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Introduction

Background

Workloads

- Batch jobs: run-to-complete (one-off) jobs that run pre-defined processing actions
without user interactive input and normally have pipelines and parallelisms
determined by parallel programming models. Examples include Map reduce, Spark,
Tez, ML jobs, etc. [short-lived]

- Long-running applications (LRASs): interactive services that are typically user-
facing and web-serving, with tail latency requirements. Examples include database
services, microservices, stream jobs, some online etc. [From hours to days]

Users
- benign users and abnormal users including malicious users (e.g., malware), bot
users (make attempts to behave like human), zombie users, spammers, etc.

Limitations of SOTA Approaches

- Existing schedulers are mostly resource-centric, not QoS-centric. Detecting and
mitigating QoS violation become more intractable due to the network uncertainties and
latency propagation across dependent microservices

- Existing works on LRA scheduling are often application-agnostic, without particularly
addressing the constraining requirements imposed by LRAs, such as co-location affinity
constraints and time-varying resource requirements

- Existing methods for malware detection often fail to cope with evolving camouflage and
attack types that are increasingly difficult to be differentiated from the benign users, and
become siloed and subject to the amount, shape, and quality of platform-specific data

Research Objectives

- To develop a new scheduling framework to prioritize the QoS of DLRASs whilst
balancing the performance of batch jobs and maintaining high cluster utilization

- To investigate robust and optimised algorithmic solution to deal with a number of
complex co-location affinity and temporal multi-resource constraints

- To devise novel mechanisms for better detection of user anomalies in the face of
hidden malicious behaviours and inadequate labelled samples

Resilience in Shared Cluster Management

- To co-schedule a mixture of batch jobs and LRAs onto multi-dimensional computing
resources, with an assurance of runtime quality of service (QoS) and batch jobs

- To protect benign users from malicious behaviours, and effectively detect anomalies
In a timely and cost-effective manner

Methodology

Affinity-Aware Resource Planning-
Ahead for LRAs [2]

System Model

QoS-Aware Co-scheduling for
Distributed LRAs and Batch Jobs [1]

System Architecture

Rapid and Adaptive GNN-Based User Anomaly Detection
(incl. Malicious and Bot Accounts) [3-5]

Overall Design
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[Multi-resource request changed over time]

- Used MSGAT, an enhanced GAT, to aggregate neighbours' embeddings at
both intra- and inter- meta-structure level

- Developed an incremental learning model, MSGAT++, to pinpoint the
similarity between a new sample and existing ones

Technique Highlights

- Tracked footprints of every single request
across microservices and constructed e2e
latency graph

- Used critical path analysis to identify

Algorithm Suite
- Minimised the compute nodes in use

- Investigated a broad range of
Model Enhancement
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The number of out-of-sample Apps

compared with native YARN, TOPOSCH-n and
% and 26% average increase, respectively

Interpretablity: the importance and contribution

Batch’s compromlsmg7
1 of difterent meta-structure to the embedding

Quality-time tradeoff: comprehensive study
TOPOSCH-p result in

Time efficiency: MsGAT outperforms other
on different algorithm categories

approaches in out-of-sample detection
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