
Front. Comput. Sci., 2025, 0(0): 1–3

https://doi.org/10.1007/sxxxxx-yyy-zzzz-1

LETTERS

GenSC: A Novel and General Local Search Framework for Set
Covering Problem

Chuan LUO1, Taoyu CHEN2, Renyu Yang(B)1, Wei WU3, Chunming HU1

1 School of Software, Beihang University, Beijing 100191, China
2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3 School of Computer Science and Engineering, Central South University, Changsha 410083, China

© Higher Education Press 2025

1 Introduction

Set covering problem (SCP) is a fundamental combinatorial
optimization problem in computer science, and it has been
extensively applied in real-world, industrial scenarios. Given
a universal set of items X and a collection of subsets Y ⊆ 2X ,
where each subset y j ∈ Y is a subset of X, and the union of
all subsets in Y is equal to X, each subset y j ∈ Y is associated
with a positive integer as its weight ω(y j). The objective of
SCP is to find a collection S ⊆ Y with the minimum total
weight to ensure that the union of all subsets in S equals X.

Local search is known to be an effective approach to tack-
ling computationally hard problems [1]. In fact, current state-
of-the-art practical SCP algorithms, i.e., DomSAT [2] and
NuSC [3], are based on local search paradigm.

To enhance the flexibility of local search algorithms, a
powerful and novel algorithm design paradigm called pro-
gramming by optimization (PbO) [4] has been proposed. The
main idea of PbO encourages algorithm developers to greatly
expand the design space of an algorithm through incorporat-
ing various effective techniques. To our knowledge, there
is no existing work that applies the PbO paradigm to solv-
ing SCP. Hence, it is promising to develop a PbO-based lo-

Received June 07, 2024; accepted Janurary 07, 2025

E-mail: renyuyang@buaa.edu.cn

cal search algorithm for solving extensive types of SCP in-
stances. The main contributions of this work are as follows:
• Extensive Algorithmic Components. GenSC consists

of many algorithmic components, where each compo-
nent is considered as an abstraction and has multiple
candidate instantiations.
• Automatic Combination of Techniques. GenSC is

equipped with diverse algorithmic techniques that are
automatically selected and combined through a pow-
erful configurator, and GenSC is expected to achieve
state-of-the-art performance on various SCP instances.

2 Our Novel GenSC Framework for SCP
GenSC incorporates various effective techniques and can de-
termine suitable combinations of techniques for different SCP
instances. It takes an SCP instance I as input, and outputs a
feasible solution S ∗. GenSC consists of three stages, i.e., pre-
processing stage, initialization stage and local search stage.

2.1 Pre-processing Stage

Given a SCP instance I = (X,Y), an item xi ∈ X is an unit
item if xi is included by only one subset in Y . A subset y j ∈ Y
is a compulsory subset if y j includes at least one unit item.
Since a feasible solution covers all items, it must contain all
compulsory subsets, denoted by S ′. The instance can be sim-
plified to I′ by filtering unit items and compulsory subsets.



2 Front. Comput. Sci., 2025, 0(0): 1–3

GenSC keeps track of the current solution as S and the best
solution S ∗ is updated as the search progresses. Once both
initialization stage and local search stage terminate, GenSC
reports the union of S ∗ and S ′ as the final, feasible solution.

2.2 Initialization Stage

In the initialization stage, GenSC aims to generate a feasi-
ble solution S to simplified instance I′. In order to build a
highly-quality initial solution, we design a greedy construc-
tion component called GreedyConstruct. It starts with an
empty solution S , and then iteratively adds a subset into S
until S becomes a feasible solution.

GenSC implements two instantiations of the component
GreedyConstruct. Particularly, we employ a categorical
hyper-parameter given by a configuration of GenSC to indi-
cate which of the instantiations is adopted. We note that all
choices regarding multiple instantiations for GenSC’s algo-
rithmic components are processed similarly.

2.3 Local Search Stage

At the start of each iteration, if S is feasible, GenSC first
removes a random subset from S . Then GenSC switches be-
tween two modes to find better solutions starting from this
infeasible solution.

2.3.1 Exploitation Mode

This mode focuses on minimizing the optimization objective.
The main techniques in this mode are discussed below.

Forbidden Strategies for Tackling Cycling Challenge.
To mitigate the cycling challenge and enhance the effective-
ness of GenSC when handling various instances, we incor-
porate 3 effective forbidden strategies into the component
TackleCycling, which are based on configuration checking
and tabu mechanism [3].

Selecting the Subset to be Added. To complete the selec-
tion task, we design an AddSubset component. GenSC in-
cludes 3 instantiations of AddSubset, considering the weights
and the covered items of the subsets. After a subset is added
by AddSubset, GenSC forms a new solution S , as the output
of the exploitation mode.

2.3.2 Exploration Mode

In the exploration mode, local search prefers to better explore
the search space. GenSC tries to conduct another swapping

operation to modify current solution S . For this swapping op-
eration, we design a RmSubset component to remove a subset
from S and use AddSubset to add a subset, forming a new
solution Ŝ . GenSC supports 3 instantiations of RmSubset.

After swapping, GenSC evaluates the quality of the cur-
rent solution: if ω(Ŝ ) < ω(S ), then GenSC possibly finds
promising search space and updates the current solution as
Ŝ ; otherwise, GenSC revokes the adding operation and con-
tinues the search process.

To decide which mode should be activated in each iter-
ation, we design a determination mechanism. By compar-
ing the weights of the solution returned by exploitation mode
and the solution at the start of the iteration, we can examine
whether exploitation mode optimizes the objective. GenSC
tends to exploit more if it is far from local optima; otherwise,
it works in the exploration mode.

3 Experimental Design and Results

3.1 Benchmarks and Competitors

We compare GenSC with 5 state-of-the-art SCP algorithms,
i.e., NuSC [3], DomSAT [2], Open-WBO [5], Loandra [6] and
SATLike [7].

3.2 Configuration Protocol of GenSC

The settings of all hyper-parameters of GenSC can be auto-
matically decided by an algorithm configurator. We use an ef-
fective configurator SMAC [8] to determine high-performance
configurations for GenSC. SMAC iteratively records the per-
formance of configurations to construct a predictive model.
In each iteration, SMAC selects the configuration that the
model predicts is most likely to enhance performance.

3.3 Experimental Setup

For each algorithm, we present the best solution weights, de-
noted by ‘min’, the average value of all solution weights, de-
noted by ‘avg’, and the average running time for achieving
the best solution, denoted by ‘time’. Moreover, as suggested
by the literature [3], we report the metric of average relative
percentage deviation, denoted by ‘ARPD’. For each instance,
the best results are highlighted using the boldface font.

3.4 Experimental Results

The comparative results of GenSC and its state-of-the-art com-
petitors on the adopted instances are reported in Table 1. The



Chuan LUO et al. GenSC: A Novel and General Local Search Framework for Set Covering Problem 3

Table 1 Comparative results of GenSC and its state-of-the-art competitors. The value of ARPD is measured in percentage (%), and the running time is
measured in second.

Instance
DomSAT Loandra Open-WBO SATLike NuSC GenSC

min ARPD min ARPD min ARPD min ARPD min ARPD min ARPD
avg time avg time avg time avg time avg time avg time

rail-2536* 700 0.86 1404 103.53 1537 121.15 - - 698 0.46 695 0.13
701.0 530.03 1414.5 60.31 1537.0 1.24 - - 698.2 476.70 695.9 713.72

rail-2586
966 1.00 1389 47.40 1293 35.11 - - 960 0.53 957 0.36

966.6 653.06 1410.6 1000.00 1293.0 23.37 - - 962.1 936.80 960.4 985.24
rail-4284* 1092 0.77 1887 87.14 2315 113.36 - - 1087 0.36 1085 0.14

1093.4 972.17 2030.5 65.91 2315.0 1.38 - - 1088.9 716.10 1086.5 493.32
rail-4872

1558 0.68 2574 84.24 2109 36.06 - - 1552 0.30 1550 0.09
1560.5 627.06 2855.7 59.28 2109.0 24.88 - - 1554.7 700.60 1551.4 573.50

scpcyc-08* 344 1.34 373 9.06 448 30.99 371 9.27 344 0.88 342 0.00
346.6 527.30 373.0 238.75 448.0 0.03 373.7 39.74 345.0 18.70 342.0 1.06

scpcyc-09
780 1.11 965 25.00 1024 32.64 925 20.60 780 1.13 772 0.28

780.6 159.14 965.0 1000.00 1024.0 0.08 931.0 201.63 780.7 4.20 774.2 35.20

x264* 5103 0.35 5095 0.00 5106 0.22 5108 0.38 5101 0.25 5096 0.04
5112.9 <0.01 5095.0 95.97 5106.0 2.78 5114.2 536.43 5107.9 38.80 5097.0 466.79

BDBC* 54175 0.01 54241 0.13 54172 0.00 54177 0.01 54183 0.03 54173 <0.01
54176.8 33.50 54241.0 24.90 54172.0 1.57 54179.9 655.22 54186.2 246.00 54174.1 165.82

Dune* 237640 0.58 325022 37.32 264851 11.89 238449 0.93 237199 0.29 236698 0.01
238079.0 38.56 325022.0 0.93 264851.0 908.81 238903.9 353.79 237375.6 55.50 236731.4 541.02

hsmgp
173390 0.11 183611 5.96 231797 33.76 173610 0.27 173315 0.06 173291 0.01

173482.1 111.99 183611.0 22.33 231797.0 283.75 173752.7 496.00 173394.7 667.60 173303.5 133.42
hipacc

289091 0.70 360909 25.62 366085 27.42 289130 0.74 288586 0.53 287302 0.01
289315.9 943.20 360909.0 15.01 366085.0 13.05 289417.3 598.06 288829.7 969.20 287316.6 667.28

sac* 77646599 0.04 78072801 0.60 77933534 0.45 - - 77671334 0.07 77620962 <0.01
77653261.1 1000.00 78084169.0 113.73 77966843.5 1000.00 - - 77674840.1 987.80 77621275.0 734.81

javagc
17512677 6.13 17955522 10.19 18708768 12.87 - - 16937627 2.54 16575919 <0.01

17592635.0 956.75 18265103.4 1000.00 18708768.0 912.00 - - 16997043.2 994.20 16576267.0 961.60

training set is indicated with an asterisk. It is clear that GenSC
stands out as the best SCP algorithm and considerably outper-
forms all other competing algorithms on all instances except
two (i.e., x264 and BDBC). For the largest instances (i.e., rail
series, sac and javagc), SATLike fails to report a solution,
so we mark its results as ‘–’ for these instances in Table 1.

4 Conclusion

In this work, we propose a novel, general local search frame-
work, dubbed GenSC, for set covering problem. GenSC is de-
signed to be highly configurable, and its design space incor-
porates many effective algorithmic components for solving
SCP, enabling GenSC to be configured to instantiate various
concrete local search SCP algorithms. Overall, our experi-
mental results demonstrate that GenSC substantially pushes
forward the state of the art in SCP solving.

Data Availability Statement. The long version of this pa-
per, the implementation of GenSC, and all benchmarks adopted
in our experiments are publicly available in our repository:
https://github.com/chuanluocs/GenSC.

Acknowledgements This work was supported in part by the National Key
Research and Development Program of China (Grant 2023YFB3307503), in
part by the National Natural Science Foundation of China (Grants 62202025,

62302528, 62402024) and Beijing Natural Science Foundation (L241050),
in part by the Young Elite Scientist Sponsorship Program by CAST (Grant
YESS20230566), in part by CCF-Huawei Populus Grove Fund (Grant CCF-
HuaweiFM2024005), and in part by the Fundamental Research Funds for the
Central Universities.

References
1. Liu C, Liu G, Luo C, Cai S, Lei Z, Zhang W, Chu Y, Zhang G. Optimiz-

ing local search-based partial MaxSAT solving via initial assignment

prediction. Science China Information Sciences, 2025, 68(2)

2. Lei Z, Cai S. Solving set cover and dominating set via maximum satis-

fiability. In: Proceedings of AAAI 2020. 2020, 1569–1576

3. Luo C, Xing W, Cai S, Hu C. NuSC: An effective local search algorithm

for solving the set covering problem. IEEE Transactions on Cybernetics,

2022, 1–14

4. Hoos H H. Programming by optimization. Communications of the

ACM, 2012, 55(2): 70–80

5. Martins R, Manquinho V M, Lynce I. Open-WBO: A modular MaxSAT

solver,. In: Proceedings of SAT 2014. 2014, 438–445

6. Berg J, Demirović E, Stuckey P J. Core-boosted linear search for in-

complete MaxSAT. In: Proceedings of CPAIOR 2019. 2019, 39–56

7. Cai S, Lei Z. Old techniques in new ways: Clause weighting, unit prop-

agation and hybridization for maximum satisfiability. Artificial Intelli-

gence, 2020, 287: 103354

8. Hutter F, Hoos H H, Leyton-Brown K. Sequential model-based opti-

mization for general algorithm configuration. In: Proceedings of LION

2011. 2011, 507–523

https://github.com/chuanluocs/GenSC

	Introduction
	Our Novel GenSC Framework for SCP
	Pre-processing Stage
	Initialization Stage
	Local Search Stage
	Exploitation Mode
	Exploration Mode


	Experimental Design and Results
	Benchmarks and Competitors
	Configuration Protocol of GenSC
	Experimental Setup
	Experimental Results

	Conclusion

