
Reducing Late-Timing Failure at Scale: Straggler

Root-Cause Analysis in Cloud Datacenters

Xue Ouyang, Peter Garraghan, Renyu Yang, Paul Townend, Jie Xu

To cite this version:

Xue Ouyang, Peter Garraghan, Renyu Yang, Paul Townend, Jie Xu. Reducing Late-Timing
Failure at Scale: Straggler Root-Cause Analysis in Cloud Datacenters. Matthieu Roy; Javier
Alonso Lopez; Antonio Casimiro. Fast Abstract in the 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun 2016, Toulouse, France. DSN2016-
FAST-ABSTRACT. <hal-01316515>

HAL Id: hal-01316515

https://hal.archives-ouvertes.fr/hal-01316515

Submitted on 17 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01316515

Reducing Late-Timing Failure at Scale: Straggler Root-
Cause Analysis in Cloud Datacenters

Xue Ouyang1, Peter Garraghan1, Renyu Yang2, Paul Townend1, Jie Xu1
School of Computing1,

University of Leeds, Leeds, UK
 {scxo, p.m.garraghan, p.m.townend, j.xu}@leeds.ac.uk

School of Computing2,
Beihang University, Beijing, China

yangry@act.buaa.edu.cn

Abstract — Task stragglers hinder effective parallel job
execution in Cloud datacenters, resulting in late-timing failures
due to the violation of specified timing constraints. Straggler-
tolerant methods such as speculative execution provide limited
effectiveness due to (i) lack of precise straggler root-cause
knowledge and (ii) straggler identification occurring too late
within a job lifecycle. This paper proposes a method to ascertain
underlying straggler root-causes by analyzing key parameters
within large-scale distributed systems, and to determine the
correlation between straggler occurrence and factors including
resource contention, task concurrency, and server failures. Our
preliminary study of a production Cloud datacenter indicates
that the dominate straggler root-cause is resultant of high
temporal resource contention. The result can assist in enhancing
straggler prediction and mitigation for tolerating late-timing
failures within large-scale distributed systems.

I. INTRODUCTION
Modern Cloud datacenters are composed of thousands of

servers to support increasing computing demand while
fulfilling Quality of Service (QoS) requests. Within such
large-scale systems, there exist a particular type of emergent
phenomena that leads to increased likelihood of late-timing
failures caused by task stragglers. In parallel computing
frameworks such as MapReduce [1], a job is divided into
multiple tasks, and stragglers are referred to those which
exhibit abnormally long execution in comparison to sibling-
tasks within the same job [2]. It has been shown that stragglers
impose a substantive challenge towards rapid and predictable
service execution, which is further aggravated within
increasingly larger system scale [3].

Stragglers occur due to multiple causes, ranging from
heterogeneous node capacities, network congestion, resource
contention, to fault activation within tasks and servers [4].
There have been considerable efforts in academia and industry
towards tolerating stragglers and their impact on efficient job
execution. The dominant method is speculation that monitors
slow task execution in order to create corresponding replicas
under the assumption that it will complete prior to the
straggler task. Such a method is widely adopted by production
Cloud datacenters including Google, Yahoo, and Facebook.

There exist numerous speculation based techniques for
straggler-tolerance, providing enhancement within different
operational scenarios. For example, LATE [2] was designed
for heterogamous clusters, Mantri [5] focuses on replication
resource and opportunity cost, and Dolly [6] specifically
tackle stragglers in small jobs. While these works demonstrate

success for reducing job response time, their effectiveness is
limited due to lack of precise knowledge pertaining to
straggler root-causes. This is important when considering
different straggler-tolerant techniques. For example, a specific
approach such as SkewTune [7] will result in extensive
replication overhead if the straggler is not caused by data
skew. Furthermore, replication which occurs late within the
task lifecycle will also result in increased overhead with
minimal impact in reducing late-timing failures. While there
are studies analyzing root causes for unsuccessful tasks within
datacenters [8], there is an omission of work that analyzes
straggler root-causes. Such analysis is critical to
understanding the explicit relationship between straggler type,
occurrence probability, and system operation as well as
proposing effective straggler-tolerant techniques.

II. PROPOSED SOLUTION

A. Straggler-Tolerant System with Cause Analytics Engine
A straggler tolerant system is proposed to improve parallel

job execution and to mitigate late-timing failures caused by
stragglers. Figure 1. depicts how this system is integrated into
existing large-scale cluster platforms such as YARN. The
scheduler is responsible for assigning jobs into the Cloud
datacenter comprising M servers. Each Application Master
controls one job containing N tasks, with ������ representing
the �	
 task belonging to job �. The Straggler Cause Analytics
Engine communicates with both Speculator and Node
Manager, collect data and conduct the analysis. By leveraging
data mining techniques to correlate various system attributes
with straggler occurrence, it will identify major causes and
construct statistical models for straggler prediction.

Client

Task2
2

Task2
3

Task1
3 Task1

4

Node Manager Node Manager Node Manager

Task1
1

Task2
1

App Master 1

Speculator

Progress
Monitor

Executer

Speculator

Progress
Monitor

Executer

App Master 2

Task1
2

ExecuterScheduler

Straggler
Cause

Analytics
Engine

Straggler
Cause

Analytics
Engine

Straggler
Cause

Analytics
Engine

Node 2Node 1 Node m

Resource Manager

Figure 1. Straggler tolerant system integrated into YARN architecture

B. Straggler Root-Cause Analysis Method
There exist different criterions for identifying stragglers.

Works such as LATE and Mantri determine stragglers based
on the estimated finish time for each task as in Equation 1.

�
��� � �� � � � ����������
���������� ��� � ���

where �
��� represents Estimated Finish Time for ������ , �� is the task Progress Score, �� is the start time of job j and �� is the timestamp recording ����������.
To consider task execution time with input data size, we

propose a new system metric for straggler detection termed
Degree of Straggler (DoS) as shown in Equation 2.

����� � � ���	 !�"#�
$%&'	 !�"#() � *

+,- ���	 !�"#�+#.*
*
+,- $%&'	 !�"#(�+#.*

)/

where Inp(������) is the data volume that ������,is required
to process. The DoS-index indicates a relative speed of data
processing (i.e., the time consumed when processing one unit
of input data). Using this criterion we can identify the straggler
occurrence pattern, and correlate it with system attributes that
are hypothesized to cause stragglers including hardware faults,
high resource utilization (CPU, memory, disk), unhandled
requests, network package loss and data skew, etc. Combining
these runtime system features with dynamic task information,
we can further design learning and prediction models such as
Neural Networks (NN) to timely discriminate stragglers and
the consequential late-timing failures, considering time-
variant changes and instantaneous states.

C. Initial Results
The main reason leading to high resource usage includes

unbalanced workload aggregation and poor user code. The
former is caused by inefficient scheduling that leads to
excessive workload co-allocation. The latter is caused by the
inefficient design of execution logic (i.e. looping conditions).
Such behavior has been identified in [9], analyzing how
specific code can lead to high latency execution. For this
specific cause, it is hypothesized that high resource usage of a
server node (subcategorized as CPU, memory, and disk) is
likely to result in high straggler occurrence due to contention.

Request handling inefficiency is mainly due to overloaded
file requests, especially for MapReduce jobs with a large
number of read and write requests to HDFS. Once the request
number surpasses the handling capability of the master node,
it will become the bottleneck, leading to a long request waiting
queue. The unreasonable configuration of task number or
block size can lead to request increase, thereby increasing the
load of master node and causing slow request handling.

The exploration investigates how resource contention
affects straggler occurrence. Figure 2. presents the initial
analysis of straggler occurrence within a 20-day period from
a large-scale production Cloud datacenter composed of 5000
servers and millions of tasks. We monitor and collect system
information from servers which contain tasks with DoS-Index
� 10. System conditions including server CPU utilization �
80%, disk usage � 80%, and slow read-write request handling
(i.e. latency from file system > 400ms) have been studied, and
memory conditions will be included in future work.

We observe that 59% and 42% of stragglers occur under
the presence of high server CPU and disk overloading.
Furthermore, it is also observable that 34.3% of stragglers
occur due to slow request handling. This result indicates that
high resource utilization is a dominant cause for straggler
occurrence. Condition overlapping is not considered in this
initial analysis (i.e. correlated and simultaneous root causes),
explains why the sum of the three reasons exceeds 100%. The
further refinement will be included in future work. Moreover,
we also observe that additional factors such as network
condition can result in stragglers as well due to all remote
copies after shuffle phase in MapReduce job are sent through
the network, and higher package re-transmission causes not
only additional job end-to-end execution time, but also
aggravated network congestion. Therefore, future work will
explore such parameters in-depth.

III. CONCLUSION
In this paper we presented a straggler root-cause analysis

method to reduce late-timing failures and study straggler
occurrence. Our initial results provide new insights into
straggler occurrence, however there is a requirement for more
extensive analytics to determine precise relationships between
temporal resource contention and stragglers. We plan to detail
our method for system parameter collection as well as provide
additional case studies from large-scale Cloud datacenters.

REFERENCES
[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data

processing on large clusters." In Communications of the ACM 2008.
[2] Zaharia, Matei, et al. "Improving MapReduce Performance in

Heterogeneous Environments." In USENIX OSDI 2008.
[3] Dean, Jeffrey, and Luiz André Barroso. "The tail at scale." In

Communications of the ACM 2013.
[4] Kumar, Umesh, and Jitendar Kumar. "A Comprehensive Review of

Straggler Handling Algorithms for MapReduce Framework." In
IJGDC 2014.

[5] Ananthanarayanan, Ganesh, et al. "Reining in the Outliers in Map-
Reduce Clusters using Mantri." In USENIX OSDI 2010.

[6] Ananthanarayanan, Ganesh, et al. "Effective straggler mitigation:
Attack of the clones." In USENIX NSDI 2013.

[7] Kwon, YongChul, et al. "Skewtune: mitigating skew in mapreduce
applications." in ACM SIGMOD 2012.

[8] Rosa, Andrea, et al. "Understanding the Dark Side of Big Data
Clusters: an Analysis beyond Failures." In IEEE DSN 2015.

[9] Li, Guanpeng, et al. "Fine-grained characterization of faults causing
long latency crashes in programs." In IEEE DSN 2015.

Figure 2. Straggler root-cause analysis in a production system

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPU Util >80% DiskUtil >80% Slow Req Handling

Day

St
ra

gg
le

r n
um

be
r

(2)

(1)

