
IOP: An Idempotent-Like Optimization Method on the Pareto Front of
Hypernetwork

Hui Wang1, Renyu Yang1*, Jie Sun2, Hao Peng1, Xudong Mou1,2, Tianyu Wo1,2, Xudong Liu1,2*

1Beihang University, Beijing, China
2Zhongguancun Laboratory, Beijing, China

{whui,renyuyang,penghao,mxd,woty,liuxd}@buaa.edu.cn; sunjie@zgclab.edu.cn

Abstract

Pareto Front Learning (PFL) has been one of the effec-
tive means to resolve multi-objective optimization problems
through exploring all optimal solutions to learn the entire
Pareto front. Pareto Hypernetwork (PHN) is a new promis-
ing way to generate the sequence of Pareto-optimal solutions
that can be further used as potential solutions to constitute the
Pareto front. However, the existing PHN-based approaches
suffer from two performance issues: They take as inputs
human-crafted preference vector or chunk embedding, rather
than the input data samples, and thus vulnerable to data distri-
bution shifts. Such approaches cannot optimize all potential
solutions when forming the Pareto front, as they merely opti-
mize the loss pertaining to one single input at a time of opti-
mization round. To improve the quality of the Pareto front, we
propose IOP, a novel Idempotent-like Optimization method
to learn the entire Pareto front accurately and enhance Hyper-
network’s adaptability to distribution shifts. In particular, IOP
performs idempotent-like optimization by exploiting mani-
fold space mapping, so that the target networks generated by
the optimized Hypernetwork can effectively handle samples
with similar distributions of the input samples, without the
pre-defined human-crafted inputs. IOP maximizes the Hyper-
volume indicator that is composed of all potential solutions
at a higher level. Experimental results demonstrate that IOP
outperforms the state-of-the-art methods by 4.7% on average
in producing the Pareto front and has a 10.5% improvement
in adaptability.

Introduction
Multi-objective optimization (MOO) is of paramount im-
portance – It unleashes the potential of acquiring optimal
trade-offs among multiple conflicting objectives in various
machine learning domains such as Multi-object Tracking
(Nguyen et al. 2020), Computer Vision (Gao et al. 2024),
Reinforcement Learning (Chen et al. 2024), Natural Lan-
guage Processing (Xiang et al. 2022), etc. In MOO, the col-
lection of all optimal solutions – commonly referred to as the
Pareto front – manifests distinct trade-offs amidst conflict-
ing objectives. Most of the existing MOO approaches solely
obtain a partial set of optimal solutions on the Pareto front,
and typically require a pre-defined strategy for effectively
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balancing multiple objectives. This setting, however, sub-
stantially limits the usability and flexibility, as the decision-
making procedure, in most of the use cases, is on the fly
without prior knowledge of such specific strategies.

To tackle this issue, Pareto Front Learning (PFL) emerges
as an effective paradigm. All the optimal solutions span-
ning the entire Pareto front can be simultaneously resolved.
Pareto Hypernetwork (PHN) (Navon et al. 2020) is a notable
implementation of PFL, and it employs a single Hypernet-
work (Ha et al. 2016) to take as inputs the preference vec-
tors (Hoang et al. 2023) or chunk embeddings (Lin et al.
2020) and generate a sequence of Pareto-optimal models
(aka. target networks) to process data. Although PHN-based
approaches exhibit competitive efficiency, there are the fol-
lowing unsettled issues:

i) Relying on human—crafted inputs with limited adapt-
ability to data distribution shift. A huge body of PHN studies
depend on human-crafted inputs – often in the form of pref-
erence vector or chunk embedding and entirely independent
from raw data samples – to train a precise Hypernetwork to
acquire optimal target networks. The key concern is that de-
vising high-quality inputs usually requires too much domain
expertise and is sometimes impractical in industrial scenar-
ios at scale. Additionally, rather than adopting raw data sam-
ples, using man-made inputs inevitably reduces the sensitiv-
ity of Hypernetwork to data distribution shifts. For example,
as shown in Fig. 1, when the data shifts from the green to the
blue distribution, the Hypernetwork in PHN methods gener-
ates more non-optimal solutions. Hence, it is imperative to
establish a new competitive and adaptable Hypernetwork in
the PHN method free from human-crafted inputs.

ii) Failing to simultaneously optimize multiple potential
solutions. PHN methods optimize the Hypernetwork so that
each output is associated with an optimal or approximate
solution on the Pareto front. The ideal process is to continu-
ously bring all potential solutions to the Pareto front as close
as possible. However, the existing PHN methods fail to do
so – in each optimization round, their focus is merely min-
imizing the loss related to the single input and accordingly
updating the Hypernetwork’s weight. Doing this can hardly
accommodate multiple potential solutions around the Pareto
front simultaneously; in other words, some solutions move
towards but other potential solutions go away. As a work-
ing example, in Fig. 1, optimizing the solutions in the dotted
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Figure 1: Compared with PHN methods, IOP is free from
man-made input and focuses on the relationship among so-
lutions. It comprehensively improves the accuracy by maxi-
mizing Hypervolume, and enhances the adaptability of Hy-
pernetwork through the idempotent-like objective Lide.

circle pushes the solutions in the solid circle away from the
Pareto front. Undoubtedly, this will substantially diminish
the quality of the obtained front and increase the optimiza-
tion difficulty.

This paper proposes IOP, a novel Idempotent-like Opti-
mization method for PHN. The essence of IOP is devising
an idempotent-like objective to optimize the Hypernetwork,
in the light of manifold mapping from the sample space Px
to the target network weight space Pθ. Without the need
of any human-crafted inputs, the optimized Hypernetwork
can generate target networks that effectively handle sam-
ples with similar distributions of the input samples. We con-
trol the range of manifold Pθ by using a scaling factor in
the objective to resize the “similar distributions”, thereby
improving the adaptability of Hypernetwork. Unlike prior
works, our Hypernetwork iteratively receives multiple sam-
ples in each optimization round to improve the performance
of corresponding target networks (aka. potential solutions).
At the core of the improvement is to maximize the Hyper-
volume indicator that is composed of all potential solutions
at a higher level. IOP leverages a gradient-based dual opti-
mization strategy to jointly incorporate the techniques above
simultaneously. Extensive experiments are conducted on six
multi-task and domain adaptation datasets, and experimen-
tal results show the superior effectiveness of IOP against the
state-of-the-art approaches. Our main contributions can be
summarized as follows:
• We are the first to reveal the main limitations of exist-

ing PHN methods, and propose a new approach to improve
Hypernetwork performance and adaptability.
•We devise an idempotent-like objective and use a man-

ifold mapping mechanism to iteratively handle any samples
that have similar distributions of the input data samples.
• Providing an in-depth theoretical analysis on the con-

vergence of the optimization process of IOP.

Related Work
Multi-Objective Optimization (MOO) methods aim to bal-
ance multiple conflicting objectives for optimal solutions

(Ehrgott 2005). They can be roughly classified into gradient-
based and gradient-free categories. (Sener 2018) proposes
an early gradient-based approach for Multi-Task Learning
(MTL), extended from MGD (Désidéri 2012). (Lin et al.
2019) proposes Pareto MTL (PMTL) to split the loss space
into separate cones. (Mahapatra 2020) proposes EPO, ex-
tended from PMTL, to combine gradient descent and con-
trolled ascent to improve optimization convergence. (Ma
et al. 2020) proposes a gradient-free approach to extend an
optimal solution to its local neighborhood. (Ye et al. 2022)
proposes PNG to find solutions by optimizing an extra cri-
terion function. However, the above traditional methods can
only obtain a single or partial optimal solution on the Pareto
front, leaving the MOO problem to be thoroughly solved.

Pareto Front Learning (PFL) has become the most ef-
fective paradigm for MOO by seeking all the optimal solu-
tions and learning the entire Pareto front. Early work (Lin
et al. 2019) on PFL trains a Hypernetwork (Ha et al. 2016),
mainly through changing the reference directions in the ob-
jective so as to achieve a complete fitting of the Pareto front.
(Lin et al. 2020; Navon et al. 2020; Ruchte et al. 2021) fur-
ther use preference or embedding as inputs of Hypertnet-
work to improve the controllability of optimization. (Hoang
et al. 2023) employs a Hypernetwork to generate multiple
solutions from diverse trade-off preferences. However, all of
these PFL works still heavily depend upon non-sample in-
puts and neglect the adaptability of Hypernetwork to data
distribution shift. Our work aims to jointly overcome these
shortcomings and bring new insights into PFL.

Methodology
Problem Formulation
As shown in Fig. 2, our Hypernetwork H(·;ψ), ψ ∈ Rq re-
ceives an input vector x = [x1, ..., xN ], xi ∈ Rd, i ∈ [N ]
in each training round, and generates N target networks
{TN(·; θi) : θi = H(xi;ψ), θi ∈ Rd}Ni=1. Assuming target
network weights and samples have the same dimension, i.e.,
dim(xi) = dim(θi),∀i ∈ [N ], which can be achieved by
upsampling on xi, or by modifying the structure of TN(·; θi).
{Ljtn(θi)}Jj=1 is denoted as the J loss functions of TN(·; θi):

Ljtn(θi) = ljtn(θi)− β[cos(x⃗i,
−−−→
Γ(θi)) + HV(Υ)] , (1)

where ljtn(θi) is the inner loss function such as cross-
entropy, Γ(θi)=(l1tn(θi), ..., l

J
tn(θi)), Υ=[Γ(θ1), ...,Γ(θN )].

HV(·) denotes the Hypervolume (Zitzler 1999), the area
dominated between the Pareto front and a specified refer-
ence point. β ∈ (0, 0.5] is the coefficient. Then the MOO of
Hypernetwork can be expressed as follows:

ψ∗ = argmin
ψ∈Rq

Exi∼Pi
x

1

NJ

N∑
i=1

J∑
j=1

Ljtn(θi) = argmin
ψ∈Rq

Exi∼Pi
x

1

NJ

N∑
i=1

J∑
j=1

ljtn(θi)−
β

N

N∑
i=1

cos(x⃗i,
−−−→
Γ(θi))− βHV(Υ),

(2)
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Figure 2: The framework of IOP. In each training round, the Hypernetwork processes a batch of samples and generates target
networks (aka. solutions). The objectives include MOO loss Ltn (blue), which focuses on improving all solution performance
via the Hypervolume term defined by solutions, and idempotent-like loss Lide (red), which enhances Hypernetwork adaptability
by controlling solutions’ distribution “size” (manifold range). Both objectives are unified through a dual optimization strategy.

where HV(·) : RN × RJ → R+ is a monotonically de-
creasing function. For a fixed reference point, a smaller
{ljtn(θi)}Jj=1 leads to a larger HV(·). If HV(Υ) is maxi-
mized, the current solution ψ will be on the Pareto front,
which is also beneficial for improving the performance
of other potential solutions (Hoang et al. 2023). Herein,
cos(·, ·) : Rd × RJ → R denotes the cosine similarity func-
tion. It helps to spread the Pareto front and brings the solu-
tion closer to the input (Ye et al. 2022), as well as strengthens
the correlation between H(·;ψ) and x⃗i, improving Hyper-
network’s sensitivity to samples. If the dimensions of x⃗i and
−−−→
Γ(θi) differ, we perform zero padding on Γ(θi), which has
proven effective in (Mahapatra 2020).

In addition, we design an idempotent-like objective
Lide(ψ) to enhance Hypernetwork’s adaptability. We unify
the Lide(ψ) and MOO objective in Eq. 2 through a dual
optimization strategyDOS. More details about Lide(ψ) and
DOS will be discussed in subsequent sections. Let denote
Ltn(ψ)= 1

NJ

∑N
i=1

∑J
j=1 L

j
tn(θi) (Eq. 2), the optimization

of Hypernetwork in IOP can finally be formalized as:

ψ∗ = argmin
ψ∈Rq

DOS(Ltn(ψ), Lide(ψ)) . (3)

Idempotent-Like Optimization Objective
We design the idempotent-like objective Lide(ψ) to enhance
Hypernetwork’s adaptability from the perspective of mani-
fold mapping (Shocher et al. 2023). As shown in Fig. 2, the
Hypernetwork H(·;ψ) is trained to generate target network
weight θ ∼ Pθ when given x ∼ Px. We assume the in-
stances in sample distribution Px and target distribution Pθ
have the same dimension. This allows applying H(·;ψ) to
both x and θ. Our Lide(ψ) follows the following principles:

(1) For any x ∼ Px, the H(·;ψ) maps it to Pθ, i.e.,
H(x;ψ) = θ. We hope that H(·;ψ) can be applied se-
quentially multiple times and reduce the difference in re-
sults from the initial application (i.e., idempotence-like),
which endows H(·;ψ) to fine-tune based on its original per-
formance to achieve adaptability to distribution shifts. So
Lide(ψ) contains the loss term Tide(ψ) = ∥H(H(x;ψ);ψ)−

H(x;ψ)∥2, ∥·∥2 denotes the L2 distance. We use the weight-
freezing technique (Shocher et al. 2023) to reduce the diffi-
culty of optimizing Tide(ψ) and modify it to Tide(ψ; ψ̂) =
∥H(H(x;ψ); ψ̂) −H(x;ψ)∥2, where ψ̂ denotes the frozen
copy of ψ, i.e., a gradient taken ψ will not affect ψ̂.

(2) For any θ ∼ Pθ, the H(·;ψ) should try to map it to
itself, i.e.,H(θ;ψ) = θ. Therefore,Lide(ψ) contains the self-
mapping loss term Tsm(ψ) = ∥H(θ;ψ)− θ∥2.

(3) ShrinkingPθ can improve the accuracy of the obtained
θ, enhancing the performance of target network. However,
it inevitably reduces the diversity of θ, affecting the adapt-
ability of Hypernetwork. Therefore, we control the range
of Pθ through a controllable manifold contraction term
Ttight(ψ; ψ̂) = −∥H(H(x; ψ̂);ψ) − H(x; ψ̂)∥2. This tech-
nique was first proposed in (Shocher et al. 2023), and we
extend it to the cross-space mapping from Px to Pθ. In sum-
mary, we modify Lide(ψ) to Lide(ψ; ψ̂) and define it as:

Lide(ψ; ψ̂) = exp( ∥H(H(x;ψ); ψ̂)−H(x;ψ)∥2 +
∥H(θ;ψ)− θ∥2 − λide∥H(H(x; ψ̂);ψ)−H(x; ψ̂)∥2 ) ,

(4)
where exp(·) is a monotonic nonnegative operator, and
λide ∈ (0, 1] is the contraction coefficient of Ttight(ψ; ψ̂).
When λide → 0, Pθ will not shrink. When λide → 1,
Ttight(ψ; ψ̂) is fully expressed, and Pθ is totally tightened.
Notably, when using gradient-based methods to optimize
Eq. 4, the gradient is related to ψ but independent of ψ̂.

Theorem 1. If the capacity of H(·;ψ) is large enough, the
terms exp(Tsm(ψ)−λideTtight(ψ; ψ̂)) and exp(Tide(ψ; ψ̂))
in Eq. 4 will have common global minima. Assum-
ing ψ∗ = argmin

ψ∈Rq

exp(Tsm(ψ) − λideTtight(ψ;ψ
∗)) =

argmin
ψ∈Rq

exp(Tide(ψ;ψ
∗)), then ∃ ψ∗ such that Pψ∗ = Pθ.

Dual Optimization Strategy
We use a gradient-based dual optimization strategy (DOS)
to unify the MOO objectiveLtn(ψ) in Eq. 2 and idempotent-
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like objective Lide(ψ; ψ̂) in Eq. 4. Specifically, the gradient
update strategy in the t-th ∈ [T ] training round is:

ψt+1 ← ψt − η ×D(ψt) , (5)

where η is the learning rate, D(ψt) denotes the gradient
of Hypernetwork. As shown in Fig. 3, DOS includes: (1)
When ψt is far from the Pareto front PFψ , select D(ψt)
that achieves the maximum improvement towards PFψ , fo-
cusing on MOO trade-off. (2) When there are different im-
provement directions for ψt towards PFψ , choose theD(ψt)
to minimize Lide(ψ; ψ̂). (3) When ψt approaches PFψ ,
only focus on decreasing Lide(ψ; ψ̂). For target network
TN(·; θi), θi =H(xi;ψ

t), i ∈ [N ], we obtainD(ψt) by solv-
ing the following optimization problem (Ye et al. 2022).

D(ψt) = argmin
G∈Rq

{1
2
∥∇Lide(ψt; ψ̂t)− G∥22}

s.t. ∇L j
tn(θi)

TD(ψt) ≥ | cos(x⃗i,
−−−→
Γ(θi))| · S(ψt), j ∈ [J ] ,

(6)
where L j

tn(θi) denotes the loss function of target network
defined in Eq. 1, Γ(θi) = (l1tn(θi), ..., l

J
tn(θi)), S(ψ

t) repre-
sents the Pareto stationary (Lin et al. 2020) of ψt. The opera-
tor ∥ · ∥22 forces the gradient G of Hypernetwork to approach
the idempotent-like objective gradient ∇Lide(ψt; ψ̂t). Un-
like (Ye et al. 2022), we strengthen the constraint lower
bound, the gradient descent rate of losses {Ljtn(θi)}Jj=1 are

constrained by | cos(x⃗i,
−−−→
Γ(θi))|·S(ψt). Since x⃗i is determin-

istic, | cos(x⃗i,
−−−→
Γ(θi))| will vary between 0 and 1 in the opti-

mization, which provides an intermediate updating direction
between gradient descent on Lide(ψt; ψ̂t) and multiple gra-
dient descent (Désidéri 2012) on {Ljtn(θi)}Jj=1, making the
optimization easier towards PFψ . In addition, introducing
the Pareto stationary term S(ψt) in constraint will provide
a dynamic improvement based on the distance between ψt
and PFψ , which has been proven more efficient (Ye et al.
2022). The Eq. 6 can be transformed into a dual form:

D(ψt) = ∇Lide(ψt; ψ̂t) +
J∑
j=1

λj,t∇L j
tn(θi) , (7)

with {λj,t}Jj=1 the solution of the following problem:

max
λ∈RJ

+

∑J

j=1
λj cos(x⃗i,

−−−→
Γ(θi))−

1

2
∥∇Lide(ψt; ψ̂t)+∑J

j=1
λt∇Ljtn(θi)∥22 ,

(8)

we follow (Ye et al. 2022) and initialize {λj,t}Jj=1 with zero
vector and terminate the optimization when reach the num-
ber of iterations T . DOS provides a progressive optimiza-
tion towards the Pareto front and ensures that it will not leave
its closure once the solution enters the Pareto front.

Theorem 2. Assuming tf>0, ψtf ∈ PFtf , ψ0 /∈ PFtf , then

∀t < tf , if | cos(x⃗i,
−−−→
Γ(θti))| · S(ψt) > 0, optimization based

on Eq. 6 will bring Pareto improvement for ψt. In addition,
∃tϵ > tf such that ψtϵ ∈ PFtϵ , then ∀t ≥ tϵ, ψ

t ∈ PFtϵ ,
that is, the solution enters PFtϵ will not leave closure PFtϵ .

Experiments
Experiment Setup
Datasets. We use multi-task learning datasets Multi-
MNIST, Multi-Fashion, and Fashion-MNIST (Xiao et al.
2017), to evaluate the MOO capability of IOP, which con-
tains 120K training and 20K testing samples. Each dataset
has two objectives, i.e., classifying the top-left and bottom-
right images. We use domain adaptation datasets PACS (Li
et al. 2017), DomainNet (Peng et al. 2019), and Office-
Home (Hemanth 2017) to evaluate the adaptability of IOP.
Baselines. Our baselines consist of MOO and PHN groups.
The former includes MGD (Sener 2018), UW (Kendall et al.
2018), LS (Boyd et al. 2004), PMTL (Lin et al. 2019), COS-
MOS (Ruchte et al. 2021), DWA (Liu et al. 2019), NashMTL
(Navon et al. 2022), EPO (Mahapatra 2020), FAMO (Liu
et al. 2024), and PNG (Ye et al. 2022) methods, they use
different techniques to improve the quality of Pareto front.
The PHN group contains CPMTL (Lin et al. 2020), PHN-
LS, PHN-EPO (Navon et al. 2020), and PHN-HVI (Hoang
et al. 2023) methods, they all learn the entire Pareto front
using a single Hypernetwork.
Implementation Details. We use a 10-layer Multi-Layer
Preceptor and ResNet18 (He et al. 2016) as the backbone
of Hypernetwork and target network. We use DySample (Liu
et al. 2023) to upsample the sample, aligning the dimensions
of input and output of Hypernetwork. By default, we set the
training round T , learning rate η, input dimension of Hyper-
network d, target network numberN , contraction coefficient
λide, and balance coefficient β to 1000, 0.001, 105, 100, 0.75
and 0.1. We use the cross-entropy loss as ltn within Ltn in
Eq. 1. All the experiments are implemented with Pytorch
and trained on a single NVIDIA Tesla V100.

2/3-Objective Problem Optimization Trajectory
We evaluate the optimization trajectory of the proposed IOP
on the synthesized 2/3-objective problem (2/3OP) (Lin et al.
2019). The 2OP contains two loss functions:
l1(ψ) = 1− exp(−∥ψ − q− 1

2 ∥22),
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(b) 2OP (N = 200)
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(c) 3OP (N = 100)
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(d) 3OP (N = 200)

Figure 4: The loss trajectory in 2/3OP optimal solution search. The optimal solutions of 2/3OP form the Pareto front PFψ .
The colored curve represents the search path of the solution under different λide. We mark the solutions that do not converge
accurately on PFψ with a red dotted ellipse.

Groups Methods Multi-MNIST Multi-Fashion Fashion-MNIST
Acc ↑ HV ↑ Cost ↓ Acc ↑ HV ↑ Cost ↓ Acc ↑ HV ↑ Cost ↓

MOO

MGD 89.52 ± 1.41 2.80 ± 0.08 7.25 ± 0.29 88.03 ± 0.42 2.56 ± 0.27 9.32 ± 0.13 89.81 ± 1.62 2.78 ± 0.06 8.59 ± 0.07
UW 89.56 ± 0.31 2.81 ± 0.24 7.22 ± 0.35 88.81 ± 0.24 2.62 ± 0.12 9.28 ± 0.71 89.33 ± 0.54 2.76 ± 0.09 8.61 ± 0.59
LS 89.78 ± 0.24 2.85 ± 0.11 7.42 ± 0.13 89.02 ± 0.21 2.63 ± 0.12 9.31 ± 0.04 90.22 ± 1.01 2.79 ± 0.13 8.92 ± 0.03

PMTL 89.72 ± 1.72 2.84 ± 0.41 7.31 ± 0.67 88.74 ± 0.61 2.61 ± 0.07 9.26 ± 0.33 89.27 ± 1.14 2.76 ± 0.21 8.57 ± 0.61
COSMOS 90.67 ± 1.56 2.87 ± 0.23 7.81 ± 0.91 89.69 ± 0.81 2.64 ± 0.12 9.66 ± 0.03 91.52 ± 1.47 2.84 ± 0.21 9.14 ± 0.31

DWA 90.21 ± 1.23 2.86 ± 0.35 7.09 ± 0.21 90.01 ± 0.41 2.65 ± 0.41 9.03 ± 0.31 89.29 ± 1.71 2.76 ± 0.14 8.60 ± 0.24
NashMTL 90.78 ± 1.24 2.88 ± 0.14 7.18 ± 0.74 90.57 ± 0.52 2.67 ± 0.21 9.39 ± 0.72 89.79 ± 1.37 2.78 ± 0.23 8.58 ± 0.15

EPO 91.72 ± 0.62 2.90 ± 0.34 6.73 ± 0.22 89.71 ± 1.81 2.64 ± 0.16 9.18 ± 0.11 91.81 ± 2.02 2.85 ± 0.12 8.51 ± 0.21
FAMO 92.42 ± 1.09 2.91 ± 0.22 7.21 ± 0.13 91.24 ± 0.32 2.69 ± 0.14 9.24 ± 0.32 90.47 ± 1.34 2.80 ± 0.15 8.72 ± 0.35
PNG 92.74 ± 1.23 2.92 ± 0.31 7.44 ± 0.23 90.37 ± 1.89 2.66 ± 0.25 9.48 ± 0.71 92.73 ± 1.85 2.88 ± 0.21 9.04 ± 1.03

CPMTL 90.45 ± 1.01 2.86 ± 0.21 7.68 ± 0.67 90.04 ± 0.71 2.65 ± 0.02 9.43 ± 0.23 90.57 ± 0.89 2.81 ± 0.11 9.07 ± 0.32

PHN
PHN-LS 90.93 ± 2.84 2.88 ± 0.42 7.72 ± 0.71 90.61 ± 0.71 2.68 ± 0.02 9.46 ± 0.42 90.62 ± 2.78 2.82 ± 0.14 8.98 ± 0.03

PHN-EPO 91.34 ± 1.43 2.89 ± 0.31 7.61 ± 0.63 91.87 ± 1.42 2.70 ± 0.11 9.53 ± 0.36 91.63 ± 0.78 2.84 ± 0.02 8.97 ± 0.01
PHN-HVI 92.81 ± 0.54 2.93 ± 0.13 7.78 ± 0.23 93.01 ± 1.03 2.71 ± 0.09 9.69 ± 0.13 92.41 ± 0.61 2.87 ± 0.08 9.12 ± 0.16

IOP (ours) 95.34 ± 0.81 2.99 ± 0.13 7.82 ± 0.37 94.78 ± 1.63 2.78 ± 0.08 9.71 ± 0.18 94.98 ± 0.73 2.93 ± 0.11 9.23 ± 0.08

Table 1: Comparison of accuracy, HV, and training cost (GFlops, G=109). Acc denotes the average classification accuracy for
the top-left and bottom-right images in the datasets. The best results are highlighted in bold and the second best are underlined.
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where q = 106, ψ = [ψ1, ..., ψq], 0 ≤ ψi ≤ 1, i ∈ [q].
Unlike (Lin et al. 2019), we use a larger dimension of q
(105, 106) to simulate the weight number of Hypernetwork,
which is more realistic in our scenario. Fig. 4 demonstrates
the loss trajectories in the search process for optimal so-
lutions, which start from random weights. Overall, under
different target network numbers N and contraction coeffi-
cients λide, the search paths of solutions can accurately con-
verge to the Pareto front, indicating that our IOP has the abil-
ity to optimize towards the Pareto front. Notably, a smaller
λide, such as 0.1 or 0.3, may lead to the search trajectory’s
convergence point not being wholly located on the Pareto
front, as indicated by red ellipses in Fig. 4, which indicates
that insufficient manifold contraction of target distribution
Pθ in Eq. 4 can produce unstable solutions. However, it is
not wise to fully tighten Pθ by setting λide = 1, as this may
reduce the adaptability of Hypernetwork. We provide guid-
ance on empirically setting λide in the subsequent section.

Comparison of Accuracy, HV, and Training Cost

We evaluate the quality of solutions obtained by differ-
ent methods on datasets Multi-MNIST, Multi-Fashion, and
Fashion-MNIST using accuracy and Hypervolume (HV)
metrics. We run all methods with five independent trials and
report the average value and standard deviation in Table 1.
When calculating the HV metric, we specify the reference
point (2, 2) empirically for all methods. We ensure that the
different loss values of each method are not greater than
the corresponding coordinate value of the reference point,
which is a common practice in MOO (Ye et al. 2022; Hoang
et al. 2023). On all datasets, IOP outperforms the methods
in MOO and PHN groups by an average of 5.3% and 4.0%
on the accuracy, and 5.2% and 3.9% on the HV. The ap-
proximate positive correlation between accuracy and HV in-
dicates the effectiveness of HV metric in reflecting perfor-
mance. In addition, we use the Torchstat (Swall0w 2018)
tool to estimate the computational cost of different methods
in training. The result shows that IOP has an average in-
crease of 3.7% and 2.1% costs compared to MOO and PHN
groups. The difference in the increased costs is because IOP
not only includes the cost generated by the Hypernetwork,
as the methods in the PHN group, but also contains the ad-



ditional cost brought by the idempotent-like optimization.

Impact of λide on the Hypernetwork’s Adaptability
Fig. 5 evaluates the impact of contraction coefficient λide
on Hypernetwork’s adaptability. We statistic the average ac-
curacy of target networks generated by Hypernetwork on
datasets PACS, DomainNet, and Office-Home. The accuracy
varies similarly on different datasets and is unaffected by
the amount of target network N . Specifically, as λide ranges
from 0 to 0.75, the accuracy increases and peaks at approx-
imately 0.75, decreasing as λide from 0.75 to 1. The reason
for this is straightforward. We have discussed that using a
larger λide to tighten the target distribution Pθ is beneficial
for improving the accuracy of solutions. However, from Eq.
4, we know that a larger λide limits the solution range and
reduces its diversity, damaging Hypernetwork’s adaptability.

( PACS ) ( DomainNet ) ( OfficeHome )

Figure 5: Impact of λide on the accuracy of target network.

We use an independent cross-entropy loss function for
each domain in the above datasets and construct the MOO
problem on them. Table 2 provides the cross-domain average
accuracy (CDAA) of different methods. In the MOO group,
we use Resnet18 (He et al. 2016) as the backbone of the
model in baselines and optimize it using the technique de-
scribed in the literature. Our IOP outperforms the methods
in MOO and PHN groups by an average of 12.3% and 8.7%
on CDAA. Although a too-small or too-large λide (e.g., 0.35
or 0.95) may weaken this advantage, it does not change the
fact that IOP can effectively compensate for the shortcom-
ings of MOO and PHN methods in model adaptability.

Groups Methods PACS DomainNet Office-Home

MOO

MGD 76.23 ± 1.53 56.12 ± 1.24 77.23 ± 1.73
UW 74.72 ± 0.45 54.62 ± 1.47 73.62 ± 0.52
LS 69.14 ± 1.72 51.82 ± 1.24 68.31 ± 1.61

PMTL 78.43 ± 0.52 58.13 ± 1.43 78.56 ± 0.32
COSMOS 79.12 ± 1.32 58.72 ± 0.13 78.69 ± 1.31

DWA 75.03 ± 1.52 55.11 ± 0.87 74.72 ± 1.32
NashMTL 71.72 ± 1.96 53.85 ± 1.72 72.92 ± 0.89

EPO 79.04 ± 1.62 57.35 ± 0.35 77.42 ± 0.23
FAMO 77.04 ± 1.32 56.23 ± 1.09 76.46 ± 1.93
PNG 79.42 ± 0.72 59.02 ± 1.14 79.42 ± 1.74

PHN

CPMTL 71.32 ± 1.07 55.14 ± 0.59 72.82 ± 1.35
PHN-LS 79.06 ± 2.11 59.01 ± 0.21 78.13 ± 1.21

PHN-EPO 80.22 ± 0.13 60.09 ± 0.31 81.56 ± 1.03
PHN-HVI 80.12 ± 1.46 60.03 ± 0.23 80.43 ± 1.32

IOP (λide=0.35) 83.23 ± 1.31 59.32 ± 1.42 82.08 ± 0.68
IOP (λide=0.75) 86.25 ± 0.85 62.07 ± 1.32 85.46 ± 0.36
IOP (λide=0.95) 84.47 ± 0.63 60.13 ± 0.63 84.86 ± 1.03

Table 2: Cross-domain average accuracy on adaptation
datasets PACS, DomainNet, and Office-Home.

Ablation Study
We conduct an ablation experiment to evaluate the contribu-
tion of Cosine and Hypervolume terms in MOO loss (Eq.
1), as well as idempotent-like loss (Eq. 4). As shown in
Table 3, the results on the multi-task learning datasets in-
dicate a noticeable performance degradation using a single
loss term, which proves that the roles of terms Consine and
Hypervolume are indispensable. The results on the adapta-
tion datasets show that the idempotent-like loss significantly
improves the adaptability of Hypernetwork. Note that adopt-
ing idempotent-like loss alone is pointless, as the other two
are indispensable constraints.

Loss Type Multi-MNIST Multi-Fashion Fashion-MNIST

Cos 83.12 ± 0.4 82.71 ± 0.3 80.21 ± 1.1
Hyp 85.35 ± 0.2 83.01 ± 0.2 81.14 ± 0.5
Cos + Hyp 95.17 ± 0.2 95.69 ± 0.1 94.87 ± 1.3

Cos + Ide 82.51 ± 1.3 81.73 ± 1.4 79.85 ± 1.1
Hyp + Ide 86.01 ± 0.5 82.89 ± 0.6 80.84 ± 1.4

Cos + Hyp + Ide 95.19 ± 1.5 95.72 ± 1.8 94.93 ± 1.2

Loss Type PACS DomainNet Office-Home
Cos 77.89 ± 1.3 56.93 ± 0.5 76.61 ± 0.8
Hyp 77.21 ± 0.4 56.01 ± 1.1 75.32 ± 0.3
Cos + Hyp 79.78 ± 1.6 58.61 ± 0.4 78.53 ± 0.2
Cos + Ide 81.52 ± 1.1 59.13 ± 0.3 80.17 ± 0.5
Hyp + Ide 83.41 ± 1.6 60.42 ± 1.6 82.07 ± 0.4

Cos + Hyp + Ide 86.18 ± 1.2 62.17 ± 0.4 85.58 ± 0.8

Table 3: Ablation results of loss types. Cos: cosine loss term,
Hyp: Hypervolume loss term, Ide: idempotent-like loss.

We also evaluate the effectiveness of IOP under different
objective function numbers (OFN) and dimensions of Hy-
pernetwork’s input/output (DHIO) on classic MOO prob-
lems 2OP (Lin et al. 2019), Bi-CVRP (Zajac et al. 2021),
Bi-KP (Ishibuchi et al. 2014), 3OP (Lin et al. 2019), Tri-TSP
(Lust et al. 2010), and Tri-CVRP (Zajac et al. 2021). Table 4
shows that the varying DHIO won’t impact the optimization
– there is negligible performance difference on metrics HV
and OS in different problems. The training cost, however,
will increase with the growth of OFN or DHIO, stemming
from upsampling the samples and calculating the similarity
between samples and the loss vector (Eq. 1).

Problems DHIO = 105 DHIO = 107

HV OS Cost HV OS Cost
OFN = 2

2OP 0.26 ± 0.01 134 ± 3 4.17 ± 0.2 0.25 ± 0.01 133 ± 3 4.58 ± 0.3
Bi-CVRP 0.42 ± 0.02 251 ± 5 4.42 ± 0.1 0.41 ± 0.01 249 ± 4 4.84 ± 0.3
Bi-KP 0.44 ± 0.02 202 ± 5 4.63 ± 0.5 0.43 ± 0.02 199 ± 4 5.02 ± 0.2

OFN = 3
3OP 0.50 ± 0.01 532 ± 7 6.12 ± 0.4 0.49 ± 0.02 534 ± 4 6.74 ± 0.1
Tri-TSP 0.57 ± 0.03 968 ± 5 6.53 ± 0.2 0.56 ± 0.04 970 ± 3 7.19 ± 0.3
Tri-CVRP 0.62 ± 0.04 773 ± 5 6.93 ± 0.5 0.61 ± 0.03 777 ± 5 7.63 ± 0.3

Table 4: Experimental results on Hypervolume (HV), num-
ber of optimal solutions (OS), and training cost (GFlops,
G=109) under different objective function numbers (OFN)
and dimensions of Hypernetwork’s input/output (DHIO).
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Figure 6: The accuracy distribution of the four levels of target networks. The subfigures in the top line use the CS input, the
bottom line uses the CL input. The letters in the horizontal axis denote the domains in the dataset.

Iterative Input for Improving the Performance
Our idempotent-like optimization endows the Hypernetwork
with the characteristic of receiving iterative inputs. We eval-
uate its contribution to improving Hypernetwork perfor-
mance in Fig. 6. Specifically, we randomly select 100 sam-
ples from each domain of the dataset and apply our Hyper-
network multiple times to each sample (up to four), gen-
erating four levels of target networks for each sample. We
use two input methods: (1) Consistent Sample (CS): Apply-
ing the Hypernetwork consecutively on the same sample x,
i.e., H(x;ψ), H(H(x;ψ);ψ), H(H(H(x;ψ);ψ);ψ), and
H(H(H(H(x;ψ);ψ);ψ);ψ) denote the four levels of tar-
get networks. (2) Consistent Label (CL): For each sample
x, we randomly sample y with the same label as x from
the same domain and apply the Hypernetwork consecutively
on y, i.e., H(x;ψ), H(H(y;ψ);ψ), H(H(H(y;ψ);ψ);ψ),
and H(H(H(H(y;ψ);ψ);ψ);ψ) denote the four levels of
target networks. Fig. 6 shows the accuracy distribution of
these target networks. When using the CS input method,
not all first-level target networks (apply Hypernetwork once)
achieve optimal performance in each domain. Applying the
Hypernetwork two or three times can improve the accuracy
of target networks. Almost all the target networks achieve
upward performance alignment (UPA) when applying the
Hypernetwork four times, showcasing cohesion and obtain-
ing a smaller interquartile range. Although there are more
non-optimal second-level or third-level target networks for
the CL input method than CS, similar UPA can still be
achieved after consecutively applying the Hypernetwork to
samples with the same label. Experimental results indicate
that IOP pioneers a new way to improve Hypernetwork per-
formance by steering the model through iterative inputs for
more efficient parameter updates.

General Applicability of IOP
We apply IOP to the optimization of multimodal model
Vision-LLMv2 (VLLMv2) (Wu et al. 2024), which includes
dialogue, image, and object recognition data simultaneously.
We consider VLLMv2 as the target network and connected

to our Hypernetwork. Optimizing different types of data in
VLLMv2 inevitably leads to conflicts. Therefore, we take
the loss function of different types of data used in VLLMv2
as the balancing objective and use the idempotent-like ob-
jective to improve VLLMv2’s adaptability in downstream
tasks. The results in Table 5 indicate that IOP improve the
performance of dialogue, recognition, reasoning, and gener-
alization tasks by 2.4%, 6.2%, 3.7%, and 7.5%, separately,
which proves the effectiveness of IOP.

Methods VQAv2 GQA POPE SEED COCO
VLLMv2 81.2 65.2 84.5 63.3/70.3/41.9 77.2/82.8
VLLMv2+IOP 82.5 66.8 86.2 65.5/71.2/42.7 81.3/88.6

Methods VCR
(Q-A/QA-R/Q-AR)

OdinW13
(Rabbit/Raccoon/Vehicle/Avg)

VLLMv2 87.2 / 88.1 / 79.1 72.1 / 56.1 / 60.3 / 62.8
VLLMv2+IOP 90.4 / 91.2 / 82.1 77.3 / 61.6 / 63.5 / 67.5

Table 5: Comparison on dialogue datasets (VQAv2 (Goyal
et al. 2017), GQA (Hudson 2019), POPE (Li et al. 2023),
SEED (all/image/video) (Ge et al. 2024)), region recogni-
tion dataset COCO (mAP/Acc) (Lin et al. 2014), visual com-
monsense reasoning dataset VCR (Zellers et al. 2019), and
object detection generalization dataset OdinW13 (Li et al.
2022). In VCR, Q, A, and R denote question, answer, and
rationale, Q-A means that the model needs to select option
A conditioned on Q.

Conclusion
This paper reveals the main limitations of the most exist-
ing PHN methods and proposes a novel idempotent-like
optimization method on the Pareto front of Hypernetwork,
namely IOP. Our theoretical analysis shows that IOP ensures
the convergence of the optimization process. Experimental
results demonstrate that IOP effectively improves the perfor-
mance and adaptability of Hypernetwork with low computa-
tional cost. In addition, IOP pioneers a new way to improve
the performance of Hypernetwork through iterative input.
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