
operation performance guarantees with low latency network
transmission amount, and reliable service running with mini-
mized impacts on customers SLA etc.

Firstly, in order to provision each SaaS tenant a dependable
and transparent data view of the global storage resources
whilst protecting the user privacy, we adopt the notion –
user group – a dependable and securable means of admission
control. Data inside a user group could be shared and co-
operated among different users, while users in other groups
are disallowed to get access to these files and data. All these
mentioned above are handled by the User Group Manager
shown in Figure 1. Requests are sent to the control node and
each request is marked with a group label. The centralized
controller will differentiate them and enable an isolation of
files for different groups. For convenience, we use user in the
remaining sections to comprehensively represent user group.

Figure 1 depicts the system overall architecture and the
core design idea. The portal provides a web-based user inter-
face(UI) for administrating, files and data visualization, event
and status monitoring etc. The built-in scheduler in the portal
is actually the delegator, responsible for message forwarding,
routing and communications among SaaS execution nodes and
storage sources (Cloud and user’s personal device). The data
provisioning service APIs will be invoked by file operation
requests. In fact, two vital underlying processes – metadata
coordinator and data cache server could offer direct and com-
plete information to support file loading and operations. Data
operations mainly occur in two different ways: through user
direct access and by running software processes (step 1 and
2). On each execution node, two daemon processes – metadata
proxy and cooperative cache client are launched. Metadata
proxy will directly handle metadata-related requests based on
its locally-cached replica. In this manner, the load and pressure
of metadata request handling on the centralized controller node
will be dispersed onto each metadata proxy, resulting in the
mitigation of single point failure. The relevant techniques will
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be discussed in Section III. After full data indexing from meta-
data has been constructed, cooperative cache client process
will deal with and forward the data operation requests to the
data cache server. The holistic resources among all execution
nodes will be utilized to constitute a distributed cache resource
pool and each cache client works cooperatively as dual roles
– both cache producer and customer. The specified system
design will be depicted in Section IV.

III. METADATA MANAGEMENT

The data-structure in Cloud is typically stored in the form
of key-value pairs, lacking of mutual structural relationship
among different pairs and highly-required file attributes de-
scriptions. These characters are quite different from tree-based
structure in Linux file system. To satisfy the requirements, we
propose a novel metadata to record the user directory tree and
file attributes. The metadata and the corresponding files are
stored separately in Cloud storage for dependability consid-
erations. Furthermore, metadata cache is conducted in each
node to accelerate the data loading and accessing. However,
inconsistency and conflict might appear when multiple replicas
are concurrently modified. Therefore, the metadata consensus
and conflict resolving are significantly important.

A. Metadata Structure

As mentioned in Section II, each user group will have an
exclusive metadata. The logical storage structure is a tree
with multiple branches and it is persistently stored as an
object in the Cloud while file data pertaining to the user
will stored separately for resiliency. In one specified tree,
each node represents a directory entry or a piece of file data.
The directory entry is a recursive notation which contains the
parents and all child directories. Basically, file attributes are
recorded including the last modification time, access time,
version, location and replica information etc. Table I depicts
the attribute list of a file entry in detail.

TABLE I: The structure of the pseudo metadata

attribute name attribute meanning
st mode file type and permissions
st inode inode number
st nlink number of links
st uid user ID of user
st gid group ID of user
st size size in bytes

st atime time of last access
st mtime time of last modification
st ctime time of file creation

B. Consistency Maintenance

We adopt a coordinator-follower architecture to guarantee
the metadata consistency among multiple nodes. Firstly, the
coordinator is a core component that is responsible for timely
fetching and synchronizing the metadata once the original data
is changed. It is fulfilled by periodically sending FullMeta-
dataInfoRequest or event-driven notification from the data
source. Accordingly, follower is a daemon process, located
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Fig. 2: The basic workflow of coordinator-follower architec-
ture: consistency maintenance and conflicts resolving.

in each execution node where the user software processes
run. The daemon firstly petitions the coordinator for full
metadata if it does not have a replica in its initialization
and then repeatedly retrieves the updated data segments. It
is noteworthy that only the coordinator itself is the mutator,
which can conduct changes to the metadata permanent store.
The coordinator also has to aggregate full information once
the source file updates and it will propagate these updates
to all replicas hold by followers. Meanwhile, some modi-
fications might happen during software running period and
they are mainly composed of new node adding, removing,
and properties changes of existing nodes. Because follower
operations are conducted based on its local cached metadata
replica, conflicts will be emerging consequently. Figure 2
illustrates the workflow of our proposed model. Once the
software starts running, the daemon at the software execution
node sends metadata request to the coordinator. On receiving
the demand, the coordinator records it within a request queue.
Meanwhile, it locally searches the relevant metadata and if
the metadata is not found, a synchronization is conducted
(by FullMetadataInfoRequest) to fetch the required data from
Cloud storage or personal terminals. The initiation phase
finishes after the latest metadata is re-synchronized in both
coordinator and related followers.

C. Conflict Resolving

Conflicts are resolved optimistically by the coordinator in
our system. In particular, the incremental transaction [21] is
used in which we accept all but the conflicting modifications
independently. The unaccepted changes parts will be returned
to the metadata follower and some measures should be taken
in the next operation round with modifications re-submitted.
Besides, metadata follower could also choose gang transaction
mode, for the purpose of completely atomic transaction in
order to accept all changes. However, it is very likely to
incur starvation and even deadlock if no more requests could
be satisfied. To prevent this but still keep parallelism, we
set a configurable concurrency threshold and use a waiting
queue inside the coordinator to enqueue the incoming requests
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when the request number surpasses the threshold. As shown
in Figure 2, concurrent modifications will be handled during
the decision arbitration through the proposed transaction with
queue-based flow-control. Eventually, the coordinator forward-
ly broadcasts the changed metadata to all relevant followers.
In this manner, those potential conflicts might be detected as
early as possible.

D. Dependability with Failover

Although the two-tier metadata coordinator and follower
architecture could naturally balance request loads into separate
proxies on different execution nodes, the frequency of metada-
ta requests will still grow dramatically with the soaring user
number. Therefore, the single metadata coordinator process
will become the potential single-point bottleneck and very
likely to be susceptible to failures. For this reason, we actually
replicate the single process three times. Specifically, one
replica is active and the others are warm-standby. The leader
election and the high available mechanism are implemented
by using Raft [18]. Furthermore, considering the acceptable
metadata size and restore costs, we merely conduct a light-
weighting checkpointing for each meatadata periodically when
repeatedly updating with the Cloud storage. Whenever the
active fails, a standby replica will take over and start to failover
according to the checkpoint.

IV. COOPERATIVE DISK CACHE

Apparently, nodes are directly connected within the same
rack or the same computing cluster. This leads to the fact
that data transmission rate among those servers is much faster
than that among Cloud storage or personal device storage
through WAN. This phenomenon inspires us to turn to cache
mechanism for much balanced file access. However, traditional
cooperative memory caching [11] [14] is too small to hold
the data. Hence, we advocate a distributed cooperative disk
caching approach to satisfy large-scale user data caching
demands for applications. Specifically, all nodes within the
cluster could be fully utilized as a whole caching pool.

A. Basic Idea

As shown in Figure 3, cooperative disk cache follows a
server/client architecture. The cache server daemon is located

Algorithm 1 Placement and Replacement Algorithm

Input:
Cachetotal ← the size of the disk cache
Cacheoccupied ← the available size of the disk cache
size ← the size of the data to be cached
CacheList ← a list of the cached data according to
cacheMap

1: if size + Cacheoccupied <= Cachetotal then
2: find a diskCache in a candidate node by using a plugin

cache placement algorithm
3: diskCache ← file data
4: else
5: for each data in CacheList do
6: MetadataList ← look up the metadata of data in

MetadataProxy
7: end for
8: targetedCache ← find the datacached with the least

access times in MetadataList
9: targetedCache ← replacing with file data

10: end if
11: update cacheMap

in a particular node and acts as a dominant controller of all
distributed cache blocks. It handles cache requests, decides the
cache placement and indexing, and manages the whole cache
life-cycle. Specifically, Cache Manager handles all requests
from cache clients. CacheMap maintains the mapper relation-
ship containing cache partition, partition size, and the partition
position distributed among the cluster. we adopt a load balance
partition algorithm to instruct cache placement (Section IV-B),
and the results will be recorded in the mapper. On the other
hand, the cache client process resides on each node and
cooperates with peer clients. In fact, the client provides two-
folded proxy functionalities – receiver and sender. It not only
manages the specific caches stored on its pertaining node, but
communicates with other cooperated peer clients as well.

Consider a software running in the SaaS system which
plans to modify a file data. It initially notifies the cache
client through an API and the client will then delegate the
caching request like a proxy. It firstly checks the local cache
and determines whether the cache is hit or not. If not, the
client will route the request to the cache server. Thereafter, the
cache server looks up to the map in order to find the target
cache position. However, if the required file cache is not in the
distributed cache pool at present, the server will mandatorily
ask for pulling the source data by invoking FullDataRequest
from Cloud storage or user devices immediately. Subsequently,
the cache placement will be conducted with cache mapper
information updated. After getting the response from cache
server, the cache client will communicate with the peer client
on the target node to obtain the required cache data.
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B. Cache Placement and Replacement

As mentioned above, deciding which node the incoming
fetched data should be cached is essentially important. The
cache partition will be refreshed after each placement round
and recorded in the cache mapper. In general, the cache client
delegates and routes the request (that new data needs to be
cached) to the cache server, trying to get an available disk
space. The server will make assignment decisions based on
criteria such as data locality, load balance according to the
current caching information. Moreover, due to the limited
capacity of system disk, only a proportion of disk resource
can be leveraged as memory auxiliary cache according to a
pre-defined threshold. The value is set per node and will be
also considered in the cache placement. In order to maximize
the cache utilization, cache replacement is designed to evict
some stale data and make sufficient rooms for the new one.

As demonstrated in Algorithm 1, if the new data size is
within the available space, the data could be filled directly
into the global cache pool and is very preferable to local disk
cache for rapid access consideration (line 1-2). If there are
insufficient rooms to hold the incoming request, cache client
will traverse the metadata to find a cached data with the least
recent used (LRU) frequency. Eventually, the required data
will take it over (line 3-8).

C. Cache Synchronization

To ensure the system availability, we perform data consis-
tency and bidirectional synchronization between cooperative
disk cache and data source. The core idea of push-pull method
is illustrated in Algorithm 2. Firstly, the modifications will be
push back to its source once a file is changed. For example, if
a file data is edited, it subsequently results in some re-writes
to the cooperative disk cache. In some cases, the metadata
proxy will also submit a request, trying to update the data
attributes in metadata (as mentioned in Section III-B). Finally,
the changes will be written back to the data source. During
the whole process, the synchronization is conducted by passive
push to the source storage. Secondly, if files are updated from
personal devices or Cloud storage, the metadata coordinator
will fetch a complete information of metadata periodically
through FullMetadataInfoRequest or after being notified by
events from storage sources (as mentioned in Section III-B).
Afterwards, a comparison will be immediately conducted to
calculate the differences between the incoming metadata and
the previously cached one. If a difference exists, the cache
server will send DataRequest to the remote data source for
new data and use it to replace the stale caches.

D. Dependability with Component Failover

The cache server and cache clients play important roles in
the cooperative disk cache management architecture. Cache
server is particularly vital because it not only maintains the
global information about cache mapping but also undertakes
core functionalities such as cache placement and communi-
cation. Therefore, once failure happens, these daemon pro-
cesses must appear to rapidly recovery, without noticeable

changes to the provisioned service. To achieve this, we have
designed these daemons to be soft state, indicating that a failed
component could completely recover from information held
by other relevant components without heavy checkpointing
and rollback overheads. Specifically, the states for the cache
server mainly include full cache mapper information and active
clients list. These could be collected and finally refilled from
each connecting client after cache server process restarts.
Afterwards, the new cache server will send FullDataRequest
and new threads are launched in order to rapidly re-fetch the
corresponding source file data. Due to the stateless character,
the cache client process could directly reboot and complete
the failover after reconnecting to the cache server.

Algorithm 2 Push-pull Bidirectional Consistency Algorithm

Definition:
MetadataListcached: currently cached metadata
Γ: a fixed time-interval
MetadataListnew(Γ): a full metadata at time interval Γ
D(Γ): requested file data from sources at time interval Γ

//push - modification happens
1: if diskCache.modified is True then
2: update MetadataListcached
3: write back to the source storage
4: end if
//pull - each time when fetching new metadata

1: for each Metadata in MetadataListnew(Γ) do
2: if Metadata not in MetadataListcached then
3: MetadataListcached ← Metadata
4: diskCache ← D(Γ)
5: update CacheMap
6: else if Metadata.modificationTime is newer then
7: update diskCache with D(Γ)
8: update MetadataListcached
9: end if

10: end for

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

The evaluation environment consists of three parts: appli-
cation platform(deployed in both private Cloud and public
Cloud), Cloud storage and users personal devices. Specifically,
the private cloud is constructed based on iVIC [25], consisting
of 32 physical servers connected within local area network.
Meanwhile, we deploy our system in another 32 virtual
machines using the Alibaba Cloud ECS [3] as the public Cloud
environment. Overall 200GB Cloud storage spaces of OSS
[7] are used, providing GET/PUT operations interfaces. The
specified configurations are listed in Table II where one server
is used as the control node and other servers act as execution
nodes. In our evaluation, we prepare 16 types of random
generated files with different sizes which range from 8KB to
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TABLE II: Experimental Setup

Types Configurations OS version Bandwidth

Server
Intel Xen E5640 2.4GHz CPU
2.5GB DDR2 ECC memory,
250GB SCSI hard disk,

debian 6.0
kernel 2.6.31 1Gbps

ECS 2 cores, 4GB DDR2 memory,
40GB disk, Ubuntu 14.04 1Gbps

User
Device

Intel Core(TM)-860 2.8GHz CPU
4.0GB DDR2 ECC memory
500GB SCSI hard disk

window 7 100Mbps
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Fig. 4: The system performance for request handling

5MB, following nth-power of two approximately. These files
are stored in OSS and user devices respectively.

In order to provision the data service APIs to running
softwares and users, we implement the system by extending
the userspace file system [4] basic APIs while combining the
two-tier caching mechanism of both metadata and cooperative
disk cache. We implement the following APIs including:
getattr, rename, mkdir, read and write, rm and rmdir etc.

The following metrics are considered: 1) request handling
rate and latency: the handling effect under a fix submission
rate; 2) cache hit ratio: the proportion of targeted cache trials;
3) network traffic: the total amount of data transmission
through network; 4) response latency: the time duration
from the time when requests are sent out through our data
provisioning APIs until the file operation finishes. In order
to manifest the caching effects, we mainly compare three
different deployment approaches: no cache, disk cache, and
proposed cooperative disk cache separately, while the simulat-
ed data API calls could be categorized into four types – 2,000
x random read or random write, 2000 x sequential read or
sequential write. To emulate the extreme user scenario, these
file operations are conducted concurrently by multiple threads
API calls. We set the concurrent number to be 50 and calculate
the average for the results.

B. Request Handling Effect

In this experiment, we measure the concurrent request
handling effect under different concurrent submission rates
(requests per second). It is observable from Figure 4 that
the handled number can grow with the increasing incoming
requests although not all requests could be handle at a time.
This is because our proxy-based mechanism could effectively
handle requests on each execution node in parallel and the
queue could mitigate the surging requests in a flow-control
way. The similar phenomenon of handling latency can be

TABLE III: The cache hit number of 2000x random read

local disk
cache hit

cooperative
disk cache hit

total
request number

no disk cache 0 0 2000
single disk cache 289 0 2000

cooperative disk cache 289 715 2000

(a) The network traffic (b) The response latency

Fig. 5: The performance improvement with cooperative disk
cache under 2000x random read(RR), subsequential read(SR),
random write(RW) and subsequential write(SW) workload

found due to the same reason. The results illustrate that an
enhanced scalability of request handling could be achieved
based on our system architecture.

C. Operational Performance Comparison

1) Cache Hit Ratio: In random read experiment, we con-
duct 2,000 times read operations. It is observable from Table
III that the cache hit ratio is only 14.45% when adopting disk
cache. Another 715 more cache hit events could be achieved by
leveraging cooperative disk cache. As a result, roughly 50%
cache hit will no doubt promote the data loading rate, with
user experience greatly improved.

2) Read Performance: Figure 5(a) depicts the network traf-
fic during file operations. For random read, the total network
traffic is 3095MB due to 2000 times file fetch at each time with
1.54MB median file data size. In comparison, disk cache saves
approximately 300MB when reading the same amount of files.
Additionally, the traffic reduction of network could even reach
more than 50% with cooperative disk cache compared with
disk cache mechanism. Similarly, the average random data
read latency is shown in Figure 5(b). It takes 0.51s without any
data cache mechanism and the latency decreases to 0.37s and
0.24s respectively with disk cache and cooperative disk cache
deployed. The reason for this is that some data could be pre-
fetched and cached in the local disk and we do not have to load
those data from remote storage every time. Moreover, because
the cooperative disk cache leverages servers in the cluster as a
whole distributed disk cache pool, abundant disk resources
could be definitely extended to support more loaded data,
thereby significantly increasing the cache hit whilst reducing
the operational latency.

In terms of the sequential file read of the same size file,
the network transmission amount is 3019MB, with a slight
decrease compared to the random read experiment. In fact,
random read will consume a little bit more resources when
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(a) The number of cache hit (b) The network traffic (c) The average response latency

Fig. 6: The performance impact of 1MB, 2MB and 4MB source file data under 1000x random read

fetching the original data. We could also observe from Figure
5(a) that the network traffic is reduced to only 1.5MB by
leveraging disk cache or cooperative cache and the latency
also decreases from 0.49s to 0.12s and 0.11s respectively (see
Figure 5(b)). The significant improvement is due to the fact
that the file data only needs to be cached at first and the
subsequent operations could directly get access to the data
from the local cache.

3) Write Performance: As for the random write perfor-
mance, 6190MB network flows are consumed without any
cache. The amount is reduced by 4.77% using disk cache and
28.24% network traffic could be saved with the cooperative
disk cache. Correspondingly, the response latency drops from
1.12s with no cache to 0.97s (13.4% reduction) and to 0.84s
(25% reduction) respectively under the other two conditions.
Meanwhile, the same phenomenon could also be observed for
subsequential write. The absolute decreases under these two
random write scenarios are approximately same as the reduc-
tion when randomly reading. This reduced gap is attributed
to the read effect among different approaches. In fact, each
write operation round is comprised of three different phases:
file open and read, write and save operation, and write-back.
No matter which type of cache is adopted, there is little
difference in the second phase because all operations are based
on one local specific file. In the third phase, for the sake of
consistency, each file has to be written back to the source
leading to the similarity among different approaches.

D. Impact on Cooperative Cache Performance

To comprehensively explain the cooperative cache mech-
anism, another three experiments are further conducted. We
prepare files on OSS and user local storage with 1MB, 2MB
and 4MB size in different groups. In addition, the upper
threshold of disk cache in each server is configured by 4MB
and 1,000 times random read operations are carried out.

Figure 6(a) demonstrates the cache hit number. The number
will decrease according to the increased file size because the
smaller the file size is, the more probability of loading files into
the cache will be achieved. For example, the hit number will
be doubled if the file size shrinks half from 4MB. Furthermore,
the cache hit ratio will stay 99.2% if the file is less than 2MB,
indicating that the distributed cooperative disk cache pool
will facilitate the cache effect. Even the file size approaches

the cache upper bound, the hit ratio (50.7%) is still much
larger than the ratio in original disk cache cases. Moreover,
the cache hit effect will have a direct impact on the file
operational performance. Obviously, the proposed mechanism
outperforms the others as shown in Figure 6(b) and Figure
6(c). The reduction of the network traffic could reach 50%
at most by using distributed cache mechanism. Meanwhile,
the corresponding response latency also significantly decreases
by 76.4%, 71.6% and 36.7% respectively under different
experimental configurations.

E. Failure Recovery Effect

The recovery from master failures is evaluated by fault
injections. We re-conduct the experiment mentioned in Section
V-C2 and randomly kill the active meta coordinator and cache
server process every 30 seconds with the mean time to recov-
ery (MTTR) measured. The service could be recovered within
5 seconds on average with a standard deviation of 0.4 second.
Additionally, the average response latency of random write
increase from 0.84s to 1.02s while the average latency increase
from 0.59s to 0.76s under subsequential write. The slight
delays are mainly due to the caching service unavailability
during the frequent failovers. Nevertheless, these catastrophes
are very atypical as the adopted fault injection scenario is so
harsh that few probabilities exist in real-life systems.

VI. RELATED WORK

DepSky [9] and BlueSky [24] are network file system
which store their data persistently in a Cloud storage vendors
(Amazon S3 [1], Windows Azure [8] etc.) and allow users to
take the advantage of the reliability and large storage capacity
from Cloud providers. However, both DepSky and BlueSky
mainly focus on invariants like availability. How to share
storages among personal devices is actually not mentioned.
In multi-tenant SaaS Cloud, invariants such as reduction of
network traffic and response latency are significantly important
to user experiences, and thus have to be considered. In terms
of multiple device storage sharing, AFS [13] pioneers the use
of a single namespace to manage a set of servers. It requires
that client to be connected with AFS servers and clients cache
files that have been hoarded. BlueFS [17] and Ensem-Blue
[19] handle a variety of modern devices and use a peer-to-
peer update dissemination to improve the performance. ZZFS
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[16] focuses mainly on the low-power connection with an add-
on hardware. However, they only handle the storage sharing
issues in LAN while ZZFS relies on extra hardware.

Furthermore, Google Docs [6] is a distinguished web-based
SaaS product which can provide users with not only editing
service but document sharing service among multiple users as
well. All documents are stored in Google Drive [5]. However,
it is an internal data storage service and can not be used
to build experimental SaaS storage. Saga [22] is a userspace
file system based on Amazon S3 [1] and it adopts fixed size
block as storage unit to reduce the storage occupation. DO-
LRU cache replacement strategy is implemented in order to
improve the request performance whilst reducing the costs of
using Cloud storage. Despite this, Saga only considers single
client design, ignoring the common scenarios of multiple
personal device management. Besides, cooperative cache is
more effective than the ordinary cache mechanism, and it can
be derived from [11] and [14]. They put part of the memories
of each workstation in the cluster together to form a larger
global collaboration cache. In this way, the cache system could
increase the cache hit ratio while reducing the number of disk
access. However, the cooperative cache is mainly established
based on memory. In SaaS platform, due to the large number of
users, memory cache replacement will be extremely frequent,
resulting in reduced benefits from previous approaches.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a dependable data provisioning service
in the multi-tenant Cloud environment. It is highly desirable
to allow a user group to share and cooperate (e.g., co-edit)
on some specific data or files. Therefore, we describe an
effective metadata management approach in which we take
both data relational structure and data attributes into account,
and leverage multiple replicated metadata caching to improve
the efficiency of data sharing and data access. Furthermore,
we advocate a distributed cooperative disk cache mechanism
to decrease the data transmission and the file access latency
among different storage provenances. The scalability and
parallelism issues such as effective concurrency handling, data
consistency, conflict resolving, efficient component failover are
also addressed in this paper. The experimental results show
that our system can significantly reduce both the network
traffic and the response latency. Specifically, over 50% network
traffic and operational latency are reduced in the random read
experiment while 28.24% network traffic and 25% response
latency are reduced for random write operations. In the future,
we will further improve the current cache mechanism consider-
ing pre-fetching file blocks based on user behavior predictions.
The historical information will increase the cache hit ratio and
reduce the response latency. We will also evaluate the failover
effects under more sophisticated scenarios in which multiple
component failure combinations might occur simultaneously.
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