
1

Software-Defined Fog Orchestration

for IoT Services

Renyu Yang12, Zhenyu Wen3, David McKee1, Tao Lin4, Jie Xu12, Peter

Garraghan5

1UNIVERSITY OF LEEDS, UK

2BEIHANG UNIVERSITY, CHINA

3UNIVERSITY OF EDINBURGH, UK

4EPFL, SWITZERLAND

5LANCASTER UNIVERSITY, UK

Abstract

The Internet of Things (IoT) interconnects physical objects

including sensors, vehicles, and buildings into a virtual

circumstance, resulting in the increasing integration of

Cyber-physical objects. The Fog computing paradigm extends

both computation and storage services in Cloud computing

environment to the network edge. Typically, IoT services

comprise of a set of software components running over different

locations connected through datacenter or wireless sensor

networks. It is significantly important and cost-effective to

orchestrate and deploy a group of microservices onto Fog

appliances such as edge devices or Cloud servers for the formation

of such IoT services. In this chapter, we firstly discuss new

characteristics and open challenges of realizing Fog orchestration

for IoT services before summarizing the fundamental

requirements. We propose a software-defined orchestration

architecture that decouples software-based control policies with

the dependencies and operations of heterogeneous hardwares. This

design can intelligently compose and orchestrate thousands of

heterogeneous Fog appliances. Specifically, we provide a resource

filtering based resource assignment mechanism to optimize the

resource utilization and fair resource sharing among multi-tenant

IoT applications. Additionally, we exploit a component selection

and placement mechanism for containerized IoT microservices to

minimize the latency by harnessing the network uncertainty and

security whilst considering different application requirement and

appliance capabilities. We finally describe a Fog simulation

2

scheme to simulate the above procedure by modeling the entities,

their attributes and actions. Our practical experiences show that

the proposed parallelized orchestrator can reduce the execution

time by 50% with at least 30% higher orchestration quality. We

believe that software-defined orchestration is a promising

paradigm and will play an increasingly important role in future

Fog ecosystem.

1. Introduction

The proliferation of the Internet and increasing integration of

physical objects spanning sensors, vehicles, and buildings have resulted

in the formation of Cyber-physical environments that encompass both

physical and virtual objects. These objects are capable of interfacing and

interacting with existing network infrastructure, allowing for

computer-based systems to interact with the physical world, thereby

enabling novel applications in areas such as smart cities, intelligent

transportation, and autonomous vehicles. Explosive growth in global data

generation across all industries has led to research focused on effective

data extraction from objects to gain insights to support Cyber-physical

system design. IoT services typically comprise a set of software

components running over different geographical locations connected

through networks (i.e. 4G, wireless LAN, Internet etc.) that exhibit

dynamic behavior in terms of workload internal properties and resource

assumption. Systems such as datacenters and wireless sensor networks

underpin data storage and compute resources required for the operation of

these objects.

A new computing paradigm Fog computing further evolves

Cloud computing by placing greater emphasis of computation and data

storage at the edge of the network, allowing for reduced latency and

response delay jitter for applications[1][25]. These characteristics are

particularly important for latency-sensitive applications such as gaming

and video streaming. In this way, the data processing can be greatly

decentralized by exploiting compute capacities from not only Cloud

infrastructures, but from the IoT network itself. In this environment,

existing applications and massive physical devices can be leveraged as

fundamental services and appliances respectively. They are composed in

a mash-up style (i.e., applications are developed using contents and

services available online [56]) in order to control development cost and

reduce maintenance overhead. IoT services which involve a great

number of data-stream and control flows across different regions that

require real-time processing and analytics are especially suitable to this

3

style of construction and deployment. In this context, orchestration is a

key concept within distributed systems, enabling the alignment of

deployed applications with user business interests.

Figure 1. An orchestration scenario for an e-Health service:

different IoT appliances (diverse types of sensors and Fog

nodes) are orchestrated as a workflow across all layers of

Fog architecture. Several candidate objects can potentially

provision similar functionality. The Fog orchestrator acts as

a controller deployed on a workstation or Cloud datacenter

and across all organization layers based on global

information. Its primary responsibility is to select resources

and deploy the overall service workflow according to data

security, reliability, system efficiency requirements. It is

noteworthy that the orchestrator is a centralized controller

only at a conceptual level and might be implemented in a

distributed and fault-tolerant fashion, without introducing a

single point of failure.

A Motivating Example. Smart cities aim to enhance the quality

of urban life by using technology to improve the efficiency of services to

meet the needs of residents. To this end, multiple information and

communication technology (ICT) systems need to be integrated in a

secure, efficient and reliable way in order to manage city facilities

effectively. Such systems consist of two major components: (1) sensors

integrated with real-time monitoring systems, and (2) applications

integrated with the collected sensor (or device) data. Currently, IoT

4

services are rudimentary in nature, and only integrate with specific sensor

types. This is resultant of no existing universally agreed standards and

protocols for IoT device communication, and represents a challenge

towards achieving a global ecosystem of interconnected things.

To address this problem, an alternative approach is to use an IoT

service orchestration system to determine and select the best IoT

appliances for dynamic composition of holistic workflows for more

complex functions. As shown in Figure 1, the proposed orchestrator

manages all layers of an IoT ecosystem to integrate different standalone

appliances or service modules into a complex topology. An appropriate

combination of these standalone IoT services can be used to facilitate

more advanced functionality, allowing for reduced cost and improved

user experience. For example, mobile health sub-systems are capable of

remote monitoring, real-time data analysis, emergency warning, etc. Data

collected from wearable sensors that monitor patient vitals can be

continuously sent to data aggregators and, in the event of detection of

abnormal behavior, hospital personnel can be immediately notified in

order to take appropriate measures.

While such functionality can be developed within a standalone

application, this provides limited scalability and reliability. The

implementation of new features leads to increased development efforts

and risk of creating a monolithic application incapable of scaling

effectively due to conflicting resource requirements for effective

operation. For reliability, increased application complexity leads to

tedious, time-consuming debugging. The use of orchestration allows for

more flexible formation of application functionality to scale and it also

decreases the probability of failure correlation between application

components.

At present, orchestration within Cloud computing environments

predominantly address issues of automated interconnection and

interaction in terms of deployment efficiency and resource satisfaction

from the perspective of the Cloud provider [8][11]. However, these

works do not consider the effects of network transmission characteristics

outside the operational boundary of the datacenter. In reality, the

heterogeneity, mobility and the dynamicity introduced by edge devices

within Fog environments are greater than those found within Cloud

environments. Additionally, the emergence of 4G or 5G techniques are

still far from mature in terms of response latency and energy efficiency.

This has resulted in increasing network uncertainty which may incur

tailed execution and security hazards. In this context, it is significantly

important to take all these factors into account within the automated

resource provisioning and service delivery. Therefore, the Fog

orchestrator should provide (a) a centralized arrangement of the resource

5

pool, mapping applications with specific requests and an automated

workflow to physical resources in terms of deployment and scheduling,

(b) workload execution management with runtime QoS control such as

latency and bandwidth usage; and (c) time-efficient directive operations

to manipulate specific objects.

In this chapter, we propose a scalable software-defined

orchestration architecture to intelligently compose and orchestrate

thousands of heterogeneous Fog appliances (devices, servers).

Specifically, we provide a resource filtering based resource assignment

mechanism to optimize the resource utilization and fair resource sharing

among multi-tenant IoT applications. Additionally, we propose a

component selection and placement mechanism for containerized IoT

microservices to minimize the latency by harnessing the network

uncertainty and security whilst considering different applications’

requirement and appliances’ capabilities. We describe a Fog simulation

scheme to simulate the above procedure by modeling the entities, their

attributes and actions. We then introduce the results of our practical

experiences on the orchestration and simulation.

2. Scenario and Application

2.1 Concept Definition

Prior to discussing technical details of orchestration, we first

introduce a number of basic terms and concepts.

Appliance: Appliance is the fundamental entity in the Fog

environment. Appliances include Fog Things, Fog nodes and Cloud

servers. Things are defined as networked devices including sensors and

devices with built-in sensors which can monitor and generate huge

amount of data. Cloud servers store the data and provide parallelized

capability of computation. It is noteworthy that a Fog node is defined as

a particular equipment or middleware residing within the midst of edge

things and the remote Cloud. It serves as an agent that collects data from

a set of sensors, which is then transmitted to a centralized computing

system that locally caches data and performs load balancing.

IoT Microservice: It is a software unit that provisions a specific

type of functionality. For instance, there are a number of demands for

data collecting, data streaming gateway or routing, data pre-processing,

user data caching, load balancing, firewall services, etc. These

functionalities are independently executed, encapsulated into a container

6

and then placed onto an appliance (except for sensors that simply

generate data). Additionally, several candidate objects potentially

provision similar functionality and one of them will be eventually

selected and deployed as the running instance.

IoT Service (IoT Application): A complete IoT application

typically consists of a group of IoT microservices. All microservices are

inter-connected to form a function chain that best serve user’s

requirements. Formally, an IoT application can be depicted as a DAG

workflow, where each node within the workflow represents a

microservice. An example is illustrated in Figure 2, where the

aforementioned e-Health application can be divided into many

independent but jointly-working microservices.

Fog Orchestration: The orchestration is a procedure that enables

the alignment of deployed IoT services with users’ business interests.

Fog orchestration manages the resource pool; provides and underpins the

automated workflow with specific requests of IoT service satisfied; and

conducts the workload execution management with runtime QoS control.

A full discussion of this concept can be found within Section 4.

Figure 2. e-Health system workflow and containerized

microservices in the workflow

2.2 Fog-enabled IoT Application

Traditional Web-based service applications are deployed on

servers within Cloud datacenters that are accessed by end devices such as

tablets, smart phones and desktop PCs. Similarly to Web-based service

applications, the Cloud provisions centralized resource pools (compute,

storage) in order to analyze collected data and automatically trigger

subsequent decisions based on a pre-defined system logic. The most

significant difference, however, is the use of Fog nodes that transmit data

to Cloud datacenters. For example, the vast majority of wearable sensor

7

data is collected and pre-processed by smart phones or adjacent

workstations. This can either significantly reduce transmission rates or

improve their reliability.

Table 1: Comparison between web-based application and

Fog-enabled IoT application

Attributes Web-based Fog-enabled

Architecture Cloud + devices Cloud + Fog + Things

Communication Centralized Hybrid

Interfaces WSDL/SOAP

protocol

web service

MQTT protocol [40]

Lightweight API

Interoperability Loosely-decoupled Extremely Loosely-decoupled

Reliability Medium Low

We summarize the main differences between Web-based and IoT

applications in Table 1.

First, IoT communication is performed using a hybrid

centralized-decentralized approach depending on context. Most message

exchanges between sensors or between a sensor and the cloud are

performed using fog nodes. Purely centralized environments are ill-suited

for applications that have soft and hard real-time requirements. For

example, neighboring smart vehicles need to transfer data between other

vehicles and traffic infrastructure to prevent collisions. Such a system

was piloted in New York City using Wi-Fi to enable real-time

interactions to assist drivers in navigating congestion and to

communicate with pedestrians or oncoming vehicles [13]. Furthermore,

given the huge number of connected devices, the data volume generated

and exchanged over an IoT network is predicted to become many orders

of magnitude greater than that of conventional Web-based services,

resulting in significant scalability challenges.

Interoperability is another aspect where Web-based and IoT

applications diverge. Software-defined networking technologies enable

the decoupling of software control and heterogeneous hardware

operations. This approach provides an opportunity to dynamically

achieve different quality levels for different IoT applications in

heterogeneous environments [14]. Moreover, application-level

interoperability benefits from Web technologies, such as the RESTful

architecture, that provide a high level of interoperability. Using these

technologies and the MQTT messaging protocol [40], an abundance of

programming APIs can be distributed across entire fog domains and

8

utilized to increase the flexibility of loosely coupled management [15].

Lightweight APIs, such as RESTful interfaces, result in agile

development and simplified orchestration with enhanced scalability when

composing complex distributed workflows.

A third aspect is reliability. Physical systems make up a significant

part of IoT applications, thus the assumptions that can be made regarding

fault and failure modes are weaker than those for Web-based applications.

IoT applications experience crash and timing failures stemming from

low-sensor battery power, high network latency, environmental damage,

etc.[57][58]. Furthermore, the uncertainty of potentially unstable and

mobile objects increases difficulties in predicting and capturing system

operation. Therefore, an IoT application workflow’s reliability needs to

be measured and enhanced in more elaborate ways.

2.3 Characteristics and Open Challenges

The diversity among Fog nodes is a key issue - location,

configuration, and served functionalities of Fog nodes all dramatically

increase this diversity. This raises an interesting research challenge,

namely how to optimize the process of determining and selecting the best

software components onto Fog appliances to compose an application

workflow whilst meeting non-functional requirements such as network

latency, QoS, etc. We outline and elaborate on these specific challenges

as follows:

Scale and complexity. With the increase of IoT manufacturers

developing heterogeneous sensors and smart devices, selecting optimal

objects becomes increasingly complicated when considering customized

hardware configurations and personalized requirements. For example,

some applications can only operate with specific hardware architectures

(e.g., ARM, Intel) or operating systems, while applications with high

security requirements might require specific hardware and protocols to

function. Not only does orchestration cater to such functional

requirements, it must do so in the face of increasingly larger workflows

that change dynamically. The orchestrator must determine whether the

assembled systems comprising of Cloud resources, sensors, and Fog

nodes coupled with geographic distributions and constraints are capable

of provisioning complex services correctly and efficiently. In particular,

the orchestrator must be able to automatically predict, detect, and resolve

issues pertaining to scalability bottlenecks which may arise from

increased application scale.

Security criticality. In the IoT environment, multiple sensors,

computer chips, and communication devices are integrated to enable the

9

overall communication. A specific service might be composed of a

multitude of objects, each deployed within different geographic locations,

resulting in an increased attack vector of such objects. Fog nodes are the

data and traffic gateway that is particularly vulnerable to such attacks.

This is especially true in the context of network-enabled IoT systems,

whose attack vectors can range from human-caused sabotage of network

infrastructure, malicious programs provoking data leakage, or even

physical access to devices. A large body of research focuses on

cryptography and authentication towards enhancing network security to

protect against Cyber-attacks [16]. Furthermore, in systems comprising

of hundreds of thousands electronic devices, how to effectively and

accurately evaluate the security and measure its risks is critically

important in order to present a holistic security and risk assessment [17].

This becomes challenging when workflows are capable of changing and

adapting at runtime. For these reasons, we believe that approaches

capable of dynamically evaluating the security of dynamic IoT

application orchestration will become increasingly critical for secure data

placement and processing.

Dynamicity. Another significant characteristic and challenge for

IoT services is their ability to evolve and dynamically change their

workflow composition. This is a particular problem in the context of

software upgrades through Fog nodes or the frequent join-leave behavior

of network objects which will change its internal properties and

performance, potentially altering the overall workflow execution pattern

[50]. Moreover, handheld devices inevitably suffer from software and

hardware aging, which will invariably result in changing workflow

behavior and its properties. For example, low-battery devices will

degrade the data transmission rate; and unexpected slowdown of

read/write operations will manifest due to long-time disk abrasions.

Finally, the performance of applications will change due to their transient

and/or short-lived behavior within the system, including spikes in

resource consumption or data generation [57]. This leads to a strong

requirement for automatic and intelligent re-configuration of the

topological structure and assigned resources within the workflow, and

importantly, that of Fog nodes.

Fault diagnosis and tolerance. The scale of a Fog system results

in increased failure probability. Some rare-case software bugs or

hardware faults which do not manifest at small-scale or testing

environments have a debilitating effect on system performance and

reliability. For instance, the straggler problem [18] occurs when a small

proportion of these tasks experience abnormally longer execution

compared with other sibling tasks from the same parallel job, leading to

extended job completion time. At the scale, heterogeneity, and

10

complexity we are anticipating, it is very likely that different types of

fault combinations will occur [19]. To address these, redundant

replications and user-transparent fault-tolerant deployment and execution

techniques should be considered in orchestration design.

2.4 Orchestration Requirements

According to the discussed user cases within Fog environments, a

user firstly provides a specification of their requirement that explicitly

describes the basic topological workflow (e.g., from the data collection

to the final monitoring system) and the detailed requirements for each

workflow node in terms of data locality, response latency, reliability

tolerance level, minimum security satisfactory level, etc. In this context,

the ultimate objective of the Fog orchestration is to transform the logical

workflow design from the user perspective into the physically

executable workflow over different resources of Fog appliances. In this

procedure, the requirements that should be at least satisfied can be

primarily summarized as follows:

1) Exploit Fog appliance heterogeneity. The orchestrator

should recognize the diversity of edge devices, Fog nodes and Cloud

servers, and fully exploit the capabilities of CPU, memory, network and

storage resources over the Fog layers. At present, neither the

conventional cluster management systems [43]-[48] nor the container

management frameworks [1][2][3] can efficiently detect and leverage

the edge resources due to the deficient design of current inter-action

protocol and state management mechanism.

2) Enable IoT appliance and application operation.

Unawareness of resource availability and IoT application status make it

unfeasible to manipulate any instructions of resource allocation or

parameter tuning at runtime. This is also a fundamental step for realizing

the interoperations among different appliances in the workflow.

Loosely-coupled functions or APIs should be designed and accessed via

pre-defined interfaces over the network, which enables the re-use and

composition to form a chain of functions.

3) Conduct workflow planning optimization and network

latency-aware container placement. For general purposes, the

orchestrator is expected to support topology-based orchestration

standard TOSCA [6]. Afterwards, according to the topological workflow,

how to choose the most suitable microservice from the candidates and

how to choose the most suitable Fog appliances for hosting the selected

containerized microservices are two research problems. Due to the

physically widespread in a local or wide area network of Fog appliances,

11

the software services are ideally deployed close to the data sources or

data storage in order to reduce the transmission latency. With other

factors considered, the orchestrator must support a comprehensive

placement strategy whilst being aware of appliances’ characteristics such

as physical capabilities, locations, etc.

4) Leverage real-time data and learning techniques for

optimization and simulation. Performance-centric and QoS-aware

learning can significantly steer the effectiveness and efficiency of

resource allocation, container placement and the holistic orchestration.

This is highly dependent of data-driven approach and machine learning

techniques.

3. Architecture: A Software-

Defined Perspective

3.1 Solution Overview

To fulfill the aforementioned requirements, the initial steps are

resource allocation and microservice-level planning before those

microservices are deployed and launched. An exemplified construction

problem is to firstly find a suitable microservice instance into container,

and then find a physical entity with adequate resources to host those

containers. Namely, after obtaining a candidate i that can serve the

functionality from a candidate list I for a specific type of microservice t

(which is the node within the whole topology T of IoT application), we

deploy the selected instance into a container which is hosted by a

physical machine or portable device r from the resource set R. The

objective is to maximize a utility function (utilFunc) that describes the

direction of resource selection and container placement (such as

minimizing the performance interference whilst maximizing the security

and reliability) under QoS and capacity constraints.

maximize:

 ∑ ()

subject to: QoS(i, r),

 Cap(r),

12

To satisfy the application-specific needs with hard or soft

constraints, and the platform-level fairness of allocations among

different IoT applications, it is highly preferable to accurate sort out the

appliances that can best serve each IoT application. Also, for online

decision making, real-time or sometimes faster-than real time is urgently

required. In some cases, orchestration would be typically considered

computationally intensive, as it is extremely time-consuming to perform

combination calculation considering all specified constraints and

objectives.

After resource selection and allocation, we can obtain an optimal

or near-optimal placement scheme based on current system status before

the application deployment. After the IoT application is deployed,

workload running status and system states should be timely monitored

and collected to realize dynamic orchestration at run-time with QoS

guaranteed. Meanwhile, with the huge amount of data generated,

data-driven optimization and learning-based tuning can facilitate and

drive the orchestration intelligence.

Figure 3. mapping between microservice candidate,

containerized microservice instance, and the physical

appliances.

13

Figure 4. Fog Orchestration Architecture

3.2 Software-Defined Architecture

A significant advantage of a software-defined solution [60] is the

de-coupling of the software-based control policies and the dependencies

on heterogeneous hardware. On one hand, along with the rapid

development of mobile and embedded operating system, the

programming API and virtualization techniques can be greatly utilized

to increase the flexibility of manipulation and management.

Virtualization, through the use of containerization, can provide

minimized granularity of resource abstraction and isolated execution

environment. Resource operations are exposed as interoperable system

APIs and accessible to upper frameworks or administrators. On the other

hand, the orchestration controls the software-defined architecture. In

order to mitigate the overloaded functionalities of control plane in

previous architecture, the information plane is de-coupled from the

control plane. The independent information plane can therefore

provision more intelligent ingredients into the orchestration and resource

management by integrating pluggable libraries or learning frameworks.

Additionally, we adopt container technology to encapsulate each task or

IoT microservice. Containers can ensure the isolation of running

microservices and create a development and operation environment that

is immune to system version revision, sub-module updates.

As shown in Figure 4, the Fog orchestration framework is

incorporated with the emerging networking and resource management

technologies. We design the layered architecture according to the

14

popular SDN reference architecture [60][61]. The main components are

described as follows:

Data Plane. The first responsibility of data plane is to regulate and

abstract the resources from heterogeneous Fog entities. It also provisions

an easily accessed Application Programming Interface (API) for resource

management and application runtime control across the entire Fog system.

Furthermore, the monitored system states such as resource usage,

application-specific metrics etc. are collected and maintained in the data

plane. The build-in query APIs are provided for visualization or

administration.

Control Plane. The control plane is the decision making plane

that works on the basis of control logic in the overall architecture. It

dominates both data flow and control flow, and inter-connects with the

deployment module and operations of underlying entities and running

appliances. The orchestrator mainly takes charge of resource

management, workflow planning and runtime QoS control:

 Resource Manager. The resource manager is responsible for

the resource pre-filtering according to the basic demands and

constraints in the requests and available resources in the Fog

environments. In addition, after the final decision made by

the planning step, the resource manager also takes the

responsibility of resource binding and isolation against other

applications. It also takes charge of the elastic resource

provisioning during the appliances’ execution. They are

depicted in Section 4.1.

 Workflow Planner. The planner calculates the optimal

mapping of candidate micro-services, containerized

appliances and the hosting entities. We will detail the

relevant techniques in Section 4.2.

 QoS Controller. The controller dynamically tunes the

allocated resource, the orchestration strategy at run-time with

the QoS guaranteed. They are detailed in Section 4.3.

The control module can be implemented in distributed (with each

sub-orchestrator managing its own resource partitions without global

knowledge) or centralized (with all resource statuses in the central

orchestrator), or a hybrid way for the consideration of scalability and

dependability.

Information Plane. The information plane lends itself as a

vertical within this architecture, provisioning data-driven supporting and

intelligent solutions. By exploiting the stored sensed information and

system real-time statuses, the data analytic and machine learning

15

sub-module can abstract and analyze the application’s behavior pattern

and give more accurate resource estimation and location preference in

the resource allocation. Also, with the aid of big data analytics, this

module can build the performance model based on the QoS and network

uncertainty modeling, and diagnose system failures preventing them

from the regular orchestration.

Application Plane. The application-level plane firstly contains

an administration portal that aggregates and demonstrates the collected

data, and allows for visualized interaction. Additionally, a containerized

deployer is integrated in this plane, providing cost-effective Fog service

deployment. It automatically deploys the planned IoT application or

services into the infrastructure and continently upgrade current services.

The simulation module by leveraging the collected data, modeling the

user and appliance’s characteristics, resource allocation and placement

policies, and the fault patterns etc.

Figure 5. Orchestration within the life-cycle management: Main

functional elements in our Fog Orchestrator: resource allocation for

filtering and assigning the most suitable resources to launch appliances;

the planning step for selection and placement; runtime monitoring and

control during execution; and the optimization step to make data-driven

decision based on adaptive learning techniques.

4. Orchestration

In this section, we discuss the detailed research sub-topics that we

believe are key to tackling the challenges outlined above. As shown in

Figure 5, within the life-cycle management, these include the resource

filtering and assignment in resource allocation phase; the optimal

16

selection and placement in planning phase; dynamic QoS monitoring and

guarantees at runtime through incremental processing and re-planning;

and big data driven analytics and optimization approaches that leverage

adaptive learning such as machine learning or deep learning to improve

orchestration quality and accelerate the optimization for problem solving.

The functionality decomposition based on the life-cycle perspective is

orthogonal to the software-defined architecture. In particular, the

construction and execution part are mainly implemented in the control

plane and all functionalities are underpinned by the information plane

and data plane. The data-driven optimization is associated with the

information plane. The application deployment and overall

administration will manifest in the application plane.

4.1 Resource Filtering and Assignment

Fog infrastructures typically consist of heterogeneous devices

with diverse capacity of compute, memory and storage size. Therefore,

resource allocation is a very fundamental procedure for system entities

to be launched and executed. One of the responsibilities of Fog

orchestrator is to optimize the use of both Cloud and Fog resources on

top of Fog applications. There are two main tasks in the Fog

eco-systems: containers which encapsulate the microservices and run

across tiers in Fog eco-system and computation-intensive tasks that run

in parallel to process the huge volume of data. The resource requests

proposed by both sides needs to be timely dispatched and handled in the

resource manager. Meanwhile, the resource manager will trigger new

iterations of resource allocation by leveraging recently aggregated

resources (such as CPU, memory, disk, network bandwidth, etc.).

Allocated resources will be guaranteed and reserved for the requesting

application. Additionally, the resource manager keeps track of the task

progress and monitors the service status.

In essence, the procedure of resource allocation is the

matchmaking or mapping between the requirements from the

applications that are waiting for execution and the available resources

that are dispersed over the Fog environment. Therefore, the resource

allocation sub-system should fully exploit the diversities and dynamicity

of computing clusters at massive scale to improve throughput of

computation jobs and reduce the negative impact of unexpected latencies

stemming from the jitter of network and occurrence of ineffective

queuing. Only through recognizing the accurate targets for placement can

the scheduler mitigate the computation straggler or promote resource

utility and compaction. Considering heterogeneity in Fog [50] is

extremely important when conducting the mapping and such

17

heterogeneity leads to different resource capacities and unique machine

characteristics. We need to find out the machines that are determined to

be most suitable for specific purposes. In Cloud datacenter, this can be

typically done through a multi-step filtering process that

comprehensively considers estimated load, correlative workload

performance, and queue states. Similarly, fog resource allocation should

be conducted from the following three aspects:

Label-based resource representation. In the Fog environment,

there is a considerably growing trend of the resource heterogeneity

stemming from the rapid development of IoT devices and new types of

hardware. This growth provisions more choices for upper applications.

For example, hardware such as GPU, FPGA, TPU (Tensorflow Process

Unit, NVM, etc.) make it possible to accelerate the computations and data

processing in deep learning, vision recognition etc. Moreover, for those

applications that involve a great many of geo-distributed data access and

processing, it is preferable to require the affinities between tasks and the

stored raw data. Therefore, consideration of such data and resource

affinity is extremely meaningful especially for latency-sensitive

applications. In the procedure of resource filtering, we should firstly sort

out the collections of destinations that have sufficient available resources

and satisfy all specific requirements. To this end, we can adopt the

label-based matchmaking between the requests and resources. Formally,

the request can be expressed as an n-tuple: ResReqi = (Reqi, LatBound,

LocPref) where Reqi = {Reqi
1
, … Reqi

d
} represents the requested

resource amount of different labels. The label represents a specific

description of resource dimension or a certain constraint. Latency

requirement LatBound specifies the detailed acceptance level of the

latency and response time and the LocPref indicates the preferable

execution locations according to the data distribution and processing

requirements. On the other hand, the Fog resources existing in an Fog

appliance e can be described as Rese = {Rese
1
, … Rese

d
, Priority} where

Rese
i
represents the value of i

th
 label and Priority attribute implies the

prioritized level according to the appliance type.

Candidate filtering and resource assignment. Combined all

requests with available resources from all active entities, the resource

manager tries to rank the candidate Fog appliances according to system

metrics such as resource status, device load, queuing states, etc. An

intuitive latency-aware resource allocation strategy is to firstly allocate

resources of edge devices to microservices requiring lower-delay, and

microservices with lower level of delay requirement are then allowed

onto entities such as Fog node or Cloud resources. The resultant

collection of candidate entities will be further considered in the next

phase; and the final resource binding is conducted once the component

18

selection and placement is determined. It is worth noting that the

pre-filtering and candidate selection can dramatically reduce the aimless

and unnecessary calculations. Therefore this step cannot be ignored for

Fog orchestration.

Node and executor management. Node Manager in conventional

cluster management systems is an agent that runs on each individual node,

and serves two purposes: the resource monitoring and the executor

(worker process, VM or Docker container) control. The latter is made

possible through the aid of process launch, monitor, and isolation etc.

Compared with the clusters in Cloud data centers, the network condition,

vulnerability of physical devices and communication stability are entirely

different, resulting in the disability to directly apply all current methods

of node management in the resource management. For example, to handle

frequent variations of node status, the resource manager should reserve

the allocated resources instead of directly killing all running processes in

face of frequent node joining-in or departing and the node anomaly

stemming from temporary network delays or transient process crashes etc.

Additionally, the high-rate data exchange between the Cloud and edge

devices is fundamental to underpin the IoT applications. Long-thin

connections between mobile users and remote cloud have to be long-lived

maintained and isolated for the sake of network resource reservation.

4.2 Component Selection and Placement

The recent trend in composing Cloud applications is driven by

connecting heterogeneous services deployed across multiple datacenters.

Similarly, such a distributed deployment helps improve IoT application

reliability and performance. However, it also exposes appliances and

microservices to new security risks and network uncertainty. Ensuring

higher levels of dependability is a considerable challenge. Numerous

efforts [20][21] have focused on QoS-aware composition of native

VM-based Cloud application components, but neglect the proliferation of

uncertain execution and security risks among interactive and

interdependent components within the DAG workflow of an IoT

application.

Cost model. As we discussed in section 3.1, the composition and

placement of components can be regarded as an optimization problem.

To be precise, the optimization includes two main factors in order to

capture the increasing characteristics in Fog environment - the network

uncertainties and service dependability (such as security and reliability

risks). We assume that the uncertainty and security of microservice si are

defined as Unci and Seci respectively. Importantly, there are parameters

19

to represent the dependency relation between two adjacently chained

microservices. For example, DSecij represents the risk level of

interconnecting si and sj. Similarly, the uncertainty level between si and sj

is described as DUncij. Thus, the optimization objectives can be

formalized as:

{
 ∑ ∑

 ∑ ∑

As the equation shows that we need to maximize the security

whilst minimizing the impact of uncertainties on the services. There are

two ways to solve this problem: 1) optimize a utility function which

includes both objectives with different weights; 2) set a constraint for

one of the objective and then optimize the other one. For some

multi-objective problems, it is unlikely to find a solution that has

optimal values for all objective functions simultaneously. Alternatively,

a feasible solution is the Pareto optimal [38] where none of the

objectives can be improved without degrading an objective. Therefore,

IoT service composition is to find a Pareto optimal solution which meets

users’ constraints.

Parallel computation algorithm. Optimization algorithms or

graph-based approaches are typically both time-consuming and

resource-consuming when applied into a large-scale scenario, and

necessitate parallel approaches to accelerate the optimization process.

Recent work [22] provides possible solutions to leverage an in-memory

computing framework to execute tasks in a Cloud infrastructure in

parallel. However, how to realize dynamic graph generation and

partitioning at runtime to adapt to the shifting space of possible solutions

stemming from the scale and dynamicity of IoT services remains

unsolved.

Late calibration. To ensure near-real-time intervention during

IoT application development, a potential approach could be correction

mechanisms that could be applied even when sub-optimal solutions are

deployed initially. For example, in some cases, if the orchestrator finds a

candidate solution that approximately satisfies the reliability and data

transmission requirements, it can temporarily suspend the search for

further optimal solutions. At runtime, the orchestrator can then continue

the improvement of decision results with new information and a

re-evaluation of constraints, and make use of task and data migration

approaches to realize workflow re-deployment.

20

4.3 Dynamic Orchestration with Runtime QoS

Apart from the initial placement, the workflow dynamically

changes due to internal transformations or abnormal system behavior. IoT

applications are exposed to uncertain environments where variations in

execution are commonplace. Due to the degradation of consumable

devices and sensors, capabilities such as security and reliability that

initially were guaranteed will vary accordingly, resulting in the initial

workflow being no longer optimal or even totally invalid. Furthermore,

the structural topology might change in accordance to the task execution

progress (i.e. a computation task is finished or evicted) or will be affected

by the evolution of the execution environment. Abnormalities might

occur due to the variability of combinations of hardware and software

crashes, or data skew across different management domains of devices

due to abnormal data and request bursting. This will result in unbalanced

data communication and subsequent reduction of application reliability.

Therefore, it is essential to dynamically orchestrate task execution and

resource reallocation.

QoS-aware control and monitoring. To capture the dynamic

evolution and variables (such as dynamic evolution, state transition, new

operations of IoT, etc.), we should predefine the quantitative criteria and

measuring approach of dynamic QoS thresholds in terms of latency,

availability, throughput, etc. These thresholds usually dictate upper and

lower bounds on the metrics as desired at runtime. Complex QoS

information processing methods such as hyper-scale matrix update and

calculation would give rise to many scalability issues in our setting.

Event streaming and messaging. Such performance metric

variables or significant state transitions can be depicted as system events,

and event streaming is processed in the orchestration framework through

an event messaging bus, real-time publish-subscribe mechanism or

high-throughput messaging systems (e.g., Apache Kafka[4]), therefore

significantly reducing the communication overheads and ensuring

responsiveness. Subsequent actions could be automatically triggered and

driven by Cloud engine (e.g., Amazon Lambda service[5]).

Proactive recognition. Localized regions of self-updates become

ubiquitous within Fog environments. The orchestrator should record

staged states and data produced by Fog appliances periodically or in an

event-based manner. This information will form a set of time series of

graphs and facilitate the analysis and proactive recognition of anomalous

events to dynamically determine such hotspots [23]. The data and event

streams should be efficiently transmitted among Fog appliances, so that

21

system outage, appliance failure, or load spikes will rapidly feedback to

the central orchestrator for decision making.

4.4 Systematic Data-Driven Optimization

IoT applications include numerous geographically distributed

devices that produce multidimensional, high-volume data requiring

different levels of real-time analytics and data aggregation. Therefore,

data-driven optimization and planning should have a place in the

orchestration of complex IoT services.

Holistic cross-layer optimization. As researchers or developers

select and distribute applications across different layers in the fog

environment, they should consider the optimization of all overlapping,

interconnected layers. The orchestrator has a global view of all resource

abstractions, from edge resources on the mobile side to compute and

storage resources on the cloud data center side. Pipelining the stream of

data processing and the database services within the same network

domain could reduce data transmission. Similar to the data-locality

principle, we can also distribute or reschedule the computation tasks of

fog nodes near the sensors rather than frequently move data, thereby

reducing latency. Another potential optimization is to customize data

relevant parameters such as the data-generation rate or data-compression

ratio to adapt to the performance and assigned resources to strike a

balance between data quality and specified response-time targets.

Online tuning and History-Based Optimization (HBO). A

major challenge is that decision operators are still computationally time

consuming. To tackle this problem, online machine learning can

provision several online training (such as classification and clustering)

and prediction models to capture the constant evolutionary behavior of

each system element, producing time series of trends to intelligently

predict the required system resource usage, failure occurrence, and

straggler compute tasks, all of which can be learned from historical data

and a history-based optimization (HBO) procedure. Researchers or

developers should investigate these smart techniques, with corresponding

heuristics applied in an existing decision-making framework to create a

continuous feedback loop. Cloud machine learning offers analysts a set

of data exploration tools and a variety of choices for using machine

learning models and algorithms [24].

22

4.5 Machine-learning for Orchestration

Although current deployment of orchestration has been explored

by human experts and optimized by some hand-crafted heuristics

algorithms, it is still far from meeting the challenge of automated

management and optimization. Learning-based methods, or more

precisely, machine learning (ML), open a new door to tackle the

challenges raised from IoT orchestration. ML approaches automatically

learn underlying system patterns from historical data and explores the

latent space of representation. It not only significantly reduces human

labor and time, but is capable of dealing with multi-dimension and

multi-variety data in dynamic or uncertain environments.

Metric Learning. The current evaluation of a given workflow

normally involves the knowledge of human experts as well as the

numerical characteristic, quality of hardware, etc. However, the

dynamicity within heterogeneous environments makes it infeasible and

inaccurate to handcraft standard metrics for the evaluation over different

orchestrations. Instead, Metric Learning[62] aims to automatically learn

the metric from data (e.g., hardware configuration, historical records,

runtime logs), providing convenient proxies to evaluate the distance

among objects for better complex objects manipulation. Regarding

orchestration scenarios, it is interesting if the algorithm can consider the

topology layout of data during the learning.

Graph Representation Learning. Connecting Metric Learning

with the graph structure provides an orthogonal direction for current

methodologies of resource filtering and resource allocation. However,

traditional orchestration approaches normally use user-defined heuristics

to explore the optimal deployment over the original graph with

structural information. Those summary statistics again significantly

involve hand-engineered features which are inflexible during learning

process and design phase. By using Graph Representation Learning

(GRL), we can represent or encode the complex structural information

of a given workflow [63]. Furthermore, we can either use it for better

exploitation of the machine learning models, or provide more powerful

workflow metrics for better orchestration. For example, the current

label-based resource representation may easily encounter the issue of

sparse one-hot representation, and it would be more efficient to

represent different hardware/services in a low- and dense- latent space

[64].

Reinforcement Learning. Design of good heuristic or

approximation algorithms for NP-hard combinatorial optimization

problems often requires significant specialized domain knowledge.

23

However, traditional algorithms are often insufficient in such knowledge

when extreme complicated IoT applications are orchestrated. Given the

efficient representation of the workflow, graph embedding[65] shows

the potentiality of using neural network with Reinforcement Learning

(RL) methods to incrementally construct an optimal solution in dynamic

environments. There are a great number of research opportunities since

current Deep RL solutions of combinatorial optimization merely focus

on the standard traveling salesman problem (TSP) whose scenario is

much simpler than the IoT application orchestration.

5. Fog Simulation

 5.1 Overview

Simulation is an integral part of the process of design and

analyzing systems in engineering and manufacturing domains. There is

also a growing trend to analyze distributed computing systems using

technologies such as CloudSim[26] or SEED[27] for example to study

resource scheduling or analyze the thermodynamic behavior of a data

center[28]. In these contexts, it is essential to understand the categories of

simulation[29]:

 Discrete event simulation (DES)[30][31] in which the system

events are modeled as a discrete sequence.

 Continuous simulations [29] which are typically constructed

based on ordinary differential equations (ODEs) which

represent properties of physical systems.

 Stochastic simulation [32] such as monte-carlo methods.

 Live, Virtual and Constructed (LVC) simulation providing

interactive simulations often supported by technologies as the

IEEE HLA 1516 [33].

The LVC category of simulation introduces the concept of

co-simulation whereby two or more simulations are run concurrently to

explore interactions and complex emergent behaviors. In the domain of

engineering, co-simulation is typically limited to a handful of simulations

due to the complexity of integrating simulations with differing time-steps

and simulations of differing types. With the rise of IoT, Industry 4.0, and

the Internet of Simulation (IoS) paradigm [34][35] there is a growing

trend to explore the use of simulation as a technology for facilitating

24

online decision making. There are several key factors that must be

considered in this context:

 Inter-tool compatibility between simulations and also between

simulations and other tools/systems.

 Performance and scalability in terms of the size of the simul-

ations that need to be run and the time needed to do so. For

example the use cases for simulation with IoT may require

simulation to perform in near real-time.

 Understanding the complexity of the models involved in the

simulations and understanding the trade-offs between

complexity and abstraction [36].

The remainder of this section explores the application of

simulation across two key areas: simulation for IoT and also online

analysis as part of a decision making system such as an orchestrator.

Figure 6. The workflow of system simulation

5.2 Simulation for IoT application in Fog

Within the traditional IoT sector there are two broad situation

categories in which simulation is typically used:

(a) Design and analysis of devices which may include control

systems or 3D modeling during the design phases of the engineering

process. This may occur at the component, system, or system of systems

level. During the early stages the simulations are typically abstract

concepts of functional behavior which are then iteratively, ideally using

co- simulation, expanded upon to provide detailed insight into specific

behaviors and emergent interactions. This process in the context of

traditional engineering lifecycles is depicted in Figure 6 where the

traditional V-model of component and system-level design is integrated

with component and systems level testing.

25

(b) Analysis of data as described by the Industry 4.0

movement [37]. In this context, data is collected by IoT sensors and

systems and fed into analysis systems which increasingly involve

simulation. An example is the automotive industry where data is collected

from vehicles as they are used and fed back to the manufacturer. In the

automotive space this is typically limited to periodic data collection

during servicing but there is a growing trend with connected vehicles to

provide more frequent or even a continuous data feedback to the

manufacturer. As Figure 6 shows, data can be collected from deployed

systems or devices and fed into simulations for further analysis which

may or may not occur at the design phase of another engineering lifecycle

iteration.

Figure 7 depicts the abstract layers of IoS: virtual or federated

cloud, traditional service layers (IaaS, PaaS, SaaS, FaaS, etc.). On top of

this are the simulation layers with virtual things deployed as simulations

(SIMaaS) and then virtual things becoming virtual systems at the

workflow service layer (WFaaS). IoT lends itself as another vertical

within this model providing physical things that can be connected to the

virtual system workflows.

Figure 7. The architecture of Simulation as a Service

In order to precisely model and build the Fog simulator, we need

to depict the attributes and behaviors of Fog appliances and the services.

For a specific appliance, we include the appliance type, physical

capacities such as CPU cores, RAM, storage, up/downlink bandwidths,

and the connection status such as which appliances it is inter-connected

with and the latency information of connections among different

appliances. The attributes also contains the hardware specifications (i.e.,

GPU, FPGA, TPU, etc.), software specifications (i.e., OS version,

26

libraries, etc.), and other machine attributes that comprehensively

described in [7]. All these are implemented as different labels. To

simulate the service, we should provide the interfaces to define the IoT

service DAG topology and the dependencies among different

microservices. The detailed resource requests and other requirements of

each microservice (the vertex in the DAG) are also determined as inputs

within the simulator. For example, the main attributes of action

detection microservice in Figure 2 can be depicted as follows:

{"ActionDetection": {

"Resource": {

 "CPU": 2 vcores,

"RAM": 2GB,

"DISK": 10GB

},

"Priority": "Medium",

"Security": "High",

"Computation": "Medium",

"Latency": "Low"

}}

5.3 Simulation for Fog Orchestration

Moving away from the traditional IoT sector and the common uses

of simulation there are two growing trends for simulation adoption as part

of online decision making systems. The first trend is the automated

parameterization and deployment of simulations based on data to provide

immediate data analytics to decision makers. Secondly, the use of

real-time simulation is in-the-loop with other systems. There are two key

challenges with both trends which are the need for timeliness whilst

dealing with the scale of the systems being modeled.

An example in the context of orchestration is the use of simulation

as part of both the optimization and planning phases. During system

execution, the collected data is used to update relevant simulation models

in terms of system behavior (this could include network latencies, server

performance, etc.). The optimization process is able to use the simulation

as a data representation for the machine learning algorithms which in turn

feeds into the planning phase. For example, using the genetic algorithm

(GA) based approaches used in Section 6, simulations can be run with

each individual and generation to provide a more detailed and informed

fitness function. Although this has the ability to significantly increase the

capability of the system, there remains a significant trade-off in deciding

the complexity of the simulation versus the performance that is required.

27

6. Early Experience

6.1 Simulation-based Orchestration

Design Overview: Based on the design philosophy and methods

discussed, we propose a framework that can efficiently orchestrate Fog

computing environments. As demonstrated in Figure 8, in order to enable

planning and adaptive optimization, a preliminary attempt was made to

manage the composition of applications in parallel under a broad range of

constraints. We implement a novel parallel genetic algorithm based

framework (GA-Par) on Spark to handle orchestration scenarios where a

large set of IoT microservices are composed. More specifically, in our

GA-based algorithm, each chromosome represents a solution of the

composed workflow and the gene segments of each chromosome

represent the IoT microservices. We normalize the utility of security and

network QoS of IoT appliances into an objective fitness function within

GA-Par to minimize the security risks and performance degradation.

Figure 8. A parallel GA solver to accelerate the handling of

optimization issues raised in the planning and optimization

phase

To strike a balance between accuracy and time efficiency, we

separate the total individual population into parallel compute partitions

dispersed over different compute nodes. In order to maximize parallelism,

we set up and adjust the partition configuration dynamically to make

partitions fully parallelized whilst considering data shuffling and

communication cost with the topology change. To guarantee optimal

28

results can be gradually obtained, we dynamically merge several

partitions into a single partition and then re-partition it based on runtime

status and monitored QoS. Furthermore, the quality of each solution

generation can be also maintained by applying an elitist method, where

the local elite results of each partition will be collected and synthesized

into global elite. The centralized GA-Par master will aggregate the full

information at the end of each iteration, and then broadcasts the list to all

partitions to increase the probability of finding a globally optimal

solution.

Figure 9. Initial results demonstrate the proposed approach

can outperform a standalone genetic algorithm in terms of

both time and quality aspects

Experiment Setup: To address data skew issues, we also conduct

a joint data-compute optimization to repartition the data and reschedule

computation tasks. We perform some initial experiments on 30 servers

hosted on Amazon Web Services (AWS) as the Cloud datacenter for the

Fog environment. Each server is hosted as an r3.2xlarge instance with

2.5GHz Intel Xeon E5-2670v2 CPUs, 61GB RAM, and 160GB disk

storage. We use simulated data below to illustrate the effectiveness of

composition given IoT requirements. For this, we randomly select four

types of orchestration graphs with 50, 100, 150, and 200 workflow nodes,

respectively. For each node within a workflow, we stochastically

prepare 100 available IoT appliances as simulated agents. The security

levels and network QoS levels are randomly assigned to each candidate

agent. We compare our GA-Par with a standalone genetic algorithm

(SGA). The metrics quality, execution time and fitness score (with lower

values indicating better results) are used to evaluate SGA and GA-Par.

Evaluation: As can be observed in Figure 9, GA-Par outperforms

SGA. The time consumption of GA-Par has been significantly reduced to

nearly 50% of that of SGA, while the quality of appliance selection in

GA-Par is always at least 30% higher than that of SGA. However, the

scalability of our current approach is still slightly affected by increasing

29

numbers of components and requests, indicating that we still need to

explore opportunities for incremental re-planning and on-line tuning to

improve both time-efficiency and effectiveness of IoT orchestration.

Figure 10 . Initial results of GA-Par in terms of both time and

quality aspects

Figure 10 demonstrates the experimental results under different

workflow size and candidate number of microservice by using GA-Par.

We can observe that with the increment of workflow size, the time

consumption increase accordingly. The linear increase demonstrates that

the growth of task number in the workflow will augment the searching

range to find optimal solution, thereby taking longer time to finish the

overall computation. In Figure 10(a), the number of microservice

candidate number is not an obvious factor that influence on the time

consumption. The consumed time slightly fluctuates when the topology

and size of the workflow is determined. Apparently, given the workflow

size w and each node in the orchestrated workflow has s candidates, the

searching space is s
w
. Thus, the impact of s on the consumed time will not

be as significant as that of w. Likewise, a similar phenomenon can be

observed in terms of the fitness calculation. In particular, the increased

workflow size will naturally degrade the optimization effectiveness given

the fixed setting of the total population. Compared with a smaller-scale

workflow, larger workflows with soaring number are less likely to

converge and obtain the optimal result once the population is set up.

Discussion: IoT services are choreographed through workflow or

task graphs to assemble different IoT microservices. Therefore it is very

worthwhile if we intend to obtain a precise decision and deploy IoT

services in a QoS guaranteed, context- and cost-aware manner in spite of

the magnitude of consumed time. In the context of pre-execution

planning, static models and methods can deal with the submitted requests

when the application workload and parallel tasks are known at design

time. In contrast, in some domains, the orchestration is supplied with a

30

plethora of candidate devices with different geographical locations and

attributes. In the presence of variations and disturbances, orchestration

methods should typically rely on incremental orchestration at runtime

(rather than straightforward complete re-calculation by re-running static

methods) to decrease unnecessary computation and minimize the

consumed time.

Based on the time series of graphs, the similarities and

dependencies between successive graph snapshots should be

comprehensively studied to determine the feasibility of incremental

computation. Approaches such as memorization, self-adjusting

computation, and semantic analysis could cache and reuse portions of

dynamic dependency graphs to avoid unnecessary re-computation in the

event of input changes. Intermediate data or results should also be

inherited as far as possible, and the allocated resources that have been

allocated to the tasks should also be reused rather than be requested

repeatedly. Through graph analysis, operators can determine which

sub-graphs changes within the whole topology by using sub-graph

partitioning and matching as an automated process that can significantly

reduce overall orchestration time.

Another future work is to further parallelize the simulation and

steer the complexity of GA-Par to achieve better scalability over

large-scale infrastructures. Potential means include using heuristic

algorithm or approximated computing into some key procedures of

algorithm execution and value estimation.

6.2 Orchestration in Container-Based Systems

There are numerous research efforts and system works that address

the orchestration functionality in Fog computing infrastructures. Most of

them are based on the open source container orchestration tools such as

Docker swarm[1], Kubernetes[2], and Apache Mesos marathon[3]. For

instance, [39][40] gave an illustrative implementation of a Fog-oriented

framework that can deliver containerized application onto datacenter

nodes and edge devices such as Raspberry Pi. [41] comprehensively

compared how these tools can meet the basic requirement to run IoT

applications and pointed out Docker swarm is the best fit to seamlessly

running IoT containers across different Fog layers. Docker swarm

provisions robust scheduling that can spin up containers on hosts

provisioned by using Docker-native syntax.

Based on the evaluation conclusions drawn by [41], we developed

the proposed orchestrator as a standalone module that can be integrated

with the existing Docker Swarm built-in modules. The orchestrator will

31

overwrite the Swarm Scheduler and take over the responsibility of

orchestrating containerized IoT services. Other sensors or Raspberry Pi

devices are regarded as Swarm workers (Swarm Agents) and managed

by the Scheduler. We integrate the proposed techniques such as

label-based resource filtering and allocation, microservice placement

strategy and parallelized optimization solver GA-Par with the provided

filter and strategy mechanisms in Swarm Scheduler. As a result,

whenever a new deployment request from the client is received, the

Swarm Manager will forward it to the orchestrator, and the planner in the

orchestrator will try to find the optimal placement to place and run

containers on the suitable appliances. For the scalability and adaptability,

we also design the planner as a pluggable module which can be easily

substituted by different policies.

Figure 11. Fog Orchestrator with Docker Swarm

7. Discussion

The emergent of fog computing is one of particular interest

within computer science. Within the coming decades the concept of the

exascale system will become increasingly commonplace,

interconnecting billions and tens of billions of different devices, objects,

and things across a vast number of industries which will likely co-exist

in some form of Fog eco-system. The challenges pertaining to security,

reliability and scalability will continue to play a critical concern for

designing these systems, as well as a number of additional

characteristics:

Emergent behavior: Systems operating at scale have begun to

increasingly operational characteristics not envisioned at system

32

design-time conception. This is particularly true due to the massive

heterogeneity and diversity of orchestrating various IoT services in

tandem. Such emergent behavior encompasses both positive aspects

such as emergent software [51], but also encompasses failures

[18][52][53][54][55] unforeseen at design time. As a result, we will

likely see increased use of meta-learning in order to dynamically adapt

workflow orchestration in response to user demand and adversarial

system conditions.

Energy usage: 10% of global electricity usage stems from ICT

[59], and coupled with technological innovations and massive demands

for services will likely see this electricity demand grow in both quantity

and proportion. Given that these systems will operate services which

produce vast quantities of emissions and economic cost, the

environmental impact of these services executing within IoT will likely

become increasingly important in the coming years. This is particularly

true if legal measures are created and enforced to control and manage

such power demand and carbon emissions.

Centralization vs. Decentralization: Within the past two

decades, distributed systems have seen paradigms spanning clusters,

web services, grid computing, Cloud computing, and Fog computing. It

is noticeable that these paradigms appear to pivot between centralized

[43][44][45][46] and decentralized architectures [47][48][49] in

response to technological breakthroughs, combined with demands for

new types of applications. We foresee that this pattern will continue to

evolve, and potentially see the realization of massive-scale Fog

eco-systems that are capable of both centralized and decentralized

architectures combined together in response to demand.

Conclusion

Most recent research related to Fog computing explore

architectures within massive infrastructures [25]. Although such work

advances our understanding of the possible computing architectures and

challenges of new computing paradigms, there are presently no studies of

composability and concrete methodologies for developing orchestration

systems that support composition in the development of novel IoT

applications. In this chapter, we have outlined numerous difficulties and

challenges to develop an orchestration framework across all layers within

the Fog resource stack, and have described a prototype orchestration

system that makes use of some of the most promising mechanisms to

tackle these challenges.

33

ACKNOWLEDGMENT

This work is supported by the National Key Research and Development

Program (2016YFB1000103), EPSRC (EP/P031617/1), National Natural

Science Foundation of China (61421003), and the Beijing Advanced

Innovation Center for Big Data and Brain Computing (BDBC).

REFERENCES

[1] Docker Swarm. https://github.com/docker/swarm

[2] Google Kubernetes. https://kubernetes.io/

[3] Mesos Marathon. http://mesos.apache.org/

[4] Apache Kafka. http://kafka.apache.org/

[5] AWS Lambda. https://aws.amazon.com/lambda/

[6] TOSCA: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA

-v1.0-os.pdf

[7] Google Cluster Trace. https://github.com/google/cluster-data/

[8] P.Manh, A.Tchana, D.Donsez, N.Palma, V.Zurczak, P. Gibello. "Roboconf:

a hybrid cloud orchestrator to deploy complex applications." In IEEE Cloud

2015.

[9] X.Wang, Z.Liu, Y.Qi, and J.Li. "Livecloud: A lucid orchestrator for cloud

datacenters." In IEEE Cloudcom, 2012.

[10] C.Liu, B.Loo, and Y.Mao. "Declarative automated cloud resource

orchestration." In ACM SoCC 2011.

[11] R. Ranjan, B.Benatallah, S.Dustdar, and M.Papazoglou. "Cloud resource

orchestration programming: overview, issues, and directions." IEEE Internet

Computing 19, no. 5,2015, pp 46-56.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in ACM MCC, 2012, pp. 13–16.

[13] Kim M. D. Dikaiakos, A. Florides, T. Nadeem, and L. Iftode,

“Locationaware services over vehicular ad-hoc networks using car-to-car

communication,” in IEEE JSAC, vol. 25, no. 8, pp. 1590–1602, 2007.

[14] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian,

“A software defined networking architecture for the internet-ofthings,” in

IEEE NOMS, 2014, pp. 1–9.

[15] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar, “Provisioning

software-defined iot cloud systems,” in IEEE FiCloud, 2014, pp. 288–295.

http://mesos.apache.org/

34

[16] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,” in

IEEE Computer, vol. 44, no. 9, pp. 51–58, 2011.

[17] A. Riahi, Y. Challal, E. Natalizio, Z. Chtourou, and A. Bouabdallah, “A

systemic approach for iot security,” in IEEE ICDCSS, 2013, pp. 351–355.

[18] P. Garraghan, X. Ouyang, R. Yang, D.Mckee, and J. Xu, “Straggler

root-cause and impact analysis for massive-scale virtualized cloud

datacenters,” [Online] in IEEE TSC, vol. PP, no. 99, pp. 1–1, 2016.

[19] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu, Z. Zhang and

C. Li, “Reliable computing service in massive-scale systems through rapid

low-cost failover,” [Online] in IEEE TSC, vol. PP, no. 99, pp. 1–1, 2016.

[20] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating qos of real-world web

services,” in IEEE TSC, vol. 7, no. 1, pp. 32–39, Jan 2014.

[21] Z. Wen, J. Cala, P. Watson, and A. Romanovsky, “Cost effective, reliable

and secure workflow deployment over federated clouds,” [Online] in IEEE

TSC, vol. PP, no. 99, pp. 1–1, 2016.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I.

Stoica, “Graphx: Graph processing in a distributed dataflow framework,” in

USENIX OSDI, 2014, pp. 599–613.

[23] K. Yamanishi and J. ichi Takeuchi, “A unifying framework for detecting

outliers and change points from non-stationary time series data,” in ACM

SIGKDD, 2002, pp. 676–681.

[24] Cloud machine learning. [Online]. Available:

http://www.infoworld.com/article/3068519

/artificialintellegence/review-6-machine-learning-clouds.html

[25] S.Yi, C.Li, and Q.Li. A Survey of Fog Computing: Concepts, Applications,

and Issues. In ACM MBDW, 2015, pp. 37-42

[26] Calheiros, Rodrigo N., et al. "CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of resource

provisioning algorithms." Software: Practice and experience 41.1 (2011):

23-50.

[27] P. Garraghan P, D. McKee, X. Ouyang, D. Webster, J.Xu. “SEED: A

Scalable Approach for Cyber-Physical System Simulation.” IEEE

Transactions on Services Computing, 9 (2), 2016, pp. 199-212.

[28] S. Clement, D. McKee, J.Xu. “A Service-Oriented Co-Simulation: Holistic

Data Center Modelling Using Thermal, Power and Computational

Simulations”. in IEEE/ACM UCC 2017.

[29] Law, Averill M., W. David Kelton, and W. David Kelton. Simulation

modeling and analysis. Vol. 3. New York: McGraw-Hill, 2007.

http://www.infoworld.com/article/3068519/artificialintellegence/review-6-machine-learning-clouds.html
http://www.infoworld.com/article/3068519/artificialintellegence/review-6-machine-learning-clouds.html

35

[30] Fujimoto, Richard M. "Parallel discrete event simulation." In

Communications of the ACM 33.10 (1990): 30-53.

[31] Varga, András. "Discrete event simulation system." In European

Simulation Multiconference (ESM'2001). 2001.

[32] Ripley, Brian D. Stochastic simulation. Vol. 316. John Wiley & Sons,

2009.

[33] J.-R. Martinez-Salio, J.-M. Lopez-Rodriguez, D. Gregory, and A. Corsaro,

“A comparison of simulation and operational architectures,” in 2012 Fall

Simulation Interoperability Workshop (SIW), Simulation Interoperability

Standards Organization (SISO), 2012

[34] D.McKee, S.Clement, X. Ouyang, J.Xu, R. Romano, J. Davies. “The

Internet of Simulation, a Specialisation of the Internet of Things with

Simulation and Workflow as a Service (SIM/WFaaS)” in IEEE SOSE 2017,

pp. 47-56.

[35] S. Clement; D. McKee, R. Romano; J. Xu; J. Lopez; D. Battersby. The

Internet of Simulation: Enabling agile model based systems engineering for

cyber-physical systems. In IEEE SoSE 2017.

[36] Singer, Mihaela. "Modelling both complexity and abstraction: A

paradox?." Modelling and applications in mathematics education. Springer,

Boston, MA, 2007. 233-240.

[37] Lasi, Heiner, et al. "Industry 4.0." Business & Information Systems

Engineering 6.4 (2014): 239-242.

[38] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. (2002). "A fast and elitist

multiobjective genetic algorithm: NSGA-II". IEEE Transactions on

Evolutionary Computation. 6 (2): 182. doi:10.1109/4235.996017.

[39] C.Pahl, S.Helmer, L.Miori, J.Sanin, B.Lee. "A container-based edge cloud

PaaS architecture based on Raspberry Pi clusters." In IEEE FiCloud, 2016.

[40] P.Bellavista, and A.Zanni. "Feasibility of fog computing deployment based

on docker containerization over raspberrypi." In ACM ICDCN, 2017.

[41] S.Hoque, M.Brito, A.Willner, O.Keil, T. Magedanz. "Towards container

orchestration in fog computing infrastructures." In IEEE COMPSAC, 2017

[42] Message Queuing Telemetry Transport (MQTT) http://mqtt.org/

[43] Z. Zhang, C. Li, Y. Tao, R. Yang et al., “Fuxi: a fault-tolerant resource

management and job scheduling system at internet scale,” in VLDB, 2014.

[44] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al., “Apache hadoop yarn:

Yet another resource negotiator,” in ACM SoCC, 2013.

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2F4235.996017

36

[45] B. Hindman, A. Konwinski, M. Zaharia et al., “Mesos: A platform for

fine-grained resource sharing in the data center.” in USENIX NSDI, 2011.

[46] A. Verma, L. Pedrosa, M. Korupolu et al., “Large-scale cluster

management at google with borg,” in ACM EuroSys, 2015.

[47] E. Boutin, J. Ekanayake, W. Lin et al., “Apollo: scalable and coordinated

scheduling for cloud-scale computing,” in USENIX OSDI, 2014.

[48] K. Karanasos, S. Rao et al., “Mercury: hybrid centralized and distributed

scheduling in large shared clusters,” in USENIX ATC, 2015.

[49] Sun, X., Hu, C., Yang, R., Garraghan, P., Wo, T., Xu, J., Zhu, J. and Li, C.,

2018. ROSE: Cluster Resource Scheduling via Speculative

Over-subscription.

[50] B. Flavio, R.Milito, J.Zhu, and S.Addepalli. "Fog computing and its role in

the internet of things." In ACM MCC, 2012.

[51] B Porter, M Grieves, RV Rodrigues Filho, D Leslie, REX: A Development

Platform and Online Learning Approach for Runtime Emergent Software

Systems, in USENIX ODSI, 2016.

[52] J. Dean, L. A. Barroso, The Tail at Scale, Communications of the ACM 56,

2013.

[53] B. Schroeder, G. A. Gibson, A Large-scale Study of Failures in

High-Performance Computing Systems, IEEE Transactions on Dependable

and Secure Computing, 2010

[54] P.Garraghan, R.Yang, Z.Wen, A.Romanovsky, J.Xu, R.Buyya, R.Ranjan.

Emergent Failures: Rethinking Cloud Reliability at Scale. IEEE Cloud

Computing, 2018

[55] Ouyang, X., Garraghan, P., Yang, R., Townend, P. and Xu, J., 2016, May.

Reducing late-timing failure at scale: Straggler root-cause analysis in cloud

datacenters. in the 46th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN)

[56] J.Yu, B.Benatallah, F.Casati, and F.Daniel. "Understanding mashup

development." IEEE Internet computing 12, no. 5 (2008).

[57] H.Madsen, B.Burtschy, G. Albeanu, and F.Vladicescu. "Reliability in the

utility computing era: Towards reliable fog computing." In IEEE IWSSIP,

2013.

[58] L.Atzori, A.Iera, and G.Morabito. "The internet of things: A

survey." Computer networks 54, no. 15 (2010): 2787-2805.

[59] M.P.Mills. The Cloud Begins with Coal. Big data, Big Networks, Big

Infrastructure, and Big Power. Digital Power Group Report.

37

[60] D.Kreutz, F.Ramos, P.Verissimo, C.Rothenberg, S.Azodolmolky, and

S.Uhlig. "Software-defined networking: A comprehensive

survey." Proceedings of the IEEE 103, no. 1 (2015): 14-76.

[61] Y.Jarraya, T.Madi, and M.Debbabi. "A survey and a layered taxonomy of

software-defined networking." IEEE Communications Surveys &

Tutorials 16.4 (2014): 1955-1980

[62] A.Bellet, A.Habrard, and M.Sebban. "A survey on metric learning for

feature vectors and structured data." arXiv preprint arXiv:1306.6709 (2013).

[63] W. Hamilton, R.Ying, and J.Leskovec. "Representation Learning on

Graphs: Methods and Applications." arXiv preprint

arXiv:1709.05584 (2017).

[64] T.Mikolov, I.Sutskever, K.Chen, G.Corrado, and J.Dean. "Distributed

representations of words and phrases and their compositionality." In NIPS

2013.

[65] I.Bello, H.Pham, Q.Le, M.Norouzi, and S.Bengio. "Neural combinatorial

optimization with reinforcement learning." arXiv preprint

arXiv:1611.09940(2016)

